References
Aberdein, A. (2005). The uses of argument in mathematics. Argumentation, 19, 287–301.
Aberdein, A. (2006). Managing informal mathematical knowledge: Techniques from informal logic. In Borwein, J. M., & Farmer, W. M. (eds.), MKM 2006, Lecture Notes in Computer Science 4108 (pp. 208–21). Berlin, Springer.
Aberdein, A. (2007). The informal logic of mathematical proof. In Van Kerkhove, B., & Van Bendegem, J. P. (eds.), Perspectives on Mathematical Practices (pp. 135–51). Dordrecht, Springer.
Aberdein, A. (2010). Observations on sick mathematics. In Van Kerkhove, B., Van Bendegem, J. P., & de Vuyst, J. (eds.), Philosophical Perspectives on Mathematical Practice (pp. 269–300). Suwanee, GA, College Publications.
Aberdein, A. (2013). The parallel structure of mathematical reasoning. In Aberdein, A., & Dove, I. (eds.), The Argument of Mathematics (pp. 361–80). Dordrecht, Springer.
Aberdein, A. (2021). Dialogue types, argumentation schemes, and mathematical practice: Douglas Walton and mathematics. Journal of Applied Logics, 8(1), 159–82.
Aberdein, A. (2023). Deep disagreement in mathematics. Global Philosophy, 33(1), 17.
Aberdein, A., Rittberg, C. J., & Tanswell, F. S. (2021). Virtue theory of mathematical practices: An introduction. Synthese, 199, 10167–80.
Alcolea Banegas, J. (1997). L’argumentació en matemàtiques. In Casaban i Moya, E. (ed.), XIIè Congrés Valencià de Filosofia, València (pp. 135–47).
English translation (2013). Argumentation in mathematics. In Aberdein, A., & Dove, I. (eds.), The Argument of Mathematics (pp. 47–60). Dordrecht, Springer.
Andersen, L. E. (2017). On the nature and role of peer review in mathematics. Accountability in Research, 24(3), 177–92.
Andreatta, M., Bezdek, A., & Boronski, J. P. (2011). The problem of Malfatti: Two centuries of debate. The Mathematical Intelligencer, 33(1), 72–6.
Anscombe, G. E. M. (1958). Modern moral philosophy. Philosophy, 33(124), 1–19.
Antonutti Marfori, M. (2010). Informal proofs and mathematical rigour. Studia Logica, 96(2), 261–72.
Appel, K., & Haken, W. (1977). Every planar map is 4-colorable. Part I: Discharging. Illinois Journal of Mathematics, 21(3), 429–90.
Appel, K., Haken, W., & Koch, J. (1977). Every planar map is four colorable. Part II: Reducibility. Illinois Journal of Mathematics, 21(3), 491–567.
Aristotle. (2009). The Nicomachean Ethics. Ross, W. D. (trans.), 2nd edition revised and with notes by Brown, L. Oxford, Oxford University Press.
Atiyah, M., Borel, A., Chaitin, G. J. et al. (1994). Responses to: A. Jaffe and F. Quinn, ‘Theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics’. Bulletin of the American Mathematical Society, 30(2), 178–207.
Auslander, J. (2009). On the roles of proof in mathematics. In Gold, B., & Simons, R. A. (eds.), Proof and Other Dilemmas: Mathematics and Philosophy (pp. 61–78). Washington, DC, The Mathematical Association of America.
Austin, J. L. (1962). How to Do Things with Words. Oxford, Oxford University Press.
Avigad, J. (2021). Reliability of mathematical inference. Synthese, 198(8), 7377–99.
Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica (III), 12(2), 81–106.
Azzouni, J. (2005). Is there still a sense in which mathematics can have foundations. In Sica, G. (ed.), Essays on the Foundations of Mathematics and Logic (pp. 9–48). Monza, Polimetrica.
Azzouni, J. (2009). Why do informal proofs conform to formal norms? Foundations of Science, 14(1), 9–26.
Azzouni, J. (2020). The algorithmic-device view of informal rigorous mathematical proof. In Sriraman, B. (ed.), Handbook of the History and Philosophy of Mathematical Practice (pp. 1–82). Cham, Springer. https://doi.org/10.1007/978-3-030-19071-2_4-1. Barany, M. J. (2011). God, king, and geometry: Revisiting the introduction to Cauchy’s Cours d’analyse. Historia Mathematica, 38(3), 368–88.
Barany, M. J. (2013). Stuck in the middle: Cauchy’s Intermediate Value Theorem and the history of analytic rigor. Notices of the AMS, 60(10), 1334–8.
Barany, M. J. (2020). Impersonation and personification in mid-twentieth century mathematics. History of Science, 58(4), 417–36.
Barton, N. (2012). Structural relativity and informal rigour. In Oliveri, G., Ternullo, C., & Boscolo, S. (eds.), Objects, Structures, and Logics: FilMat Studies in the Philosophy of Mathematics (pp. 133–74). Cham, Springer.
Bass, H. (2003). The Carnegie Initiative on the Doctorate: The case of mathematics. Notices of the AMS, 50(7), 767–76.
Battaly, H. (2008). Virtue epistemology. Philosophy Compass, 3(4), 639–63.
Beall, J. (1999). From full blooded Platonism to really full blooded Platonism. Philosophia Mathematica (III), 7(3), 322–5.
Beall, J. C., & Restall, G. (2005). Logical Pluralism. Oxford, Oxford University Press.
Blåsjö, V. (2022). Operationalism: An interpretation of the philosophy of ancient Greek geometry. Foundations of Science, 27(2), 587–708.
Bourbaki, N. (1968). Elements of Mathematics, Theory of Sets. Reading, MA, Addison-Wesley.
Brown, J. (1999). Philosophy of Mathematics: An Introduction to the World of Proofs and Pictures. London, Routledge.
Buldt, B., Löwe, B., & Müller, T. (2008). Towards a new epistemology of mathematics. Erkenntnis, 68(3), 309–29.
Burgess, J. P. (2015). Rigor and Structure. Oxford, Oxford University Press.
Burgess, J., & De Toffoli, S. (2022). What is mathematical rigor? Aphex, 25, 1–17.
Cantù, P., & Luciano, E. (2021). Giuseppe Peano and his school: Axiomatics, symbolism and rigor. Philosophia Scientiæ. Travaux d’histoire et de philosophie des sciences, 25(1), 3–14.
Carter, J. (2019). Philosophy of mathematical practice: Motivations, themes and prospects. Philosophia Mathematica (III), 27(1), 1–32.
Cellucci, C. (2018). Definition in mathematics. European Journal for Philosophy of Science, 8(3), 605–29.
Code, L. (1987). Epistemic Responsibility. Hanover, NH, University Press of New England.
Cook, R. T. (2010). Let a thousand flowers bloom: A tour of logical pluralism. Philosophy Compass, 5(6), 492–504.
Cotnoir, A. J. (2018). Logical nihilism. In Wyatt, J., Pedersen, N. J. L. L., & Kellen, N. (eds.), Pluralisms in Truth and Logic (pp. 301–29). Cham, Palgrave Macmillan.
Coumans, V. J. W. (2021). Definitions (and concepts) in mathematical practice. In Sriraman, B. (ed.), Handbook of the History and Philosophy of Mathematical Practice (n. pag.). Cham, Springer. https://doi.org/10.1007/978-3-030-19071-2_94-1. Coumans, V. J. W., & Consoli, L. (2023). Definitions in practice: An interview study. Synthese, 202(23), 1–32.
Davies, B., Alcock, L., & Jones, I. (2020). Comparative judgement, proof summaries and proof comprehension. Educational Studies in Mathematics, 105(2), 181–97.
Davies, B., Alcock, L., & Jones, I. (2021). What do mathematicians mean by proof? A comparative-judgement study of students’ and mathematicians’ views. The Journal of Mathematical Behavior, 61, 100824.
Davies, B., Miller, D., & Infante, N. (2021). The role of authorial context in mathematicians’ evaluations of proof. International Journal of Mathematical Education in Science and Technology, 54(5), 725–39.
De Morgan, A. (1838). Mathematical induction. The Penny Cyclopedia, 12, 465–6.
De Toffoli, S. (2021a). Groundwork for a fallibilist account of mathematics. The Philosophical Quarterly, 71(4), 1–22.
De Toffoli, S. (2021b). Reconciling rigour and intuition. Erkenntnis, 86, 1783–802.
De Toffoli, S., & Fontanari, C. (2022). Objectivity and rigor in classical Italian algebraic geometry. Noesis: Objectivity in Mathematics, 38, 195–212.
De Toffoli, S., & Fontanari, C. (2023). Recalcitrant disagreement in mathematics: An ‘endless and depressing controversy’ in the history of Italian algebraic geometry. Global Philosophy, 33(4), 1–29.
De Toffoli, S., & Giardino, V. (2015). An inquiry into the practice of proving in low-dimensional topology. In Lolli, G., Panza, M., & Venturi, G. (eds.), From Logic to Practice (pp. 315–36). Cham, Springer.
Dean, W., & Kurokawa, H. (in press). On the methodology of informal rigour: Set theory, semantics, and intuitionism. In Antonutti Marfori, M., & Petrolo, M. (eds.), Intuitionism, Computation, and Proof: Selected Themes from the Research of G. Kreisel, Springer.
Delarivière, S., Frans, J., & Van Kerkhove, B. (2017). Mathematical explanation: A contextual approach. Journal of Indian Council of Philosophical Research, 34(2), 309–29.
Detlefsen, M. (2009). Proof: Its nature and significance. In Gold, B., & Simons, R. A. (eds.), Proof and Other Dilemmas: Mathematics and Philosophy (pp. 3–32). Washington, DC, The Mathematical Association of America.
Dove, I. J. (2013). Towards a theory of mathematical argument. In Aberdein, A., & Dove, I. (eds.), The Argument of Mathematics (pp. 291–308). Springer, Dordrecht.
Dutilh Novaes, C. (2011). The different ways in which logic is (said to be) formal. History and Philosophy of Logic, 32(4), 303–32.
Dutilh Novaes, C. (2021). The Dialogical Roots of Deduction: Historical, Cognitive, and Philosophical Perspectives on Reasoning. Cambridge, Cambridge University Press.
Ernest, P. (1998). Social Constructivism as a Philosophy of Mathematics. Albany, NY, State University of New York Press.
Ernest, P. (2021). Mathematics, ethics and purism: An application of MacIntyre’s virtue theory. Synthese, 199(1), 3137–67.
Eves, H. (1965). A Survey of Geometry, Volume 2. Boston, MA, Allyn and Bacon.
Ferreirós, J. (2008). The crisis in the foundations of mathematics. In Gowers, T., Barrow-Green, , & Leader, I. (eds.), The Princeton Companion to Mathematics (pp. 142–56). Princeton, NJ, Princeton University Press.
Fine, K. (2005). Our knowledge of mathematical objects. In Gendler, T. S., & Hawthorne, J. (eds.), Oxford Studies in Epistemology (pp. 89–109). Oxford, Oxford Academic.
Foot, P. (1978,) Virtues and Vices and Other Essays in Moral Philosophy. Oxford: Blackwell.
Franks, Curtis (2015). Logical nihilism. In Hirvonen, Å., Kontinen, J., Kossak, R., & Villaveces, A. (eds.), Logic without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, pp. 147–66. Berlin, De Gruyter.
Frege, G. (1884) The Foundations of Arithmetic. Austin, J. L. (trans.), 1953. Oxford, Blackwell.
Fricker, M. (2007). Epistemic Injustice: Power and the Ethics of Knowing. Oxford, Oxford University Press.
Geist, C., Löwe, B., & Kerkhove, B. V. (2010). Peer review and knowledge by testimony in mathematics. In Löwe, B., & Müller, T. (eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice. Research Results of the Scientific Network PhiMSAMP (pp. 1–24). London, College Publications.
Gelfert, A. (2022). Thinking with notations: Epistemic actions and epistemic activities in mathematical practice. In Friedman, M., & Krauthausen, K. (eds.), Model and Mathematics: From the 19th to the 21st Century: Trends in the History of Science (pp. 333–62). Cham, Birkhäuser.
Goethe, N. B., & Friend, M. (2010). Confronting ideals of proof with the ways of proving of the research mathematician. Studia Logica, 96(2), 273–88.
Gonthier, G. (2008). Formal proof – The four-color theorem. Notices of the American Mathematical Society, 55(11), 1382–93.
Greco, J. (2010). Achieving Knowledge. Cambridge, Cambridge University Press.
Habgood-Coote, J., & Tanswell, F. S. (2023). Group knowledge and mathematical collaboration: A philosophical examination of the classification of finite simple groups. Episteme, 20(2), 281–307.
Haffner, E. (2021). The shaping of Dedekind’s rigorous mathematics: What do Dedekind’s drafts tell us about his ideal of rigor? Notre Dame Journal of Formal Logic, 62(1), 5–31.
Hales, T. C. (2008). Formal proof. Notices of the AMS, 55(11), 1370–80.
Hamami, Y. (2019). Mathematical rigor and proof. Review of Symbolic Logic, 15(2), 409–49.
Hamami, Y., & Morris, R. L. (2020). Philosophy of mathematical practice: A primer for mathematics educators. ZDM, 52(6), 1113–26.
Hanna, G., & Larvor, B. (2020). As Thurston says? On using quotations from famous mathematicians to make points about philosophy and education. ZDM: Mathematics Education, 52(6), 1137–47.
Hardy, G. H. (1929). Mathematical proof. Mind, 38(149), 1–25.
Hegel, G. W. F. (1807). Phenomenology of Spirit. Miller, A. V. (trans.), 1977. Oxford, Clarendon Press.
Heinze, A. (2010). Mathematicians’ individual criteria for accepting theorems and proofs: An empirical approach. In Hanna, G., Jahnke, H. N., & Pulte, H. (eds.), Explanation and Proof in Mathematics (pp. 101–11). Boston, MA, Springer.
Hengel, E. (2022). Publishing while female: Are women held to higher standards? Evidence from peer review. The Economic Journal, 132(648), 2951–91. https://doi.org/10.1093/ej/ueac032. Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics, 24(4), 389–99.
Hersh, R. (1997). Prove – Once more and again. Philosophia Mathematica (III), 5(2), 153–65.
Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig, Teubner.
Hookway, C. (2010). Some varieties of epistemic injustice: Reflections on Fricker. Episteme, 7(2), 151–63.
Hornsby, J. (2012). Ryle’s knowing-how, and knowing how to act. In Bengson, J., & Moffett, M. A. (eds.), Knowing How: Essays on Knowledge, Mind and Action (pp. 80–98). Oxford, Oxford University Press.
Hunsicker, E., & Rittberg, C. J. (2022). On the epistemological relevance of social power and justice in mathematics. Axiomathes, 32, 1147–68.
Inglis, M., & Aberdein, A. (2015). Beauty is not simplicity: An analysis of mathematicians’ proof appraisals. Philosophia Mathematica (III), 23(1), 87–109.
Inglis, M., & Aberdein, A. (2016). Diversity in proof appraisal. In Larvor, B. (ed.), Mathematical Cultures (pp. 163–79. Cham, Birkhäuser.
Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358–90.
Inglis, M., Mejía‐Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards when evaluating elementary proofs. Topics in Cognitive Science, 5(2), 270–82.
Isaacson, D. (2011). The reality of mathematics and the case of set theory. In Noviak, Z. & Simonyi, A. (eds.), Truth, Reference, and Realism (pp. 1–75). Budapest, Central European University Press.
Jaffe, A., & Quinn, F. (1993). ’Theoretical mathematics’: Toward a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society, 29(1), 1–13.
Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513–49.
Kitcher, P. (1984). The Nature of Mathematical Knowledge. Oxford, Oxford University Press.
Kneebone, G. T. (1957). The philosophical basis of mathematical rigour. Philosophical Quarterly, 7(28), 204–23.
Knipping, C., & Reid, D. A. (2019). Argumentation analysis for early career researchers. In Kaiser, G. & Presmeg, N. (eds.), Compendium for Early Career Researchers in Mathematics Education (pp. 3–31). Cham, Springer.
Kreisel, G. (1967). Informal rigour and completeness proofs. In Lakatos, I. (ed.), Studies in Logic and the Foundations of Mathematics, Vol. 47 (pp. 138–86). Amsterdam, Elsevier.
Kunen, K. (1980). Set Theory: An Introduction to Independence Proofs. Amsterdam, North-Holland.
Lakatos, I. (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge, Cambridge University Press.
Lane, L., Martin, U., Murray-Rust, D., Pease, A., & Tanswell, F. (2019). Journeys in mathematical landscapes: Genius or craft? In Hanna, G., Reid, D. A., & de Villiers, M. (eds.), Proof Technology in Mathematics Research and Teaching (pp. 197–212). Cham, Springer.
Larvor, B. (2001). What is dialectical philosophy of mathematics? Philosophia Mathematica (III), 9, 212–29.
Larvor, B. (2012). How to think about informal proofs. Synthese, 187(2), 715–30.
Larvor, B. (2016). Why the naïve derivation recipe model cannot explain how mathematicians’ proofs secure mathematical knowledge. Philosophia Mathematica (III), 24(3), 401–4.
Leitgeb, H. (2009). On formal and informal provability. In Bueno, O., & Linnebo, Ø. (eds.), New Waves in Philosophy of Mathematics (pp. 263–99). London, Palgrave Macmillan.
Lob, H., & Richmond, H. W. (1930). On the solutions of Malfatti’s problem for a triangle. Proceedings of the London Mathematical Society, 2(1), 287–304.
Löwe, B. (2016). Philosophy or not? The study of cultures and practices of mathematics. In Ju, S., Löwe, B., Müller, T., & Xie, Y. (eds.), Cultures of Mathematics and Logic (pp. 23–42). Cham, Birkhäuser.
Löwe, B., & Müller, T. (2008). Mathematical knowledge is context-dependent. Grazer Philosophische Studien, 76, 91–107.
Löwe, B., & Müller, T. (2010). Skills and mathematical knowledge. In Löwe, B., & Müller, T. (eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice (pp. 265–80). London, College Publications.
Löwe, B., & Müller, T. (2011). Data and phenomena in conceptual modelling. Synthese, 182(1), 131–48.
Löwe, B., & Van Kerkhove, B. (2019). Methodological triangulation in empirical philosophy (of mathematics). In Aberdein, A., & Inglis, M. (eds.), Advances in Experimental Philosophy of Logic and Mathematics (pp. 15–37). New York, Bloomsbury Academic Publishers.
Mac Lane, S. (1986). Mathematics: Form and Function. New York, Springer-Verlag.
MacIntyre, A. (1985). After Virtue, 2nd Edition. London, Duckworth.
MacKenzie, D. (2004). Mechanizing Proof: Computing, Risk, and Trust. London, MIT Press.
Maddy, P. (2017). Set-theoretic foundations. In Caicedo, A., Cummings, J., Koellner, P., & Larson, P. B. (eds.), Contemporary Mathematics 690: Foundations of Mathematics (pp. 289–322). Providence, RI, American Mathematical Society.
Maddy, P. (2019). What do we want a foundation to do? Comparing set-theoretic, category-theoretic, and univalent approaches. In Centrone, S., Kant, D., & Sarikaya, D. (eds), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts (pp. 293–311). Cham, Springer.
Malfatti, G. (1803). Memoria sopra un problema sterotomico. Memorie di matematica e di fisica della Societá Italiana delle Scienze, 10(1), 235–44.
Martin, J. V. (2021). Prolegomena to virtue-theoretic studies in the philosophy of mathematics. Synthese, 199(1), 1409–34.
Maxwell, E. A. (1959). Fallacies in Mathematics. Cambridge, Cambridge University Press.
Mejía-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: Further evidence from a survey study. Educational Studies in Mathematics, 85(2), 161–73.
Mihaljević, H., & Santamaría, L. (2022). Mathematics publications and authors’ gender: Learning from the Gender Gap in Science project. European Mathematical Society Magazine, 123, 34–8.
Montmarquet, J. (1993). Epistemic Virtue and Doxastic Responsibility. Lanham, MD, Rowman & Littlefield.
Moore, R. C. (2016). Mathematics professors’ evaluation of students’ proofs: A complex teaching practice. International Journal of Research in Undergraduate Mathematics Education, 2(2), 246–78.
Morris, R. L. (2021). Intellectual generosity and the reward structure of mathematics. Synthese, 199(1), 345–67.
Müller-Hill, E. (2009). Formalizability and knowledge ascriptions in mathematical practice. Philosophia Scientiæ: Travaux d’histoire et de philosophie des sciences, 13(2), 21–43.
Mumma, J. (2010). Proofs, pictures, and Euclid. Synthese, 175(2), 255–87.
Nelsen, R. B. (1993). Proofs without Words: Exercises in Visual Thinking. Washington, DC, Mathematical Association of America.
Nelson, R. B. (2000). Proofs without Words II: More Exercises in Visual Thinking. Washington, DC, Mathematical Association of America.
Nelsen, R. B. (2008). Visual gems of number theory. Math Horizons, 15(3), 7–31.
Nelsen, R. B. (2015). Proofs without Words III: Further Exercises in Visual Thinking. Washington, DC, Mathematical Association of America.
Ohlhorst, J. (2022). Dual processes, dual virtues. Philosophical Studies, 179(7), 2237–57.
Ording, P. (2019). 99 Variations on a Proof. Princeton, NJ, Princeton University Press.
Panse, A., Alcock, L., & Inglis, M. (2018). Reading proofs for validation and comprehension: An expert–novice eye-movement study. International Journal of Research in Undergraduate Mathematics Education, 4(3), 357–75.
Pelc, A. (2009). Why do we believe theorems? Philosophia Mathematica (III), 17(1), 84–94.
Pettigrew, R. (2016). Review of John P. Burgess’s Rigor and Structure. Philosophia Mathematica (III), 24, 129–46.
Popper, K. (1959) The Logic of Scientific Discovery. London, Hutchinson. (First published in German as Logik der Forschung, 1934.)
Popper, K. (1963) Conjectures and Refutations: The Growth of Scientific Knowledge. London, Routledge & Kegan Paul.
Priest, G. (1987). In Contradiction: A Study of the Transconsistent. Oxford, Oxford University Press.
Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica (III), 7(1), 5–41.
Rittberg, C. J. (2021). Intellectual humility in mathematics. Synthese, 199(3), 5571–601.
Rittberg, C. J. (2023). Justified epistemic exclusion in mathematics. Philosophia Mathematica (III), 31(3), 330–59,
Rittberg, C. J., Tanswell, F. S., & Van Bendegem, J. P. (2020). Epistemic injustice in mathematics. Synthese, 197(9), 3875–3904.
Rolfsen, D. (1976). Knots and Links. Berkeley, CA: Publish or Perish.
Rotman, B. (1988). Towards a semiotics of mathematics. Semiotica, 72, 1–35.
Ruffino, M., San Mauro, L., & Venturi, G. (2021). Speech acts in mathematics. Synthese, 198(10), 10063–87.
Russell, G. (2018). Logical nihilism: Could there be no logic? Philosophical Issues, 28(1), 308–24.
Ryle, G. (1946). Knowing how and knowing that: The presidential address. Proceedings of the Aristotelian Society, 46, 1–16.
Ryle, G. (1971). Thinking and self-teaching. Journal of Philosophy of Education, 5, 216–28.
Sangwin, C. (2023). Sums of the first n odd integers. Mathematical Gazette, 107(568), 10–24.
Sangwin, C., & Tanswell, F. S. (2023). Developing new picture proofs that the sums of the first n odd integers are squares. Mathematical Gazette, 107(569), 249–62.
Schlimm, D. 2012. Mathematical concepts and investigative practice. In Feest, U. & Steinle, F. (eds.), Scientific Concepts and Investigative Practice (pp. 127–47). Berlin, de Gruyter GmbH.
Secco, G. D., & Pereira, L. C. (2017). Proofs versus experiments: Wittgensteinian themes surrounding the four-color theorem. In Silva, M. (ed.), How Colours Matter to Philosophy (pp. 289–307). Cham, Springer.
Shapiro, S. (2014). Varieties of Logic. Oxford, Oxford University Press.
Shapiro, S., & Roberts, C. (2021). Open texture and mathematics. Notre Dame Journal of Formal Logic, 62(1), 173–91.
Shin, S. J. (1994). The Logical Status of Diagrams. Cambridge, Cambridge University Press.
Sosa, E. (2009). Knowing full well: The normativity of beliefs as performances. Philosophical Studies, 142(1), 5–15.
Steiner, M. (1975). Mathematical Knowledge. Ithaca, NY, Cornell University Press.
Su, F. (2017). Mathematics for human flourishing. American Mathematical Monthly, 124(6), 483–93.
Su, F. (2020). Mathematics for Human Flourishing. New Haven, CT, Yale University Press.
Tanswell, F. (2015). A problem with the dependence of informal proofs on formal proofs. Philosophia Mathematica (III), 23(3), 295–310.
Tanswell, F. S. (2016a). Saving proof from paradox: Gödel’s paradox and the inconsistency of informal mathematics. In Andreas, H., & Verdée, P. (eds.), Logical Studies of Paraconsistent Reasoning in Science and Mathematics (pp. 159–73). Cham, Springer.
Tanswell, F. (2017). Playing with LEGO® and proving theorems. In Cook, R. T., & Bacharach, S. (eds.), LEGO® and Philosophy: Constructing Reality Brick by Brick (pp. 217–26). Hoboken, NJ, Wiley Blackwell.
Tanswell, F. S. (2018). Conceptual engineering for mathematical concepts. Inquiry, 61(8), 881–913.
Tanswell, F. S. (in press). Go forth and multiply! On actions, instructions and imperatives in mathematical proofs. In Bueno, O., & Brown, J. (eds.), Essays on the Philosophy of Jody Azzouni. Cham, Springer.
Tanswell, F. S., & Kidd, I. J. (2021). Mathematical practice and epistemic virtue and vice. Synthese, 199(1), 407–26.
Tanswell, F. S., & Rittberg, C. J. (2020). Epistemic injustice in mathematics education. ZDM: Mathematics Education, 52(6), 1199–1210.
Tappenden, J. (2008). Mathematical concepts and definitions. In Mancosu, P. (ed.), The Philosophy of Mathematical Practice (pp. 256–75). Oxford, Oxford University Press.
Tatton-Brown, O. (2021). Rigour and intuition. Erkenntnis, 86, 1757–81.
Tatton-Brown, O. (2023). Rigour and proof. Review of Symbolic Logic, 16(2), 480–508.
Termini, M. (2019). Proving the point: Connections between legal and mathematical reasoning. Suffolk University Law Review, 52, 5–35.
Thomas, R. S. D. (2007). The comparison of mathematics with narrative. In Van Kerkhove, B., & Van Bendegem, J. P. (eds.), Perspectives on Mathematical Practices (pp. 43–59). Dordrecht, Springer.
Thomas, R. S. D. (2015). The judicial analogy for mathematical publication. In Zack, M., & Landry, E. (eds.), Research in History and Philosophy of Mathematics (pp. 161–70. Cham, Birkhäuser.
Thomas, R. S. D. (2017). Beauty is not all there is to aesthetics in mathematics. Philosophia Mathematica (III), 25(1), 116–27.
Thompson, C. J. (1986). The contributions of Mark Kac to mathematical physics. Annals of Probability, 14(4), 1129–38.
Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–77.
Toulmin, S. E. (1958). The Uses of Argument. Cambridge, Cambridge University Press.
Toulmin, S., Rieke, R., & Janik, A. (1979). An Introduction to Reasoning. London, Macmillan.
Van Bendegem, J. P. (2014). The impact of the philosophy of mathematical practice on the philosophy of mathematics. In Soler, L., Zwart, S., Lynch, M., & Israel-Jost, V. (eds.), Science After the Practice Turn in the Philosophy, History, and Social Studies of Science (pp. 215–26). Abingdon, UK, Taylor & Francis.
Vecht, J. J. (2023). Open texture clarified. Inquiry, 66(6), 1120–40.
Vučković, A., & Sikimić, V. (2023). How to fight linguistic injustice in science: Equity measures and mitigating agents. Social Epistemology, 37(1), 80–96.
Waismann, F. (1968). Verifiability. In Flew, A. (ed.), Logic and Language (pp. 118–44). Oxford, Basil Blackwell.
Walton, D. N. (1998). The New Dialectic: Conversational Contexts of Argument. Toronto, University of Toronto Press.
Walton, D., & Krabbe, E. C. (1995). Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. Albany, NY, State University of New York Press.
Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39(4), 431–59.
Weber, K. (2023). Instructions and constructions in set theory proofs. Synthese, 202(2), 1–17.
Weber, K., & Czocher, J. (2019). On mathematicians’ disagreements on what constitutes a proof. Research in Mathematics Education, 21(3), 251–70.
Weber, K., & Tanswell, F. S. (2022). Instructions and recipes in mathematical proofs. Educational Studies in Mathematics, 11(1), 73–87.
Weber, K., Mejía-Ramos, J. P., & Volpe, T. (2022). The relationship between proof and certainty in mathematical practice. Journal for Research in Mathematics Education, 53(1), 65–84.
Weir, A. (2016). Informal proof, formal proof, formalism. Review of Symbolic Logic, 9(1), 23–43.
Weisgerber, S. (2022). Visual proofs as counterexamples to the standard view of informal mathematical proofs? In Giardino, V., Linker, S., Burns, R., et al. (eds.), Diagrammatic Representation and Inference. 13th International Conference, Diagrams 2022, Rome, 14–16 September. Lecture Notes in Computer Science, vol. 13462. Cham, Springer. https://doi.org/10.1007/978-3-031-15146-0_3. Whitehead, A. N., & Russell, B. (1910). Principia Mathematica, Volume I. Cambridge, Cambridge University Press.
Wiedijk, F. (2008). Formal proof – Getting started. Notices of the American Mathematical Society, 55(11), 1408–14.
Zagzebski, L. T. (1996). Virtues of the Mind. Cambridge, Cambridge University Press.
Zalgaller, V. A., & Los’, G. A. (1994). The solution of Malfatti’s problem. Journal of Mathematical Sciences, 72(4), 3163–77.
Zayton, B. (2022). Open texture, rigor, and proof. Synthese, 200(4), 1–20.
Zeilberger, D. (1993). Theorems for a price: Tomorrow’s semi-rigorous mathematical culture. Notices of the American Mathematical Society, 40, 978–81.