References
[1]Goldberg, E., Chapter 12: Biogeochemistry of Trace Metals, in Treatise on marine ecology and paleoecology, ed. by Hedgepeth, J., vol. 1, pp. 345–357 (1957).
[2]Taylor, S. R., McLennan, S. M., The continental crust. Its evolution and composition (Blackwell Science, Oxford, 1985).
[3]Edmond, J. M. et al., Earth and Planet. Sci. Lett. 46, 1–18 (1979).
[4]Kump, L. R., The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater Composition During the Phanerozoic. In Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers. Geophysical Monograph Series 178 (American Geophysical Union (AGU), 2008), pp. 275–283.
[5]Holland, H. D., Zimmermann, H., Int. Geol. Rev. 42 (2000).
[6]Isson, T. T., Planavsky, N. J., Nature 560, 471–475 (2018).
[7]Dickson, J. A. D., J. Sediment. Res. 74, 355–365 (2004).
[8]Gothmann, A. M. et al., Geochim. Cosmochim. Act. 160, 188–208 (2015).
[9]Coggon, R. M. et al., Science 327, 1114 (2010).
[10]Rausch, S. et al., Earth and Planet. Sci. Lett. 362, 215–224 (2013).
[11]Brennan, S. T. et al., Am. J. Sci. 313, 713 (2013).
[12]Lowenstein, T. K. et al., Science 294, 1086–1088 (2001).
[13]Timofeeff, M. N. et al., Geochim. Cosmochim. Act. 70, 1977–1994 (2006).
[14]Horita, J. et al., Geochim. Cosmochim. Act. 66, 3733–3756 (2002).
[15]Turchyn, A. V., DePaolo, D. J., Ann. Rev. Earth Plan. Sci. 47, 197–224 (2019).
[16]Elderfield, H., Schultz, A., Ann. Rev. Earth Plan. Sci. 24, 191–224 (1996).
[17]Shalev, N. et al., Nat. Commun. 10, 5646 (2019).
[18]Berner, R. A. et al., Am. J. Sci. 283, 641–683 (1983).
[19]Coogan, L. A., Dosso, S. E., Earth and Planet. Sci. Lett. 415, 38–46 (2015).
[20]Holland, H. D., Am. J. Sci. 305, 220–239 (2005).
[21]Spencer, R., Hardie, L., in Fluid mineral interactions: a tribute to H. P Eugster: ed. by Spencer, R. J. and Chou, I. M. , Geochemical Society Special publication 1990 pp. 409–419.
[22]Young, E., Galy, A., Rev. Min. Geochem. 55, 197–230 (2004).
[23]Daughtry, A. C. et al., Geochim. Cosmochim. Act. 26, 857–866 (1962).
[24]Galy, A. et al., Int. J. Mass. Spec. 208, 89–98 (2001).
[25]Tipper, E. T. et al., Earth and Planet. Sci. Lett. 250, 241–253 (2006).
[26]Fantle, M. S. et al., Annu. Rev. Earth Planet. Sci. 48, 549–583 (2020).
[27]Tipper, E. T. et al., Chem. Geol. 257, 65–75 (2008).
[28]Bohlin, M. S. et al., Rapid Communications in Mass Spectrometry. 32, 93–104 (2018).
[29]Coath, C. D. et al., Chem. Geol. 451, 78–89 (2017).
[30]Teng, F.-Z., “Magnesium Isotope Geochemistry”. In: Reviews in Mineralogy and Geochemistry 82.1 (2017), pp. 219–287.
[31]Schauble, E. A., Rev. Min. Geochem. 55, 65–112 (2004).
[32]Young, E. et al., Geochim. Cosmochim. Act. 66, 1095–1104 (2002).
[33]Schauble, E. A., Geochim. Cosmochim. Act. 75, 844–869 (2011).
[34]Schott, J. et al., Chem. Geol. 445, 120–134 (2016).
[35]Mavromatis, V. et al., Geochim. Cosmochim. Act. 114, 188–203 (2013).
[36]Hindshaw, R. S. et al., Earth and Planet. Sci. Lett. 531, 115980 (2020).
[37]Li, W. et al., Earth and Planet. Sci. Lett. 394, 82–93 (2014).
[38]Wombacher, F. et al., Geochim. Cosmochim. Act. 75, 5797–5818 (2011).
[39]Schuessler, J. A. et al., Chem. Geol. 497, 74–87 (2018).
[40]Dunlea, A. G. et al., Nat. Commun. 8, 844 (2017).
[41]Tipper, E. T. et al., Global Biogeochem. Cycles 24, GB3019 (2010).
[42]Bolou-Bi, E. B. et al., Geochim. Cosmochim. Act. 87, 341–355 (2012).
[43]Li, M. Y. H. et al., Earth and Planet. Sci. Lett. 553 (2021).
[44]Opfergelt, S. et al., Earth and Planet. Sci. Lett. 341, 176–185 (2012).
[45]Pogge von Strandmann, P. A. E. et al., Earth and Planet. Sci. Lett. 276, 187–197 (2008).
[46]Ma, L. et al., Chem. Geol. 397, 37–50 (2015).
[47]Gao, T. et al., Geochim. Cosmochim. Act. 237, 205–222 (2018).
[48]Huang, K.-J. et al., Earth and Planet. Sci. Lett. 359–360, 73–83 (2012).
[49]Opfergelt, S. et al., Geochim. Cosmochim. Act. 125, 110–130 (2014).
[50]Ryu, J.-S. et al., Chem. Geol. 445, 135–145 (2016).
[51]Wimpenny, J. et al., Geochim. Cosmochim. Act. 128, 178–194 (2014).
[52]Mayfield, K. K. et al., Nat. Commun. 12, 148 (2021).
[53]Mottl, M. J., Wheat, C. G., Geochim. Cosmochim. Act. 58, 2225–2237 (1994).
[54]Pogge von Strandmann, P A. E. et al., Front. Earth Sci. 8, 109 (2020).
[55]Santiago Ramos, D. P et al., Earth and Planet. Sci. Lett. 541, 116290 (2020).
[56]Pogge von Strandmann, P A. E. et al., Biogeosciences 11, 5155–5168 (2014).
[57]Higgins, J. A., Schrag, D. P, Earth and Planet. Sci. Lett. 416, 73–81 (2015).
[58]Gothmann, A. M. et al., Geology 45, 1039–1042 (2017).
[59]Pogge von Strandmann, P A. E., Geochem. Geophys. Geosyst. 9 (2008).
[60]Saenger, C., Wang, Z., Quat. Sci. Rev. 90, 1–21 (2014).
[61]Broecker, W., Am. J. Sci. 313, 776–789 (2013).
[62]Higgins, J. A., Schrag, D. P, Earth and Planet. Sci. Lett. 357–358, 386–396 (2012).
[63]Fantle, M. S., Higgins, J., Geochim. Cosmochim. Act. 142, 458–481 (2014).
[64]Ahm, A.-S. C. et al., Geochim. Cosmochim. Act. 236, 140–159 (2018).
[65]Ahm, A.-S. C. et al., 506, 292–307 (2019).
[66]Hoffman, P F., Lamothe, K. G., Proc. Nat. Acad. of Sciences. 116, 18874–18879 (2019).
[67]He, R. et al., Chem. Geol. 558, 119876 (2020).
[68]Riechelmann, S. et al., Geochim. Cosmochim. Act. 235, 333–359 (2018).