This book provides a solid foundation and an extensive study for an important class of constrained optimization problems known as Mathematical Programs with Equilibrium Constraints (MPEC), which are extensions of bilevel optimization problems. The book begins with the description of many source problems arising from engineering and economics that are amenable to treatment by the MPEC methodology. Error bounds and parametric analysis are the main tools to establish a theory of exact penalisation, a set of MPEC constraint qualifications and the first-order and second-order optimality conditions. The book also describes several iterative algorithms such as a penalty-based interior point algorithm, an implicit programming algorithm and a piecewise sequential quadratic programming algorithm for MPECs. Results in the book are expected to have significant impacts in such disciplines as engineering design, economics and game equilibria, and transportation planning, within all of which MPEC has a central role to play in the modelling of many practical problems.
"The book provides a good basis for further theoretical and applications-oriented investigations of MPECs. This monograph can be recommended as a valuable resource in applied mathematics, especially in the fields of operations research and engineering, as well as for specialists in mathematical prgramming." Stephen Dempe,Mathematical Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.