Skip to main content Accessibility help
×
Home
Mathematical Models in Contact Mechanics
  • Cited by 121
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This text provides a complete introduction to the theory of variational inequalities with emphasis on contact mechanics. It covers existence, uniqueness and convergence results for variational inequalities, including the modelling and variational analysis of specific frictional contact problems with elastic, viscoelastic and viscoplastic materials. New models of contact are presented, including contact of piezoelectric materials. Particular attention is paid to the study of history-dependent quasivariational inequalities and to their applications in the study of contact problems with unilateral constraints. The book fully illustrates the cross-fertilisation between modelling and applications on the one hand and nonlinear mathematical analysis on the other. Indeed, the reader will gain an understanding of how new and nonstandard models in contact mechanics lead to new types of variational inequalities and, conversely, how abstract results concerning variational inequalities can be applied to prove the unique solvability of the corresponding contact problems.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliographical notes
References
References
[1] R. A., Adams, Sobolev Spaces, New York, Academic Press, 1975.
[2] R. P., Agarwal, D., O'Regan and D. R., Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, New York, Springer, 2009.
[3] S. S., Antman, Nonlinear Problems of Elasticity, New York, Springer-Verlag, 1995.
[4] K., Atkinson and W., Han, Theoretical Numerical Analysis: a Functional Analysis Framework, Texts in Applied Mathematics 39, New York, Springer, 2001.
[5] C., Baiocchi and A., Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, Chichester, John Wiley, 1984.
[6] C., Baiocchi, V., Comincioli, L., Guerri and G., Volpi, Free boundary problems in the theory of fluid flow through porous media: a numerical approach, Calcolo 10 (1973), 1–85.
[7] M., Barboteu, J. R., Fernández and T., Raffat, Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Comput. Methods Appl. Mech. Engrg. 197 (2008), 3724–3732.
[8] M., Barboteu, A., Matei and M., Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, submitted to Quart. J. Mech. Appl. Math.
[9] M., Barboteu, Y., Ouaffik and M., Sofonea, Analysis and simulation of a piezoelectric contact problem, in L., Beznea, V., Brinzanescu, R., Purice, et al., eds., Proceedings of the Sixth Congress of Romanian Mathematicians, Vol. I, Bucharest, Editura Academiei Române, 2007, 485–492.
[10] M., Barboteu and M., Sofonea, Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation, Ap. Math. Comp. 215 (2009), 2978–2991.
[11] M., Barboteu and M., Sofonea, Modelling and analysis of the unilateral contact of a piezoelectric body with a conductive support, J. Math. Anal. App. 358 (2009), 110–124.
[12] V., Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Leyden, Editura Academiei, Bucharest-Noordhoff, 1976.
[13] V., Barbu, Optimal Control of Variational Inequalities, Boston, Pitman, 1984.
[14] V., Barbu and T., Precupanu, Convexity and Optimization in Banach Spaces, Dordrecht, D. Reidel Publishing Company, 1986.
[15] R. C., Batra and J. S., Yang, Saint-Venant's principle in linear piezoelectricity, J. Elasticity 38 (1995), 209–218.
[16] H. H., Bauschke and P. L., Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, New York, Springer, 2011.
[17] P., Bisegna, F., Lebon and F., Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in J. A. C., Martins and M. D. P. Monteiro, Marques, eds., Contact Mechanics, Dordrecht, Kluwer, 2002, 347–354.
[18] M., Boureanu, A., Matei and M., Sofonea, Analysis of a contact problem for electro-elastic-visco-plastic materials, Comm. Pure Appl. Anal. 11 (2012), 1185–1203.
[19] H., Brézis, Equations et inéquations non liné aires dans les espaces vectoriels en dualité, Ann. Inst. Fourier 18 (1968), 115–175.
[20] H., Brézis, Problèmes unilatéraux, J. Math. Pures et Appl. 51 (1972), 1–168.
[21] H., Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathematics Studies, Amsterdam, North Holland, 1973.
[22] H., Brézis, Analyse fonctionnelle – Théorie et applications, Paris, Masson, 1987.
[23] M., Campillo and I. R., Ionescu, Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res. 102 B9 (1997), 363–371.
[24] T., Cazenave and A., Haraux, Introduction aux problèmes d'évolution semi-linéaires, Paris, Ellipses, 1990.
[25] P. G., Ciarlet, Mathematical Elasticity, Volume I: Three Dimensional Elasticity, Studies in Mathematics and its Applications 20, Amsterdam, North-Holland, 1988.
[26] C., Ciulcu, D., Motreanu and M., Sofonea, Analysis of an elastic contact problem with slip dependent coefficient of friction, Math. Ineq. Appl. 4 (2001), 465–479.
[27] M., Cocu, Existence of solutions of Signorini problems with friction, Int. J. Engng. Sci. 22 (1984), 567–581.
[28] M., Cocu, E., Pratt and M., Raous, Existence d'une solution du problème quasistatique de contact unilatéral avec frottement non local, C. R. Acad. Sci. Paris, 320, Série I (1995), 1413–1417.
[29] M., Cocu, E., Pratt and M., Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engng. Sci. 34 (1996), 783–798.
[30] M., Cocu and J. M., Ricaud, Analysis of a class of implicit evolution inequalities associated to dynamic contact problems with friction, Int. J. Engng. Sci. 328 (2000), 1534–1549.
[31] N., Cristescu and I., Suliciu, Viscoplasticity, Bucharest, Martinus Nijhoff Publishers, Editura Tehnica, 1982.
[32] Z., Denkowski, S., Migórski and A., Ochal, Existence and uniqueness to a dynamic bilateral frictional contact problem in viscoelasticity, Acta Appl. Math. 94 (2006), 251–276.
[33] Z., Denkowski, S., Migórski and N. S., Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Boston, Kluwer Academic/Plenum Publishers, 2003.
[34] Z., Denkowski, S., Migórski and N. S., Papageorgiu, An Introduction to Nonlinear Analysis: Applications, Boston, Kluwer Academic/Plenum Publishers, 2003.
[35] I., Doghri, Mechanics of Deformable Solids, Berlin, Springer, 2000.
[36] S., Drabla and M., Sofonea, Analysis of a Signorini problem with friction, IMA J. Appl. Math. 62 (1999), 1–18.
[37] S., Drabla, M., Sofonea and B., Teniou, Analysis of some frictionless contact problems for elastic bodies, Annales Polonici Mathematici LXIX (1998), 75–88.
[38] A. D., Drozdov, Finite Elasticity and Viscoelasticity – a Course in the Nonlinear Mechanics of Solids, Singapore, World Scientific, 1996.
[39] G., Duvaut, Loi de frottement non locale, J. Méc. Thé. Appl. Special issue (1982), 73–78.
[40] G., Duvaut and J.-L., Lions, Inequalities in Mechanics and Physics, Berlin, Springer-Verlag, 1976.
[41] C., Eck, J., Jarušek and M., Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics 270, New York, Chapman/CRC Press, 2005.
[42] C., Eck, J., Jarušek and M., Sofonea, A dynamic elastic-viscoplastic unilateral contact problem with normal damped response and Coulomb friction, European J. Appl. Math. 21 (2010), 229–251.
[43] I., Ekeland and R., Temam, Convex Analysis and Variational Problems, Amsterdam, North-Holland, 1976.
[44] L. C., Evans, Partial Differential Equations, Providence, AMS Press, 1999.
[45] G., Fichera, Problemi elastostatici con vincoli unilaterali. II. Problema di Signorini con ambique condizioni al contorno, Mem. Accad. Naz. Lincei, S. VIII, Vol. VII, Sez. I, 5 (1964) 91–140.
[46] A., Friedman, Variational Principles and Free-boundary Problems, New York, John Wiley, 1982.
[47] P., Germain and P., Muller, Introduction à la mécanique des milieux continus, Paris, Masson, 1980.
[48] R., Glowinski, Numerical Methods for Nonlinear Variational Problems, New York, Springer-Verlag, 1984.
[49] R., Glowinski, J.-L., Lions and R., Trémolières, Numerical Analysis of Variational Inequalities, Amsterdam, North-Holland, 1981.
[50] A., Guran, F., Pfeiffer and K., Popp, eds., Dynamics with Friction: Modeling, Analysis and Experiment, Part I, Singapore, World Scientific, 1996.
[51] M. E., Gurtin, An Introduction to Continuum Mechanics, New York, Academic Press, 1981.
[52] W., Han and B. D., Reddy, Plasticity: Mathematical Theory and Numerical Analysis, New York, Springer-Verlag, 1999.
[53] W., Han and M., Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Num. Anal. 38 (2000), 556–579.
[54] W., Han and M., Sofonea, Time-dependent variational inequalities for viscoelastic contact problems, J. Comp. Appl. Math. 136 (2001), 369–387.
[55] W., Han and M., Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Providence, RI, American Mathematical Society; Somerville, MA, International Press, 2002.
[56] W., Han, M., Sofonea and K., Kazmi, Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials, Comp. Meth. Appl. Mech. Eng. 196 (2007), 3915–3926.
[57] J., Haslinger, I., Hlaváček and J., Nečas, Numerical methods for unilateral problems in solid mechanics, Handbook of Numerical Analysis, Vol. IV, P. G., Ciarlet and J.-L., Lions, eds., Amsterdam, North-Holland, 1996, 313–485.
[58] J.-B., Hiriart-Urruty and C., Lemaréchal, Convex Analysis and Minimization Algorithms, I, II, Berlin, Springer-Verlag, 1993.
[59] I., Hlaváček, J., Haslinger, J., Nečas and J., Lovíšek, Solution of Variational Inequalities in Mechanics, New York, Springer-Verlag, 1988.
[60] T., Ikeda, Fundamentals of Piezoelectricity, Oxford, Oxford University Press, 1990.
[61] I. R., Ionescu, C., Dascalu and M., Campillo, Slip-weakening friction on a periodic system of faults: spectral analysis, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 53 (2002), 980–995.
[62] I. R., Ionescu and Q.-L., Nguyen, Dynamic contact problems with slip dependent friction in viscoelasticity, Int. J. Appl. Math. Comput. Sci. 12 (2002), 71–80.
[63] I. R., Ionescu, Q.-L., Nguyen and S., Wolf, Slip displacement dependent friction in dynamic elasticity, Nonlinear Analysis 53 (2003), 375–390.
[64] I. R., Ionescu and J.-C., Paumier, Friction dynamique avec coefficient dépendant de la vitesse de glissement, C. R. Acad. Sci. Paris 316, Série I (1993), 121–125.
[65] I. R., Ionescu and J.-C., Paumier, On the contact problem with slip rate dependent friction in elastodynamics, European J. Mech., A – Solids 13 (1994), 556–568.
[66] I. R., Ionescu and M., Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford, Oxford University Press, 1993.
[67] J., Jarušek, Contact problem with given time-dependent friction force in linear viscoelasticity, Comment. Math. Univ. Carolinae 31 (1990), 257–262.
[68] J., Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Mathematical Journal 46 (1996), 475–487.
[69] J., Jarušek and C., Eck, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions, Math. Models Meth. Appl. Sci. 9 (1999), 11–34.
[70] J., Jarušek and M., Sofonea, On the solvability of dynamic elasticvisco-plastic contact problems, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 88 (2008), 3–22.
[71] J., Jarušek and M., Sofonea, On the solvability of dynamic elasticvisco-plastic contact problems with adhesion, Annals of AOSR, Series on Mathematics and its Applications 1 (2009), 191–214.
[72] K. L., Johnson, Contact Mechanics, Cambridge, Cambridge University Press, 1987.
[73] A. M., Khludnev and J., Sokolowski, Modelling and Control in Solid Mechanics, Basel, Birkhäuser-Verlag, 1997.
[74] N., Kikuchi and J. T., Oden, Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Engng. Sci. 18 (1980), 1173–1284.
[75] N., Kikuchi and J. T., Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods, Philadelphia, SIAM, 1988.
[76] D., Kinderlehrer and G., Stampacchia, An Introduction to Variational Inequalities and their Applications, Classics in Applied Mathematics 31, Philadelphia, SIAM, 2000.
[77] A., Klarbring, A., Mikelič and M., Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci. 26 (1988), 811–832.
[78] A., Klarbring, A., Mikelič and M., Shillor, On friction problems with normal compliance, Nonlinear Analysis 13 (1989), 935–955.
[79] A. J., Kurdila and M., Zabarankin, Convex Functional Analysis, Basel, Birkhäuser, 2005.
[80] K. L., Kuttler and M., Shillor, Set-valued pseudomonotone maps and degenerate evolution inclusions, Comm. Contemp. Math. 1 (1999), 87–123.
[81] K. L., Kuttler and M., Shillor, Regularity of solutions to a dynamic frictionless contact problem with normal compliance, Nonlinear Analysis 59 (2004), 1063–1075.
[82] T. A., Laursen, Computational Contact and Impact Mechanics, Berlin, Springer, 2002.
[83] J., Lemaître and J.-L., Chaboche, Mechanics of Solids Materials, Cambridge, Cambridge University Press, 1990.
[84] Z., Lerguet, M., Shillor and M., Sofonea, A frictional contact problem for an electro-viscoelastic body, Electronic Journal of Di?erential Equations 170 (2007), 1–16.
[85] J.-L., Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Gauthiers-Villars, 1969.
[86] J.-L., Lions and E., Magenes, Problèmes aux limites non-homogènes I, Paris, Dunod, 1968.
[87] J.-L., Lions and G., Stampacchia, Variational inequalitiesComm. Pure Appl. Math. 20, 493 (1967).
[88] Z., Liu and S., Migórski, Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity, Discrete and Continuous Dynamical Systems, Series B 9 (2008), 129–143.
[89] Z., Liu, S., Migórski and A., Ochal, Homogenization of boundary hemivariational inequalities in linear elasticity, J. Math. Anal. Appl. 340 (2008), 1347–1361.
[90] F., Maceri and P., Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support, Math. Comp. Modelling 28 (1998), 19–28.
[91] L. E., Malvern, Introduction to the Mechanics of a Continuum Medium, New Jersey, Princeton-Hall, Inc., 1969.
[92] J. A. C., Martins and M. D. P. Monteiro, Marques, eds., Contact Mechanics, Dordrecht, Kluwer, 2002.
[93] J. A. C., Martins and J. T., Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA 11 (1987), 407–428.
[94] A., Matei, Modélisation Mathématique en Mécanique du Contact, Ph. D. Thesis, Université de Perpignan, Perpignan, 2002.
[95] A., Matei, V. V., Motreanu and M., Sofonea, A quasistatic antiplane contact problem with slip dependent friction, Advances in Nonlinear Variational Inequalities 4 (2001), 1–21.
[96] S., Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal. 84 (2005), 669–699.
[97] S., Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete and Continuous Dynamical Systems, Series B 6 (2006), 1339–1356.
[98] S., Migórski, Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems, Comput. Math. Appl. 52 (2006), 677–698.
[99] S., Migórski and A., Ochal, Hemivariational inequality for viscoelastic contact problem with slip-dependent friction, Nonlinear Analysis 61 (2005), 135–161.
[100] S., Migórski and A., Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity 83 (2006), 247–275.
[101] S., Migórski and A., Ochal, Existence of solutions for second order evolution inclusions with application to mechanical contact problems, Optimization 55 (2006), 101–120.
[102] S., Migórski, A., Ochal and M., Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Math. Models Methods Appl. Sci. 18 (2008), 271–290.
[103] S., Migórski, A., Ochal and M., Sofonea, Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders, Nonlinear Analysis 70 (2009), 3738–3748.
[104] S., Migórski, A., Ochal and M., Sofonea, Modeling and analysis of an antiplane piezoelectric contact problem, Math. Models Methods Appl. Sci. 19 (2009), 1295–1324.
[105] S., Migórski, A., Ochal and M., Sofonea, Variational analysis of static frictional contact problems for electro-elastic materials, Math. Nachr. 283 (2010), 1314–1335.
[106] S., Migórski, A., Ochal and M., Sofonea, A dynamic frictional contact problem for piezoelectric materials, J. Math. Anal. Appl. 361 (2010), 161–176.
[107] S., Migórski, A., Ochal and M., Sofonea, Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Analysis: Real World Applications 11 (2010), 172–183.
[108] S., Migórski, A., Ochal and M., Sofonea, Analysis of a dynamic contact problem for electro-viscoelastic cylinders, Nonlinear Analysis 73 (2010), 1221–1238.
[109] S., Migórski, A., Ochal and M., Sofonea, Analysis of a frictional contact problem for viscoelastic materials with long memory, Discrete and Continuous Dynamical Systems, Series B 15 (2011), 687–705.
[110] S., Migórski, A., Ochal and M., Sofonea, History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics, Nonlinear Analysis: Real World Applications 12 (2011), 3384–3396.
[111] S., Migórski, A., Ochal and M., Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, New York, Springer, 2012.
[112] J. J., Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société Mathématique de France 93 (1965), 273–283.
[113] D., Motreanu and M., Sofonea, Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials, Abstract and Applied Analysis 4 (1999), 255–279.
[114] D., Motreanu and M., Sofonea, Quasivariational inequalities and applications in frictional contact problems with normal compliance, Adv. Math. Sci. Appl. 10 (2000), 103–118.
[115] J., Nečas, Les méthodes directes en théorie des équations elliptiques, Praha, Academia, 1967.
[116] J., Nečas and I., Hlaváček, Mathematical Theory of Elastic and Elastico-Plastic Bodies: an Introduction, Amsterdam, Oxford, New York, Elsevier Scienti?c Publishing Company, 1981.
[117] Q. S., Nguyen, Stability and Nonlinear Solid Mechanics, Chichester, John Wiley & Sons, Ltd., 2000.
[118] J. T., Oden and J. A. C., Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985), 527–634.
[119] P. D., Panagiotopoulos, Inequality Problems in Mechanics and Applications, Boston, Birkhäuser, 1985.
[120] P. D., Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Berlin, Springer-Verlag, 1993.
[121] V. Z., Patron and B. A., Kudryavtsev, Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, London, Gordon & Breach, 1988.
[122] E., Rabinowicz, Friction and Wear of Materials, second edition, New York, Wiley, 1995.
[123] M., Raous, M., Jean and J. J., Moreau, eds., Contact Mechanics, New York, Plenum Press, 1995.
[124] B. D., Reddy, Introductory Functional Analysis with Applications to Boundary Value Problems and Finite Elements, New York, Springer, 1998.
[125] M., Rochdi, M., Shillor and M., Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J. Elasticity 51 (1998), 105–126.
[126] M., Rochdi, M., Shillor and M., Sofonea, A quasistatic contact problem with directional friction and damped response, Appl. Anal. 68 (1998), 409–422.
[127] A. D., Rodríguez–Aros, M., Sofonea and J. M., Viaño, A class of evolutionary variational inequalities with Volterra-type integral term, Math. Models Methods Appl. Sci. 14 (2004), 555–577.
[128] A. D., Rodríguez–Aros, M., Sofonea and J. M., Viaño, Numerical approximation of a viscoelastic frictional contact problem, C. R. Acad. Sci. Paris, Sér. II Méc. 334 (2006), 279–284.
[129] A. D., Rodríguez–Aros, M., Sofonea and J. M., Viaño, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math. 198 (2007), 327–358.
[130] I., Roşca, Functional framework for linear variational equations, in L., Dragoş, ed., Curent Topics in Continuum Mechanics, Bucharest, Editura Academiei Române, 2002, 177–258.
[131] M., Shillor, ed., Recent advances in contact mechanics, Special issue of Math. Comput. Modelling 28 (4–81) (1998).
[132] M., Shillor and M., Sofonea, A quasistatic viscoelastic contact problem with friction, Int. J. Engng. Sci. 38 (2000), 1517–1533.
[133] M., Shillor, M., Sofonea and J. J., Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Berlin, Springer, 2004.
[134] A., Signorini, Sopra alcune questioni di elastostatica, Atti della Società Italiana per il Progresso delle Scienze, 1933.
[135] M., Sofonea, C., Avramescu and A., Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Comm. Pure Appl. Anal. 7 (2008), 645–658.
[136] M., Sofonea and El H., Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction, Math. Model. Anal. 9 (2004), 229–242.
[137] M., Sofonea and El H., Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl. 14 (2004), 613–631.
[138] M., Sofonea, W., Han and M., Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276, New York, Chapman-Hall/CRC Press, 2006.
[139] M., Sofonea and A., Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18, New York, Springer, 2009.
[140] M., Sofonea and A., Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European J. Appl. Math. 22 (2011), 471–491.
[141] M., Sofonea and Y., Ouafik, A piezoelectric contact problem with normal compliance, Applicaciones Mathematicae 32 (2005), 425–442.
[142] M., Sofonea, A. D., Rodríguez–Aros and J. M., Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact, Math. Comput. Modelling 41 (2005), 1355–1369.
[143] L., Solymar and L. B., Au, Solutions Manual for Lectures on the Electrical Properties of Materials, fifth edition, Oxford, Oxford University Press, 1993.
[144] N., Strömberg, Thermomechanical Modelling of Tribological Systems, Ph.D. Thesis 497, Linköping University, Sweden, 1997.
[145] N., Strömberg, L., Johansson and A., Klarbring, Generalized standard model for contact friction and wear, in M., Raous, M., Jean and J. J., Moreau, eds., Contact Mechanics, New York, Plenum Press, 1995.
[146] N., Strömberg, L., Johansson and A., Klarbring, Derivation and analysis of a generalized standard model for contact friction and wear, Int. J. Solids Structures 33 (1996), 1817–1836.
[147] J. J., Telega, Topics on unilateral contact problems of elasticity and inelasticity, in J. J., Moreau and P. D., Panagiotopoulos, eds., Nonsmooth Mechanics and Applications, Wien, Springer-Verlag, 1988, 340–461.
[148] R., Temam and A., Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge, Cambridge University Press, 2001.
[149] P., Wriggers, Computational Contact Mechanics, Chichester, Wiley, 2002.
[150] P., Wriggers and U., Nackenhorst, eds., Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics 27, Berlin, Springer, 2006.
[151] P., Wriggers and P. D., Panagiotopoulos, eds., New Developments in Contact Problems, Wien, New York, Springer-Verlag, 1999.
[152] J., Yang, ed., Special Topics in the Theory of Piezoelectricity, New York, Springer, 2009.
[153] J. S., Yang, R. C., Batra and X. Q., Liang, The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators, Smart Mater. Struct. 3 (1994), 485–493.
[154] J., Yang and J. S., Yang, An Introduction to the Theory of Piezoelectricity, New York, Springer, 2005.
[155] E., Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, New York, Springer-Verlag, 1986.
[156] E., Zeidler, Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization, New York, Springer-Verlag, 1986.
[157] E., Zeidler, Nonlinear Functional Analysis and its Applications. IV: Applications to Mathematical Physics, New York, Springer-Verlag, 1988.
[158] E., Zeidler, Nonlinear Functional Analysis and its Applications, II/A: Linear Monotone Operators, New York, Springer-Verlag, 1990.
[159] E., Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, New York, Springer-Verlag, 1990.
[160] E., Zeidler, Applied Functional Analysis: Main Principles and Their Applications, New York, Springer-Verlag, 1995.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.