Skip to main content
×
×
Home
Matrix Analysis and Applications
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Armesto, Leopoldo Moura, João Ivan, Vladimir Erden, Mustafa Suphi Sala, Antonio and Vijayakumar, Sethu 2018. Constraint-aware learning of policies by demonstration. The International Journal of Robotics Research, p. 027836491878435.

    Yin, Maowei Wang, Yanlong and Ye, Zhongfu 2018. WLS optimal design for variable FIR filters with continuous parameter of fractional delay. IOP Conference Series: Materials Science and Engineering, Vol. 397, Issue. , p. 012122.

    ×

Book description

This balanced and comprehensive study presents the theory, methods and applications of matrix analysis in a new theoretical framework, allowing readers to understand second-order and higher-order matrix analysis in a completely new light. Alongside the core subjects in matrix analysis, such as singular value analysis, the solution of matrix equations and eigenanalysis, the author introduces new applications and perspectives that are unique to this book. The very topical subjects of gradient analysis and optimization play a central role here. Also included are subspace analysis, projection analysis and tensor analysis, subjects which are often neglected in other books. Having provided a solid foundation to the subject, the author goes on to place particular emphasis on the many applications matrix analysis has in science and engineering, making this book suitable for scientists, engineers and graduate students alike.

Reviews

'Matrix analysis is the engine room of scientific computing since, inevitably, most computational problems are reduced to linear algebra. Xian-Da Zhang’s monograph presents a thoroughly modern introduction to this important subject in a form suitable for its many users. Without taking liberties with mathematical content, the text privileges an algorithmic approach and ventures into new and important areas, e.g. tensor analysis. This is a valuable addition to any applied mathematician’s bookshelf.'

Arieh Iserles - University of Cambridge

'This book provides various new topics on Matrix Analysis and Applications, which are not covered by some popular books on matrix analysis and computation. The text is well written, easy to be understood. There are several classical books on matrix analysis and computation on my bookshelf. But I will be happy to have this book on my bookshelf too.'

Liqun Qi - Hong Kong Polytechnic University

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
[1] Abatzoglou, T.J., Mendel, J.M., Harada, G.A. The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans. Signal Processing, 39: 1070–1087, 1991.
[2] Abbott, D. The Biographical Dictionary of Sciences: Mathematicians. New York: P. Bedrick Books, 1986.
[3] Abraham, R., Marsden, J.E., Ratiu, T. Manifolds, Tensor Analysis, and Applications. New York: Addison-Wesley, 1983.
[4] Acar, E. The MATLAB CMTF Toolbox. 2014.
[5] Acar, E. Aykut-Bingo|C., Bingo, H., Bro, R., Yener, B. Multiway analysis of epilepsy tensors. Bioinformatics, 23: i10–i18, 2007.
[6] Acar, E., Camtepe, S.A., Krishnamoorthy, M., Yener, B. Modeling and multiway analysis of chatroom tensors. In Proc. IEEE International Conference on Intelligence and Security Informatics. Springer, 256–268, 2005.
[7] Acar, E., Yener, B. Unsupervised multiway data analysis: A literature survey. IEEE Trans. Knowledge and Data Engineering, 21(1): 6–20, 2009.
[8] Acar, R., Vogel, C.R. Analysis of bounded variation penalty methods for illposed problems. Inverse Problems, 10: 1217–1229, 1994.
[9] Adamyan, V.M., Arov, D.Z. A general solution of a problem in linear prediction of stationary processes. Theory Probab. Appl., 13: 294–407, 1968.
[10] Adib, A., Moreau, E., Aboutajdine, D. Source separation contrasts using a reference signal. IEEE Signal Processing Lett., 11(3): 312–315, 2004.
[11] Afriat, S.N. Orthogonal and oblique projectors and the characteristics of pairs of vector spaces. Math. Proc. Cambridge Philos. Soc., 53: 800–816, 1957.
[12] Alexander, S.T. Adaptive Signal Processing: Theory and Applications. New York: Springer, 1986.
[13] Alter, O., Brown, P.O., Botstein, D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Nat. Aca. Sci., USA, 100(6): 3351–3356, 2003.
[14] Amari, S., Nagaoka, H. Methods of Information Geometry. New York: Oxford University Press, 2000.
[15] Andersson, C., Bro, R. The N-way toolbox for MATLAB.[Online]. Chemomet. Intell. Lab. Syst., 52(1): 1–4, 2000. Available at http://www.models.life.ku.dk/nwaytoolbox/(2000).
[16] Andrews, H., Hunt, B. Digital Image Restoration. Engliwood Cliffs, NJ: Prentice-Hall, 1977.
[17] Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68: 800–816, 1950.
[18] Auslender, A. Asymptotic properties of the Fenchel dual functional and applications to decomposition problems. J. Optim. Theory Appl., 73(3): 427–449, 1992.
[19] Autonne, L. Sur les groupes lineaires, reelles et orthogonaus. Bull Soc. Math., France, 30: 121–133, 1902.
[20] Aybat, N.S., Iyengar, G. A first-order augmented Lagrangian method for compressed sensing. SIAM J. Optim., 22(2): 429–459, 2012.
[21] Bader, B.W., Kolda, T.G., et al. MATLAB Tensor Toolbox version 2.5. Available at http://www.sandia.gov/tgkolda/TensorToolbox/(2012).
[22] Banachiewicz, T. Zur Berechungung der Determinanten, wie auch der Inverse, und zur darauf basierten Auflösung der Systeme linearer Gleichungen. Acta Astronomica, Sér. C, 3: 41–67, 1937.
[23] Bapat, R. Nonnegative Matrices and Applications. Cambridge University Press, 1997.
[24] Barbarossa, S., Daddio, E., Galati, G. Comparison of optimum and linear prediction technique for clutter cancellation. Proc. IEE, Part F, 134: 277–282, 1987.
[25] Barnett, S. Matrices: Methods and Applications. Oxford: Clarendon Press, 1990.
[26] Barzilai, J., Borwein, J.M. Two-point step size gradient methods. IMA J. Numer. Anal. 8: 141–148, 1988.
[27] Basri, R., Jacobs, D. Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Machine Intell., 25(2): 218–233, 2003.
[28] Beal, M., Jojic, N., Attias, H. A graphical model for audiovisual object tracking. IEEE Trans. Pattern Anal. Machine Intell., 25(7): 828–836, 2003.
[29] Beck, A., Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1): 183–202, 2009.
[30] Beck, A., Elder, Y.C. Structured total maximum likelihood: an alternative to structured total squares. SIAM J. Matrix Anal. Appl., 31(5): 2623–2649, 2010.
[31] Behrens, R.T., Scharf, L.L. Signal processing applications of oblique projection operators. IEEE Trans. Signal Processing, 42(6): 1413–1424, 1994.
[32] Bellman, R. Introduction to Matrix Analysis, 2nd edn. McGraw-Hill, 1970.
[33] Belochrani, A. Abed-Merain|K., Cardoso, J.F., Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing, 45(2): 434–444 1997.
[34] Beltrami, E. Sulle funzioni bilineari, Giomale di Mathematiche ad Uso Studenti Delle Universita. 11: 98–106, 1873. An English translation by D Boley is available as Technical Report 90–37, University of Minnesota, Department of Computer Science, 1990.
[35] Berberian, S.K. Linear Algebra. New York: Oxford University Press, 1992.
[36] Berge, J.M. F.T.Convergence of PARAFAC preprocessing procedures and the Deming–Stephan method of iterative proportional fitting. In Multiway Data Analysis (Coppi, R., Bolasco, S. eds.). Amsterdam: Elsevier, 53–63, 1989.
[37] Berge, J.M. F.T., Sidiropolous N.D. On uniqueness in CANDECOMP/ PARAFAC. Psychometrika, 67: 399–409, 2002.
[38] Berger, C., Voltersen, M., Eckardt, R., Eberle, J. Multi-modal and multitemporal data fusion: outcome of the 2012 GRSS data fusion contest. IEEE J. Selected Topics Appl. Earth Observat. Remote Sensing, 6(3): 1324–1340, 2013.
[39] Berman, A., Plemmons, R. Nonnegative Matrices in the Mathematical Sciences. Philadephia: SIAM, 1994.
[40] Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J. Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis, 52: 155–173, 2007.
[41] Bertsekas, D.P. Multiplier methods: a survey. Automatica, 12: 133–145, 1976.
[42] Bertsekas, D.P. Nonlinear Programming, 2nd edn. Belmont: Athena Scientific, 1999.
[43] Bertsekas, D.P., Nedich, A., Ozdaglar, A. Convex Analysis and Optimization. Belmont: Athena Scientific, 2003.
[44] Bertsekas, D.P., Tseng, P. Partial proximal minimization algorithms for convex programming. SIAM J. Optimization, 4(3): 551–572, 1994.
[45] Bi, H., Jiang, C., Zhang, B., Wang, Z., Hong, W. Radar change imaging with undersampled data based on matrix completion and Bayesian compressive sensing. IEEE Geosci. Remote Sensing Lett., 12(7): 1546–1550, 2015.
[46] Bi, H., Zhang, B., Hong, W., Zhou, S. Matrix-completion-based airborne tomographic SAR inversion under missing data. IEEE Geosci. Remote Sensing Lett. 12(11): 2346–2350, 2015.
[47] Bienvenu, G., Kopp, L. Principède la goniomgraveetre passive adaptive. Proc. 7th Colloqucum GRESIT, Nice, France, 106/1–106/10, 1979.
[48] Bien, J., Tibshirani, R.J. Sparse estimation of a covariance matrix. Biometrika, 98(4): 807–820, 2011.
[49] Biessmann, F., Plis, S., Meinecke, F.C., Eichele, T., Mller, K.R. Analysis of multimodal neuroimaging data. IEEE Reviews in Biomedical Engineering, 4: 26–58, 2011.
[50] Bigoni, D. Tensor toolbox, 2015.
[51] Boot, J. Computation of the generalized inverse of singular or rectangular matrices. Amer. Math. Monthly, 70: 302–303, 1963.
[52] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1): 1–122, 2010.
[53] Boyd, S., Vandenberghe, L. Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
[54] Boyd, S., Vandenberghe, L. Subgradients. Notes for EE364b, Stanford University, Winter 2006–2007, April 13, 2008.
[55] Brachat, J., Common, P., Mourrain, B., Tsigaridas, E. Symmetric tensor decomposition. Linear Algebra Appl., 433(11-12): 1851–1872, 2010.
[56] Bramble, J., Pasciak, J. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput., 50(181): 1–17, 1988.
[57] Brandwood, D.H. A complex gradient operator and its application in adaptive array theory. Proc. IEE, 130: 11–16, 1983.
[58] Branham, R.L. Total least squares in astronomy. In Recent Advances in Total Least Squares Techniques and Error-in-Variables Modeling (Van Huffel S. ed.). Philadelphia, PA: SIAM, 1997.
[59] Bregman, L.M. The method of successive projection for finding a common point of convex sets. Soviet Math. Dokl., 6: 688–692, 1965.
[60] Brewer, J.W. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst., 25: 772–781, 1978.
[61] Bridges, T.J., Morris, P.J. Differential eigenvalue problems in which the parameters appear nonlinearly. J. Comput. Phys., 55: 437–460, 1984.
[62] Bro, R. PARAFAC: tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38: 149–171, 1997.
[63] Bro, R., de Jong, S. A fast non-negatively constrained least squares algorithm. J. Chemometrics, 11(5): 393–401, 1997.
[64] Bro, R., Harshman, R.A., Sidiropoulos, N.D. Modeling multi-way data with linearly dependent loadings. Technical Report 2005-176, KVL, 2005.
[65] Bro, R. Multiway analysis in the food industry: models, algorithms and applications, Doctoral dissertation, University of Amsterdam, 1998.
[66] Bro, R., Sidiropoulos, N.D. Least squares algorithms under unimodality and non-negativity constraints. J. Chemometrics, 12(4): 223–247, 1998.
[67] Brockwell, P.J., Davis, R.A. Time Series: Theory and Methods. New York: Springer-Verlag, 1987.
[68] Brookes, M. Matrix Reference Manual 2004. Available at http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html(2005).
[69] Bruckstein, A.M., Donoho, D.L., Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1): 34–81, 2009.
[70] Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Nat. Acad. Sci. USA, 101(12): 4164–4169, 2004.
[71] Bunse-Gerstner, A. An analysis of the HR algorithm for computing the eigenvalues of a matrix. Linear Alg. Applic., 35: 155–173, 1981.
[72] Byrd, R.H., Hribar, M.E., Nocedal, J. An interior point algorithm for large scale nonlinear programming. SIAM J. Optimization, 1999, 9(4): 877–900.
[73] Byrne, C., Censor, Y. Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback–Leibler distance minimization. Ann. Oper. Rese., 105: 77–98, 2001.
[74] Cadzow, J.A. Spectral estimation: an overdetermined rational model equation approach. Proc. IEEE, 70: 907–938, 1982.
[75] Cai, J.F., Candès, E.J., Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim., 20(4): 1956–1982, 2010.
[76] Cai, T.T., Wang, L., Xu, G. New bounds for restricted isometry constants. IEEE Trans. Inform. Theory, 56(9): 4388–4394, 2010.
[77] Candès, E.J., Li, X., Ma, Y., Wright, J. Robust principal component analysis? J. ACM, 58(3): 1–37, 2011.
[78] Candès, E.J., Plan, Y. Matrix completion with noise. Proc. IEEE, 98(6): 925–936, 2010.
[79] Candès, E.J., Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math., 9: 717–772, 2009.
[80] Candès, E.J., Romberg, J., Tao, T. Stable signal recovery from incomplete and inaccurate information. Commun. Pure Appl. Math., 59: 1207–1233, 2005.
[81] Candès, E.J., Tao, T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory, 52(12): 5406–5425, 2006.
[82] Cao, X., Wei, X., Han, Y., Lin, D. Robust face clustering via tensor decomposition. IEEE Trans. Cybernetics, 45(11): 2546–2557, 2015.
[83] Cardoso, J.F. On the performance of orthogonal source separation algorithms. In Proc. Europ. Assoc. Signal Processing 94, VII, Edinburgh, U.K., 776C779, 1994.
[84] Cardoso, J.F., Souloumiac, A. Blind beamforming for non-Gaussian signals. Proc. IEE, F, 40(6): 362–370, 1993.
[85] Cardoso, J.F., Souloumiac, A. Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl., 17(1): 161–164, 1996.
[86] Carroll, C.W. The created response surface technique for optimizing nonlinear restrained systems. Oper. Res., 9: 169–184, 1961.
[87] Carroll, J.D., Chang, J. Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart–Young decomposition. Psychometrika, 35: 283–319, 1970.
[88] Cattell, R.B. Parallel proportional profiles and other principles for determining the choice of factors by rotation. Psychometrika, 9: 267–283, 1944.
[89] Chan, R.H., Ng, M.K. Conjugate gradient methods for Toepilitz systems. SIAM Review, 38(3): 427–482, 1996.
[90] Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Wilisky, A S. Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21(2): 572–596, 2011.
[91] Chang, C.I., Du, Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing, 42(3): 608–619, 2004.
[92] Chang, K.C., Pearson, K., Zhang, T. On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl., 290(350): 416–422, 2009.
[93] Chatelin, F. Eigenvalues of Matrices. New York: Wiley, 1993.
[94] Chen, B., Petropulu, A.P. Frequency domain blind MIMO system identification based on second- and higher order statistics. IEEE Trans. Signal Processing, 49(8): 1677–1688, 2001.
[95] Chen, S.S., Donoho, D.L., Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1): 33–61, 1998.
[96] Chen, S.S., Donoho, D.L., Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Review, 43(1): 129–159, 2001.
[97] Chen, W., Chen, M., Zhou, J. Adaptively regularized constrained total leastsquares image restoration. IEEE Trans. Image Processing, 9(4): 588–596, 2000.
[98] Chen, Y. Incoherence-optimal matrix completion. IEEE Trans. Inform. Theory, 61(5): 2909–2913, 2015.
[99] Chen, Y.L., Hsu, C.T., Liao, H.Y. M. Simultaneous tensor decomposition and completion using factor priors. IEEE Trans. Pattern Anal. Machine Intell., 36(3): 577–591, 2014.
[100] Chua, L.O. Dynamic nonlinear networks: state-of-the-art. IEEE Trans. Circuits Syst., 27: 1024–1044, 1980.
[101] Cichocki, A., Cruces, S., Amari, S.I. Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy, 13: 134–170, 2011.
[102] Cichocki, A., Lee, H., Kim, Y.D., Choi, S. Non-negative matrix factorization with α-divergence. Pattern Recog. Lett., 29: 1433–1440, 2008.
[103] Cichocki, A., Mandic, D.P., Phan, A.H., Caiafa, C.F., Zhou, G., Zhao, Q., Lathauwer, L.D. Tensor decompositions for signal processing applications. IEEE Signal Processing Mag., 34(3): 145–163, 2015.
[104] Cichocki, A., Zdunek, R., Amari, S.I. Nonnegative matrix and tensor factorization. IEEE Signal Processing Mag., 25(1): 142–145, 2008.
[105] Cichocki, A., Zdunek, R., Amari, S.I. Csiszar's divergences for nonnegative matrix factorization: family of new algorithms. In Lecture Notes in Computer Science; Springer: Charleston, SC, USA, 3889: 32–39, 2006.
[106] Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.I. Novel multi-layer nonnegative tensor factorization with sparsity constraints. Springer LNCS, 4432: 271–280, 2007.
[107] Cirrincione, G., Cirrincione, M., Herault, J., et al. The MCA EXIN neuron for the minor component analysis. IEEE Trans. Neural Networks, 13(1): 160–187, 2002.
[108] Clark, J.V., Zhou, N., Pister, K.S. J. Modified nodal analysis for MEMS with multi-energy domains. In Proc. Inter. Conf. on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators. San Diego, USA, 2000. Available at http://www-bsac.EECS.Berkely.EDU/-cfm/publication.html
[109] Combettes, P.L., Pesquet, J.C. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, New York: Springer, 185–212, 2011.
[110] Comon, P., Golub, G., Lim, L.H., Mourrain, B. Symmetric tensors and symmetric tensor rank. SM Technical Report 06–02, Stanford University, 2006.
[111] Comon, P., Golub, G., Lim, L.H., Mourrain, B. Symmetric tensora and symmetric tensor rank. SIAM J. Matrix Anal. Appl., 30(3): 1254–1279, 2008.
[112] Comon, P., Moreau, E. Blind MIMO equalization and joint-diagonalization criteria. Proc. 2001 IEEE Inter. Conf. on Acoustics, Speech, and Signal Processing (ICASSP ‘01), 5: 2749–2752, 2001.
[113] Correa, N.M., Adall, T., Li, Y.O., Calhoun, V.D. Canonical correlation analysis for data fusion and group inferences. IEEE Signal Processing Mag., 27(4): 39–50, 2010.
[114] Dai, Y.H., Fletcher, R. Projected Barzilai–Borwein methods for large-scale box-constrained quadratic programming. Num. Math., 100: 21–47, 2005.
[115] Dai, W., Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory, 55(5): 2230–2249, 2009.
[116] Davila, C.E. A subspace approach to estimation of autoregressive parameters from noisy measurements, IEEE Trans. Signal Processing, 46: 531–534, 1998.
[117] Davis, G. A fast algorithm for inversion of block Toeplitz matrix. Signal Processing, 43: 3022–3025, 1995.
[118] Davis, G.,Mallat, S., Avellaneda, M. Adaptive greedy approximation. J. Constr. Approx., 13(1): 57–98, 1997.
[119] Decell, H.P. An application of the Cayley–Hamilton theorem to generalized matrix inversion. SIAM Review, 7(4): 526–528, 1965.
[120] Delsarte, P., Genin, Y. The split Levinson algorithm. IEEE Trans. Acoust., Speech, Signal Processing, 34: 471–478, 1986.
[121] Delsarte, P., Genin, Y. On the splitting of classical algorithms in linear prediction theory. IEEE Trans. Acoust., Speech, Signal Processing, 35: 645–653, 1987.
[122] Dembo, R.S., Steihaug, T. Truncated-Newton algorithms for large-scale unconstrainted optimization. Math Progr., 26: 190–212, 1983.
[123] Demoment, G. Image reconstruction and restoration: overview of common estimation problems. IEEE Trans. Acoust., Speech, Signal Processing, 37(12): 2024–2036, 1989.
[124] Dewester, S., Dumains, S., Landauer, T., Furnas, G., Harshman, R. Indexing by latent semantic analysis. J. Soc. Inf. Sci., 41(6): 391–407, 1990.
[125] Diamond, R. A note on the rotational superposition problem. Acta Crystallogr. Sect. A, 44: 211–216, 1988.
[126] Ding, W., Wei, Y. Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl., 36(3): 1073–1099, 2015.
[127] Doclo, S., Moonen, M. GSVD-based optimal filtering for single and multimicrophone speech enhancement. IEEE Trans. Signal Processing, 50(9): 2230–2244, 2002.
[128] Donoho, D.L. Compressed sensing. IEEE Trans. Inform. Theory, 52(4): 1289–1306, 2006.
[129] Donoho, D.L. For most large underdetermined systems of linear equations, the minimal _1 solution is also the sparsest solution. Commun. Pure Appl. Math., LIX: 797–829, 2006.
[130] Donoho, D.L., Elad, M. Optimally sparse representations in general (nonorthogonal) dictionaries via _1 minimization. Proc. Nat. Acad. Sci. USA, 100(5): 2197–2202, 2003.
[131] Donoho, D.L., Huo, X. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory, 47(7): 2845–2862, 2001.
[132] Donoho, D.L., Tsaig, Y. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory, 54(11): 4789–4812, 2008.
[133] Donoho, D.L., Tsaig, T., Drori, T., Starck, J.-L. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit (StOMP). Stanford Univ., Palo Alto, CA, Stat. Dept. Tech. Rep. 2006-02, Mar. 2006.
[134] Drakakis, K., Rickard, S. de Frein|R., Cichocki, A. Analysis of financial data using non-negative matrix factorization. International Mathematical Forum 3(38): 1853–1870, 2008.
[135] Drmac, Z. Accurate computation of the product-induced singular value decomposition with applications. SIAM J. Numer. Anal., 35(5): 1969–1994, 1998.
[136] Drmac, Z. A tangent algorithm for computing the generalized singular value decomposition. SIAM J. Numer. Anal., 35(5): 1804–1832, 1998.
[137] Drmac, Z. New accurate algorithms for singular value decomposition of matrix triplets. SIAM J. Matrix Anal. Appl., 21(3): 1026–1050, 2000.
[138] Duda, R.O., Hart, P E. Pattern Classification and Scene Analysis. New York: Wiley, 1973.
[139] Duncan, W.J. Some devices for the solution of large sets of simultaneous linear equations. The London, Edinburgh, anf Dublin Philosophical Magazine and J. Science, Seventh Series, 35: 660–670, 1944.
[140] Eckart, C., Young, G. The approximation of one matrix by another of lower rank. Psychometrica, 1: 211–218, 1936.
[141] Eckart, C., Young, G. A Principal axis transformation for non-Hermitian matrices. Null Amer. Math. Soc., 45: 118–121, 1939.
[142] Edelman, A., Arias, T.A., Smith, S.T. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2): 303–353, 1998.
[143] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. Least angle regression. Ann. Statist., 32: 407–499, 2004.
[144] Efroymson, G., Steger, A., Steeinberg, S. A matrix eigenvalue problem. SIAM Review, 22(1): 99–100, 1980.
[145] Eldar, Y.C., Oppenheim, A.V. MMSE whitening and subspace whitening. IEEE Trans. Inform. Theory, 49(7): 1846–1851, 2003.
[146] Eldar, Y.C., Opeenheim, A.V. Orthogonal and projected orthogonal matched filter detection. Signal Processing, 84: 677–693, 2004.
[147] Espig, M., Schuster, M., Killaitis, A., Waldren, N., et al. Tensor calculus library. Available at http://gitorious.org/tensorcalculus/(2012).
[148] Estienne, F., Matthijs, N., Massart, D.L., Ricoux, P., Leibovici, D. Multi-way modelling of high-dimensionality electroencephalographic data. Chemometrics Intell. Lab. Syst., 58(1): 59–72, 2001.
[149] Faddeev, D.K., Faddeeva, V.N. Computational Methods of Linear Algebra. San Francisco: W H Freedman Co., 1963.
[150] Farina, A., Golino, G., Timmoneri, L. Comparison between LS and TLS in adaptive processing for radar systems. IEE P-Radar Sonar Nav., 150(1): 2–6, 2003.
[151] Fernando, K.V., Hammarling, S.J. A product induced singular value decomposition (PSVD) for two matrices and balanced relation. In Proc. Conf. on Linear Algebra in Signals, Systems and Controls, Society for Industrial and Applied Mathematics (SIAM). PA: Philadelphia, 128–140, 1988.
[152] Fiacco, A.V., McCormick, G.P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York: Wiley, 1968; or Classics Appl. Math. 4, SIAM, PA: Philadelphia, Reprint of the 1968 original, 1990.
[153] Field, D.J. Relation between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Amer. A, 4: 2370–2393, 1984.
[154] Figueiredo, M.A. T., Nowak R.D.,Wright S.J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1: 586–597, 2007.
[155] Flanigan, F. Complex Variables: Harmonic and Analytic Functions, 2nd edn. New York: Dover Publications, 1983.
[156] Fletcher, R. Conjugate gradient methods for indefinite systems. In Proc. Dundee Conf. on Num. Anal. New York: Springer-Verlag, 73–89, 1975.
[157] Fletcher, R. Practical Methods of Optimization, 2nd edn. New York: John Wiley & Sons, 1987.
[158] Forsgren, A., Gill, P.E., Wright, M.H. Interior methods for nonlinear optimization. SIAM Review, 44: 525–597, 2002.
[159] Forsythe, G.E., Golub, G.H. On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Ind. Appl. Math., 13(4): 1050–1068, 1965.
[160] Foucart, S., Lai, M.J. Sparsest solutions of underdetermined linear systems via lq-minimization for 0 q ≤ 1. Appl. Comput. Harmonic Anal., 26(3): 395–407, 2009.
[161] Frangi, A.F., Niessen, W.J., Viergever, M.A. Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans. Medical Imaging, 20(1): 2–5, 2001.
[162] Frankel, T. The Geometry of Physics: An Introduction (with corrections and additions). Cambridge: Cambridge University Press, 2001.
[163] Friedman, J., Hastie, T., Höfling, H., Tibshirani, R. Pathwise coordinate optimization. Ann. Appl. Statist., 1: 302–332, 2007.
[164] Friedlander, M.P., Hatz, K. Computing nonnegative tensor factorizations. Available at http://www.optimization-online.org/DBHTML/2006/10/1494.html(2006).
[165] Frobenius, G. Über Matrizen aus nicht negativen Elementen. Berlin: S.-B. Preuss Acad. Wiss. 456–477, 1912.
[166] Fuhrmann, D.R. An algorithm for subspace computation with applications in signal processing. SIAM J. Matrix Anal. Appl., 9: 213–220, 1988.
[167] Gabay, D., Mercier, B. A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl., 2: 17–40, 1976.
[168] Galatsanou, N.P., Katsaggelos, A.K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Processing, 1(3): 322–336, 1992.
[169] Gander, W., Golub, G.H., Von Matt U. A constrained eigenvalue problem. Linear Algebra Appl., 114–115: 815–839, 1989.
[170] Gandy, S., Recht, B., Yamada, I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Prob., 27(2): 25 010–25 028, 2011.
[171] Gantmacher, F.R. The Theory of Matrices. London: Chelsea Publishing, 1977.
[172] Gersho, A., Gray, R.M. Vector Quantization and Signal Compression. Boston: Kluwer Acad. Press, 1992.
[173] Gilbert, A.C., Muthukrishnan, M., Strauss, M.J. Approximation of functions over redundant dictionaries using coherence. Proc. 14th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2003.
[174] Gillies, A.W. On the classfication of matrix generalized inverse. SIAM Review, 12(4): 573–576, 1970.
[175] Gleser, L.J. Estimation in a multivariate “errors in variables” regression model: large sample results. Ann. Statist., 9: 24-44, 1981.
[176] Glowinski, R., Marrocco, A. Sur l'approximation, par elements finis d'ordre un, et la resolution, par penalisation-dualité, d'une classe de problems de Dirichlet non lineares. Revue Fran,caise d'Automatique, Informatique, et Recherche Opérationelle, 9: 41–76, 1975.
[177] Goldstein, T., Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci., 2(2): 323–343, 2009.
[178] Golub, G.H., Van Loan C.F. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17: 883–893, 1980.
[179] Golub, G.H., Van Loan C.F. Matrix Computation, 2nd edn. Baltimore: The John Hopkins University Press, 1989.
[180] Gonzaga, C.C., Karas, E.W. Fine tuning Nesterovs steepest descent algorithm for differentiable convex programming. Math. Program., Ser.A, 138: 141–166, 2013.
[181] Gonzales, E.F., Zhang, Y. Accelerating the Lee–Seung algorithm for nonnegative matrix factorization. Technical report. Department of Computational and Applied Mathematics, Rice University, 2005.
[182] Gorodnitsky, I.F., Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted norm minimization algorithm, IEEE Trans. Signal Process., 1997, 45: 600–616.
[183] Gourvenec, S., et al. CuBatch, 2005. Available at http://www.mathworks.com.
[184] Grassmann, H.G. Die Ausdehnungslehre. Berlin: Enslin, 1862.
[185] Gray, R.M. On the asymptotic eigenvalue distribution of Toeplitz matrices. IEEE Trans Inform. Theory, 18(6): 267–271, 1972.
[186] Graybill, F.A. Matrices with Applications in Statistics. Balmont CA: Wadsworth International Group, 1983.
[187] Graybill, F.A., Meyer, C.D., Painter, R.J. Note on the computation of the generalized inverse of a matrix. SIAM Review, 8(4): 522–524, 1966.
[188] Greville, T.N. E. Some applications of the pseudoinverse of a matrix. SIAM Review, 2: 15–22, 1960.
[189] Griffiths, J.W. Adaptive array processing: a tutorial. Proc. IEE, Part F, 130: 137–142, 1983.
[190] Grippo, L., Sciandrone, M. On the convergence of the block nonlinear Gauss– Seidel method under convex constraints. Operations Research Letter, 26: 127–136, 1999.
[191] Guan, N., Tao, D., Lou, Z., Yu, B. NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Signal Processing, 60(6): 2082–2098, 2012.
[192] Guttman, L. Enlargement methods for computing the inverse matrix. Ann Math Statist, 17: 336–343, 1946.
[193] Haghighat, M. Abdel-Mottaleb|M., Alhalabi, W. Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition. IEEE Trans. Inform. Forensics Security, 11(9): 1984–1996, 2016.
[194] Hale, E.T., Yin, W., Zhang, Y. Fixed-point continuation for _1-minimization: methodology and convergence. SIAM J. Optim., 19(3): 1107–1130, 2008.
[195] Halmos, P.R. Finite Dimensional Vector Spaces. New York: Springer-Verlag, 1974.
[196] Han, X., Wu, J., Wang, L., Chen, Y., Senhadji, L., Shu, H. Linear total variation approximate regularized nuclear norm optimization for matrix completion. Abstract Appl. Anal., ID 765782, 2014.
[197] Hanchez, Y., Dooren, P.V. Elliptic and hyperbolic quadratic eigenvalue problems and associated distance problems. Linear Algebra Appl., 371: 31–44, 2003.
[198] Harshman, R.A. Foundation of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working papers in Phonetics, 16: 1–84, 1970.
[199] Harshman, R.A. Parafac2: mathematical and technical notes. UCLA Working papers in Phonetics, 22: 30–44, 1972.
[200] Harshman, R.A., Hong, S., Lundy, M.E. Shifted factor analysis – Part i: models and properties. J. Chemometrics, 17(7): 363–378, 2003.
[201] Harshman, R.A., Lundy, M.E. Data preprocessing and the extended PARAFAC model. In Research Methods for Multimode Data Analysis (LawH., G., Snyder, C.W., Hattie, J.A., McDonald, R.P. eds.). New York: Praeger, pp. 216–284, 1984.
[202] Hazan, T., Polak, T., Shashua, A. Sparse image coding using a 3d nonnegative tensor factorization. Technical Report, The Hebrew University, 2005.
[203] He, X., Cai, D., Niyogi, P. Tensor subspace analysis. Adv. Neural Informat. Process. Syst., 18: 499, 2006.
[204] Heeg, R.S., Geurts, B.J. Spatial instabilities of the incompressible attachmentline flow using sparse matrix Jacobi–Davidson techniques. Appl. Sci. Res., 59: 315–329, 1998.
[205] Helmke, U., Moore, J.B. Optimization and Dynamical Systems. London, UK: Springer-Verlag, 1994.
[206] Hendeson, H.V., Searle, S.R. On deriving the inverse of a sum of matrices. SIAM Review, 23: 53–60, 1981.
[207] Henderson, H.V., Searle, S.R. The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear Multilinear Alg., 9: 271–288, 1981.
[208] Herzog, R., Sachs, E. Preconditioned conjugate gradient method for optimal control problems with control and state constraints. SIAM. J. Matrix Anal. and Appl., 31(5): 2291–2317, 2010.
[209] Hestenes, M.R. Multiplier and gradient methods, J. Optim. Theory Appl., 4: 303–320, 1969.
[210] Hestenes, M.R., Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau of Standards, 49: 409–436, 1952.
[211] Hindi, H. A tutorial on convex optimization, in Proc. 2004 American Control Conf., Boston, Masachusetts June 30-July 2, 3252–3265, 2004.
[212] Hitchcock, F.L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys., 6: 164–189, 1927.
[213] Hitchcock, F.L. Multilple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys., 7: 39–79, 1927.
[214] Horn, R.A., Johnson, C.R. Matrix Analysis. Cambridge: Cambridge University Press, 1985.
[215] Horn, R.A., Johnson, C.R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991.
[216] Hotelling, H. Some new methods in matrix calculation. Ann. Math. Statist, 14: 1–34, 1943.
[217] Hotelling, H. Further points on matrix calculation and simultaneous equations. Ann. Math. Statist, 14: 440–441, 1943.
[218] Howland, P., Jeon, M., Park, H. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl., 25(1): 165–179, 2003.
[219] Howland, P., Park, H. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Machine Intell., 26(8): 995–1006, 2004.
[220] Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Machine Learning Res., 5: 1457–1469, 2004.
[221] Hu, Y., Zhang, D., Ye, J., Li, X., He, X. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Machine Intell., 35(9): 2117–2130, 2013.
[222] Hu, S., Huang, Z.H., Ling, C., Qi, L. On determinants and eigenvalue theory of tensors. J. Symbolic Comput., 50: 508–531, 2013.
[223] Huang, B. Detection of abrupt changes of total least squares models and application in fault detection. IEEE Trans. Control Syst. Technol., 9(2): 357–367, 2001.
[224] Huang, L. Linear Algebra in System and Control Theory (in Chinese). Beijing: Science Press, 1984.
[225] Huber, P.J. Robust estimation of a location parameter. Ann. Statist., 53: 73–101, 1964.
[226] Huffel, S.V., Vandewalle, J. The Total Least Squares Problems: Computational Aspects and Analysis. Frontiers in Applied Mathemamatics, vol. 9, Philadelphia: SIAM, 1991.
[227] Hyland, D.C., Bernstein, D.S. The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore. IEEE Trans. Automatic Control, 30: 1201–1211, 1985.
[228] Jain, P.K., Ahmad, K. Functional analysis, 2nd edn. New Age International, 1995.
[229] Jain, S.K., Gunawardena, A.D. Linear Algebra: An Interactive Approach. New York: Thomson Learning, 2003.
[230] Jennings, A., McKeown, J.J. Matrix Computations. New York: John Wiley & Sons, 1992.
[231] Johnson, D.H., Dudgeon, D.E. Array Signal Processing: Concepts and Techniques. Englewood Cliffs, NJ: PTR Prentice Hall, 1993.
[232] Johnson, L.W., Riess, R.D., Arnold, J.T. Introduction to Linear Algebra, 5th edn. New York: Prentice-Hall, 2000.
[233] Joho, M., Mathis, H. Joint diagonalization of correlation matrices by using Gradient methods with application to blind signal separation. In IEEE Proc. SAM, 273–277, 2002.
[234] Joho, M., Rahbar, K. Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation. In IEEE Proc. SAM, 403–407, 2002.
[235] Jolliffe, I. Principal Component Analysis. New York: Springer-Verlag, 1986.
[236] Jordan, C. Memoire sur les formes bilineaires. J. Math. Pures Appl., Deuxieme Serie, 19: 35–54, 1874.
[237] Kalogerias, D.S., Petropulu, A.P. Matrix completion in colocated MIMO radar: recoverability, bounds and theoretical guarantees. IEEE Trans. Signal Processing, 62(2): 309–321, 2014.
[238] Karahan, E., Rojas-Lopez P.A., Bringas-Vega M.L., Valdes-Hernandez P.A., and Valdes-Sosa P.A. Tensor analysis and fusion of multimodal brain images. Proc. IEEE, 103(9): 1531–1559, 2015.
[239] Karmarkar, N. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4): 373–395, 1984.
[240] Kato, T. A Short Introduction to Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1982.
[241] Kay, S.M. Modern Spectral Estimation: Theory and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1988.
[242] Kayalar, S., Weinert, H.L. Oblique projections: formulas, algorithms, error bounds. Math. Control, Signals, Syst., 2(1): 33–45, 1989.
[243] Kelley, C.T. Iterative methods for linear and nonlinear equations. Frontiers in Applied Mathematics, vol. 16, Philadelphia, PA: SIAM, 1995.
[244] Khatri, C.G., Rao, C.R. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya: The Indian J. Stat., Series A, 30: 167–180, 1968.
[245] Kiers, H.A. L. Towards a standardized notation and terminology in multiway analysis. J. Chemometrics, 14: 105–122, 2000.
[246] Kim, J., Park, H. Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM J. Sci. Comput., 33(6): 3261–3281, 2011.
[247] Kim, H., Park, H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12): 1495–1502, 2007.
[248] Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D. An interior-point method for large-scale _1-regularized least squares. IEEE J. Selec. Topics Signal Processing, 1(4): 606–617, 2007.
[249] Klein, J.D., Dickinson, B.W. A normalized ladder form of residual energy ratio algorithm for PARCOR estimation via projections. IEEE Trans. Automatic Control, 28: 943–952, 1983.
[250] Klema, V.C., Laub, A.J. The singular value decomposition: its computation and some applications. IEEE Trans. Automatic Control, 25: 164–176, 1980.
[251] Klemm, R. Adaptive airborne MTI: an auxiliary channel approach. Proc. IEE, Part F, 134: 269–276, 1987.
[252] Kofidis, E., Regalia, Ph. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23: 863–884, 2002.
[253] Kolda, T.G. Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl., 23(1): 243–255, 2001.
[254] Kolda, T.G. Multilinear operators for higher-order decompositions. Sandia Report SAND2006-2081, California, Apr. 2006.
[255] Kolda, T.G., Bader, B.W., Kenny, J.P. Higher-order web link analysis using multilinear algebra. Proc. 5th IEEE Inter. Conf. on Data Mining, 242–249, 2005.
[256] Kolda, T.G., Bader, B.W. The tophits model for higher-order web link analysis. In Workshop on Link Analysis, Counterterrorism and Security, 2006.
[257] Kolda, T.G., Bader, B.W. Tensor decompositions and applications. SIAM Review, 51(3): 455–500, 2009.
[258] Kolda, T.G., Mayo, J.R. Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl., 32(4): 1095–1124, 2011.
[259] Kolda, T.G., Mayo, J.R. An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl., 35(4): 1563–1581, 2014.
[260] Komzsik, L. Implicit computational solution of generalized quadratic eigenvalue problems. Finite Elemnets in Analysis and Design, 37: 799–810, 2001.
[261] Kressner, D., Tobler, C. htucker-A MATLAB toolbox for tensors in hierarchical Tucker format. MATHICSE, EPF Lausanne. Available at http://anchp.epfl.ch/htucker/(2012).
[262] Kreutz-Delgado, K. Real vector derivatives and gradients. Available at http://dsp.ucsd.edu/ kreutz/PEI05.html (2005).
[263] Kreutz-Delgado, K. The complex gradient operator and the calculus. 2005. Available at http://dsp.ucsd.edu/ kreutz/PEI05.html (2005).
[264] Kreyszig, E. Advanced Engineering Mathematics, 7th edn. New York: John Wiley & Sons, Inc., 1993.
[265] Krishna, H., Morgera, S.D. The Levinson recurrence and fast algorithms for solving Toeplitz systems of linear equations. IEEE Trans. Acoust., Speech, Signal Processing, 35: 839–847, 1987.
[266] Kroonenberg, P. The three-mode company: a company devoted to creating three-mode software and promoting three-mode data analysis. Available at http://three-mode.leidenuniv.nl/(2000).
[267] Kruskal, J.B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl., 18: 95–138, 1977.
[268] Kruskal, J.B. Rank, decomposition, uniqueness for 3-way and N-way arrays, in Multiway Data Analysis (Coppi and Bolasco eds.), North-Holland: Elsevier Science Publishers B.V. 7–18, 1989.
[269] Kumar, R. A fast algorithm for solving a Toeplitz system of equations. IEEE Trans Acoust., Speech, Signal Processing, 33: 254–267, 1985.
[270] Kumaresan, R. Rank reduction techniques and burst error-correction decoding in real/complex fields. In Proc. 19h Asilomar Conf. Circuits Syst. Comput., CA: Pacific Grove, 1985.
[271] Kumaresan, R., Tufts, D.W. Estimating the angle of arrival of multiple plane waves. IEEE Trans. Aerospace Electron Syst., 19: 134–139, 1983.
[272] Lahat, D., Adali, T., Jutten, C. Multimodal data fusion: an overview of methods, challenges, prospects. Proc. IEEE, 103(9): 1449–1477, 2015.
[273] Lancaster, P. Lambda-Matrices and Vibrating Systems. Oxford: Pergamon Press, 1966.
[274] Lancaster, P. Quadratic eigenvalue problems. Linear Alg. Appl., 150: 499–506, 1991.
[275] Lancaster, P., Tismenetsky, M. The Theory of Matrices with Applications, 2nd edn. New York: Academic, 1985.
[276] Landsberg, J.M. Tensors: Geometry and Applications. Graduate Studres Mathematics, vol. 128, Providence RI: American Mathematical Society, 2011.
[277] Langville, A.N., Meyer, C.D., Albright, R., Cox, J., Duling, D. Algorithms, initializations, convergence for the nonnegative matrix factorization. SAS Technical Report, ArXiv: 1407.7299, 2014.
[278] Lasdon, L. Optimization Theory for Large Systems. New York: Macmillan, 1970.
[279] Lathauwer, L.D. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl., 28: 642–666, 2006.
[280] Lathauwer, L.D. Decompositions of a higher-order tensor in block terms – Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl., 30(3): 1033–1066, 2008.
[281] Lathauwer, L.D., Moor, B.D., Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21: 1253–1278, 2000.
[282] Lathauwer, L.D., Nion, D. Decompositions of a higher-order tensor in block terms – Part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl., 30(3): 1067–1083, 2008.
[283] Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Automatic Control, 32: 115–122, 1987.
[284] Lauritzen, S. Graphical Models. London: Oxford University Press, 1996.
[285] Lay, D.C. Linear Algebra and Its Applications, 2nd edn. New York: Addison- Wesley, 2000.
[286] Lee, D.D., Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature, 401: 788–791, 1999.
[287] Lee, D.D., Seung, H.S. Algorithms for non-negative matrix factorization. Advances in Neural Information Proc. 13 (Proc. of NIPS 2000), MIT Press, 13: 556–562, 2001.
[288] Lee, K., Bresler, Y. Admira: atomic decomposition for minimum rank approximation. IEEE Trans. Inform. Theory, 56(9): 4402–4416, 2010.
[289] Leonard, I.E. The matrix exponential. SIAM Review, 38(3): 507–512, 1996.
[290] Letexier, D., Bourennane, S., Blanc-Talon, J. Nonorthogonal tensor matricization for hyperspectral image filtering. IEEE Geosci. Remote Sensing. Lett., 5(1): 3-7, 2008.
[291] Levinson, N. The Wiener RMS (root-mean-square) error criterion in filter design and prediction, J. Math. Phys., 25: 261–278, 1947.
[292] Lewis, A.S. The mathematics of eigenvalue optimization. Math. Program., 97(1-2): 155–176, 2003.
[293] Li, N., Kindermannb, S., Navasca, C. Some convergence results on the regularized alternating least-squares method for tensor decomposition. Linear Algebra Appl., 438(2): 796–812, 2013.
[294] Li, G., Qi, L., Yu, G. The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl., 20: 1001–1029, 2013.
[295] Li, X.L., Zhang, X.D. Non-orthogonal approximate joint diagonalization free of degenerate solution. IEEE Trans. Signal Processing, 55(5): 1803–1814, 2007.
[296] Lim, L.H. Singular values and eigenvalues of tensors: a variational approach. In Proc. IEEE Inter. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, vol. 1: 129–132, 2005.
[297] Lin, C.J. Projected gradient methods for nonnegative matrix factorization. Neural Comput., 19(10): 2756–2779, 2007.
[298] Lin, Z., Chen, M., Ma, Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical Report UILU-ENG- 09-2215, Nov. 2009.
[299] Liu, H., Daniel, L., Wong, N. Model reduction and simulation of nonlinear circuits via tensor decomposition. IEEE Trans. Computer-Aided Design of Integ. Circuits Syst., 34(7): 1059–1069, 2015.
[300] Liu, J., Musialski, P.,Wonka, P., Ye, J. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Machine Intell., 35(1): 208–220, 2013.
[301] Liu, S., Trenklerz, G. Hadamard, Khatri–Rao, Kronecker and other matrix products. Inter. J. Inform. Syst., 4(1): 160–177, 2008.
[302] Liu, X., Sidiropoulos, N.D. Cramer–Rao lower bounds for low-rank decomposition of multidimensional arrays, IEEE Trans. Signal Processing, 49(9): 2074–2086, 2001.
[303] Lorch, E.R. On a calculus of operators in reflexive vector spaces. Trans. Amer. Math. Soc., 45: 217–234, 1939.
[304] Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N. MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Networks, 19(1): 18–39, 2008.
[305] Luenberger, D. An Introduction to Linear and Nonlinear Programming, 2nd edn. MA: Addison-Wesley, 1989.
[306] Luo, Y., Liu, T., Tao, D., Xu, C. Multiview matrix completion for multilabel image classification. IEEE Trans. Image Processing, 24(8): 2355–2369, 2015.
[307] Lütkepohl, H. Handbook of Matrices. New York: John Wiley & Sons, 1996.
[308] Lyantse, V.E. Some properties of idempotent operators. Troret, i Prikl. Mat, 1: 16–22, 1958.
[309] MacDuffee, C.C. The Theory of Matrices. Berlin: Springer-Verlag, 1933.
[310] Magnus, J. R, Neudecker H. The commutation matrix: some properties and applications. Ann. Statist., 7: 381–394, 1979.
[311] Magnus, J.R., Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics, revised edn. Chichester: Wiley, 1999.
[312] Mahalanobis, P.C. On the generalised distance in statistics. Proc. of the Natl. Inst. Sci. India, 2(1): 49–55, 1936.
[313] Mallat, S.G., Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing, 41(12): 3397–3415, 1993.
[314] Manolakis, D., Truslow, E., Pieper, M., Cooley, T., Brueggeman, M. Detection algorithms in hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Processing. Mag., 31(1): 24–33, 2014.
[315] Marshall, T.G. Coding of real-number sequences for error correction: a digital signal processing problem. IEEE J. Select. Areas Commun., 2(2): 381–392, 1984.
[316] Mateos, G., Bazerque, J.A., Giannakis, G.B. Distributed sparse linear regression. IEEE Trans. Signal Processing, 58(10): 5262–5276, 2010.
[317] Mathew, G., Reddy, V. Development and analysis of a neural network approach to Pisarenko's harmonic retrieval method. IEEE Trans. Signal Processing, 42: 663–667, 1994.
[318] Mathew, G., Reddy, V. Orthogonal eigensubspaces estimation using neural networks. IEEE Trans. Signal Processing, 42: 1803–1811, 1994.
[319] Matthews, K.R. Linear algebra notes. Department of Mathematics, University of Queensland, MP274, 1991.
[320] McLeod, K., Sermesant, M., Beerbaum, P., Pennec, X. Spatio-temporal tensor decomposition of a polyaffine motion model for a better analysis of pathological left ventricular dynamics. IEEE Trans. Medical Imaging, 34(7): 1562–1575, 2015.
[321] Meerbergen, K. Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput., 22(5): 1814–1839, 2001.
[322] Meng, S., Huang, L.T., Wang, W.Q. Tensor decomposition and PCA jointed algorithm for hyperspectral image denoising. IEEE Signal Processing Lett., 13(7): 897–901, 2016.
[323] Mesarovic, V.Z., Galatsanos, N.P., Katsaggelos, K. Regularized constrained total least squares image restoration. IEEE Trans. Image Processing, 4(8): 1096–1108, 1995.
[324] Meyer, C. Matrix Analysis and Applied Linear Algebra. Philadephia: SIAM, 2000.
[325] Michalewicz, Z., Dasgupta, D. Le Riche|R., Schoenauer, M. Evolutionary algorithms for constrained engineering problems. Computers & Industrial Eng. J., 30: 851–870, 1996.
[326] Micka, O.J., Weiss, A.J. Estimating frequencies of exponentials in noise using joint diagonalization. IEEE Trans. Signal Processing, 47(2): 341–348, 1999.
[327] Million, E. The Hadamard product. Available at http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf(2007).
[328] Mirsky, L. Symmetric gauge functions and unitarily invariant norms. Quart J. Math. Oxford, 11: 50–59, 1960.
[329] Mohanty, N. Random Signal Estimation and Identification. New York: Van Nostrand Reinhold, 1986.
[330] Moore, E.H. General analysis, Part 1. Mem. Amer. Philos. Soc., 1: 1, 1935.
[331] Moreau, J.J. Fonctions convexes duales et points proximaux dans un espace Hilbertien. Rep. Paris Acad. Sci., Series A, 255: 2897–2899, 1962.
[332] Moreau, E. A generalization of joint-diagonalization criteria for source separation. IEEE Trans. Signal Processing, 49(3): 530–541, 2001.
[333] Morup, M. ERPWAVELAB, 2006.
[334] Morup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M. Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage, 29: 938–947, 2006.
[335] Murray, F.J. On complementary manifofolds and projections in Lp and lp. Trans. Amer. Math. Soc, 43: 138–152, 1937.
[336] Nasrabadi, N.M. Hyperspectral target detection: an overview of current and future challenges. IEEE Signal Processing Magazine, 31(1); 34–44, 2014.
[337] Natarajan, B K. Sparse approximate solutions to linear systems. SIAM J. Comput., 24: 227–234, 1995.
[338] Navasca, C., Lathauwer, L.D., Kindermann, S. Swamp reducing technique for tensor decomposition. In Proc. 16th European Signal Processing Conf., Lausanne, Switzerland, August 25–29, 2008.
[339] Neagoe, V.E. Inversion of the Van der Monde Matrix. IEEE Signal Processing Letters, 3: 119–120, 1996.
[340] Needell, D., Vershynin, R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math., 9(3): 317–334, 2009.
[341] Needell, D., Vershynin, R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Topics Signal Processing, 4(2): 310–316, 2009.
[342] Needell, D., Tropp, J.A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal., 26(3): 301–321, 2009.
[343] Nesterov, Y. A method for solving a convex programming problem with rate of convergence O(1/k2). Soviet Math. Doklady, 269(3): 543–547, 1983.
[344] Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course. Boston MA: Kluwer Academic, 2004.
[345] Nesterov, Y. Smooth minimization of nonsmooth functions. Math. Program. 103(1): 127–152, 2005.
[346] Nesterov, Y., Nemirovsky, A. A general approach to polynomial-time algorithms design for convex programming. Report of the Central Economical and Mathematical Institute, USSR Academy of Sciences, Moscow, 1988.
[347] Neumaier, A. Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Review, 40(3): 636–666, 1998.
[348] Ng, L., Solo, V. Error-in-variables modeling in optical fow estimation. IEEE Trans. Image Processing, 10(10): 1528–1540, 2001.
[349] Ni, G., Qi, L., Bai, M. Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl., 35(1): 73–87, 2014.
[350] Nievergelt, Y. Total least squares: state-of-the-art regression in numerical analysis. SIAM Review, 36(2): 258–264, 1994.
[351] Nionand, D., Sidiropoulos, N.D. Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar. IEEE Trans. Signal Processing, 58(11): 5693–5705, 2010.
[352] Noble, B., Danniel, J.W. Applied Linear Algebra, 3rd edn. Englewood Cliffs, NJ: Prentice-Hall, 1988.
[353] Nocedal, J., Wright, S.J. Numerical Optimization. New York: Springer-Verlag, 1999.
[354] Nour-Omid, B., Parlett, B.N., Ericsson, T., Jensen, P.S. How to implement the spectral transformation. Math. Comput., 48: 663–673, 1987.
[355] Noutsos, D. Perron Frobenius theory and some extensions. Department of Mathematics, University of Ioannina, May 2008.
[356] Ohlsson, H., Ljung, L., Boyd, S. Segmentation of ARX-models using sum-ofnorms regularization. Automatica, 46: 1107–1111, 2010.
[357] Ohsmann, M. Fast cosine transform of Toeplitz matrices, algorithm and applications. IEEE Trans. Signal Processing, 41: 3057–3061, 1993.
[358] Oja, E. The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17: 25–45, 1997.
[359] Olson, L., Vandini, T. Eigenproblems from finite element analysis of fluid– structure interactions. Comput. Struct., 33: 679–687, 1989.
[360] Ortega, J.M., Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables. New York/London: Academic Press, 1970.
[361] Oseledets, I. TT-toolbox 2.2. Available at http://github.com/oseledets/TT-Toolbox/(2012).
[362] Oseledets, I., Saluev, T., Savostyanov, D.V., Dolgov, S.V. ttpy: python implementation of the tensor train, 2014.
[363] Osborne, M., Presnell, B., Turlach, B. A new approach to variable selection in least squares problems. IMA J. Numer. Anal., 20: 389–403, 2000.
[364] Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul., 4(2): 460–489, 2005.
[365] Ottersten, B., Asztely, D., Kristensson, M., Parkvall, S. A statistical approach to subspace based estimation with applications in telecommunications. In Recent Advances in Total Least Squares Techniques and Error-in-Variables Modeling (Van Huffel, S. ed.), Philadelphia, PA: SIAM, 1997.
[366] Paatero, P. A weighted non-negative least squares algorithm for three-way PARAFAC factor analysis. Chemometr. Intell. Lab. Syst., 38: 223–242, 1997.
[367] Paatero, P., Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5: 111–126, 1994.
[368] Paatero, P., Tapper, U. Least squares formulation of robust non-negative factor analysis. Chemometrics Intell. Lab, 37: 23–35, 1997.
[369] Paige, C.C. Computing the generalized singular value decomposition. SIAM J. Sci. Statist. Comput., 7: 1126–1146, 1986.
[370] Paige, C.C., Saunders, N.A. Towards a generalized singular value decomposition. SIAM J. Numer. Anal., 18: 269–284, 1981.
[371] Pajunnen, P., Karhunen, J. Least-squares methods for blind source Separation based on nonlinear PCA. Int. J. of Neural Syst., 8: 601–612, 1998.
[372] Papoulis, A. Probability, Random Variables and Stochastic Processes. New York: McGraw-Hill, 1991.
[373] Parikh, N., Bord, S. Proximal algorithms. Found. Trends Optim., 1(3): 123–231, 2013.
[374] Parlett, B.N. The Rayleigh quotient iteration and some generalizations for nonormal matrices. Math. Comput., 28(127): 679–693, 1974.
[375] Parlett, B.N. The Symmetric Eigenvalue Problem. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[376] Parra, L., Spence, C., Sajda, P., Ziehe, A., Muller, K. Unmixing hyperspectral data. In Advances in Neural Information Processing Systems, vol. 12. Cambridge, MA: MIT Press, 942–948, 2000.
[377] Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In Proc. 27th Ann. Asilomar Conf. Signals Syst. Comput., vol. 1, 40–44, 1993.
[378] Pauca, V.P., Piper, J., Plemmons, R. Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl., 416(1): 29–47, 2006.
[379] Pauca, V.P., Shahnaz, F., Berry, M.W., Plemmons, R.J. Text mining using non- hnegative matrix factorizations. In Proc. 4th SIAM Inter. Conf. on Data Mining, Lake Buena Vista, Florida, April 22-24, 2004.
[380] Pavon, M. New results on the interpolation problem for continue-time stationary-increments processes. SIAM J. Control Optim., 22: 133–142, 1984.
[381] Pearson, K. On lines and planes of closest fit to points in space. Phil. Mag, 559–572, 1901.
[382] Pease, M.C. Methods of Matrix Algebra. New York: Academic Press, 1965.
[383] Peng, C.Y., Zhang, X.D. On recursive oblique projectors. IEEE Signal Processing Lett., 12(6): 433–436, 2005.
[384] Penrose, R.A. A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51: 406–413, 1955.
[385] Perron, O. Zur Theorie der Matrices. Math. Ann., 64(2): 248–263, 1907.
[386] Petersen, K.B., Petersen, M.S. The Matrix Cookbook. Available at http://matrixcookbook.com(2008).
[387] Pham, D.T. Joint approximate diagonalization of positive defnite matrices. SIAM J. Matrix Anal. Appl., 22(4): 1136–1152, 2001.
[388] Phan, A.H., Tichavsky, P., Cichocki, A. TENSORBOX: a MATLAB package for tensor decomposition, LABSP, RIKEN, Japan. Available at http://www.bsp.brain.riken.jp/phan/tensorbox.php/(2012).
[389] Phan, A.H., Tichavsky, P., Cichocki, A. Low complexity damped Gauss– Newton algorithms for CANDECOMP/PARAFAC. SIAM J. Matrix Anal. Appl., 34: 126–147, 2013.
[390] Phillip, A., Regalia, P.A., Mitra, S. Kronecker propucts, unitary matrices and signal processing applications. SIAM Review, 31(4): 586–613, 1989.
[391] Piegorsch, W.W., Casella, G. The early use of matrix diagonal increments in statistical problems. SIAM Review, 31: 428–434, 1989.
[392] Piegorsch, W.W., Casella, G. Erratum: inverting a sum of matrices. SIAM Review, 32: 470, 1990.
[393] Pintelon, R., Guillaume, P., Vandersteen, G., Rolain, Y. Analyzes, development and applications of TLS algorithms in frequency domain system identification. In Recent Advances in Total Least Squares Techniques and Error-in-Variable Modeling (Van Huffel, S. ed.), Philadelphia, PA: SIAM, 1997.
[394] Pisarenko, V.F. The retrieval of harmonics from a covariance function. Geophysics, J. Roy. Astron. Soc., 33: 347–366, 1973.
[395] Piziak, R., Odell, P.L. Full rank factorization of matrices. Math. Mag., 72(3): 193–202, 1999.
[396] Polyak, B.T. Introduction to Optimization. New York: Optimization Software Inc., 1987.
[397] Poularikas, A.D. The Handbook of Formulas and Tables for Signal Processing. New York: CRC Press, Springer, IEEE Press, 1999.
[398] Powell, M.J. D. A method for nonlinear constraints in minimization problems. In Optimization (Fletcher, R. ed.), New York: Academic Press, 283–298, 1969.
[399] Powell, M.J. D. On search directions for minimization algorithms. Math. Progr., 4: 193–201, 1973.
[400] Price, C. The matrix pseudoinverse and minimal variance estimates. SIAM Review, 6: 115–120, 1964.
[401] Pringle, R.M., Rayner, A.A. Generalized Inverse ofMatrices with Applications to Statistics. London: Griffin 1971.
[402] Puig, A.T., Wiesel, A., Fleury, G., Hero, A.O. Multidimensional shrinkagethresholding operator and group LASSO penalties. IEEE Signal Processing Lett., 18(6): 343–346, 2011.
[403] Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40: 1302–1324, 2005.
[404] Qi, L., Teo, K.L. Multivariate polynomial minimization and its application in signal processing. J. Global Optim., 26: 419–433, 2003.
[405] Qi, L., Wang, Y., Wu, E.X. D-eigenvalues of diffusion kurtosis tensors, J. Comput. Appl. Math., 221: 150–157, 2008.
[406] Qi, L., Xu, C., Xu, Y. Nonnegative tensor factorization, completely positive tensors, hierarchical elimination algorithm. SIAM J. Matrix Anal. Appl., 35(4): 1227–1241, 2014.
[407] Rado, R. Note on generalized inverse of matrices. Proc. Cambridge Philos. Soc., 52: 600–601, 1956.
[408] Ram, I., Elad, M., Cohen, I. Image processing using smooth ordering of its patches. IEEE Trans. Image Process., 22(7): 2764–2774, 2013.
[409] Rao, C.R. Estimation of heteroscedastic variances in linear models. J. Amer. Statist. Assoc., 65: 161–172, 1970.
[410] Rao, C.R., Mitra, S.K. Generalized Inverse of Matrices. New York: John Wiley & Sons, 1971.
[411] Rayleigh, L. The Theory of Sound, 2nd edn. New York: Macmillian, 1937.
[412] Recht, B., Fazel, M., Parrilo, P.A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3): 471–501, 2010.
[413] Regalia, P.A., Mitra, S.K. Kronecker products, unitary matrices and signal processing applications. SIAM Review, 31(4): 586–613, 1989.
[414] Riba, J., Goldberg, J., Vazquez, G. Robust beamforming for interference rejection in mobile communications. IEEE Trans. Signal Processing, 45(1): 271–275, 1997.
[415] Robeva, E. Orthogonal decomposition of symmetric tensors. SIAM J. Matrix Anal. Appl., 37(1): 86–102, 2016.
[416] Roos, C. A full-Newton step O(n) infeasible interior-point algorithm for linear optimization. SIAM J. Optim., 16(1): 1110–1136, 2006.
[417] Roos, C., Terlaky, T., Vial, J. Ph. Theory and Algorithms for Linear Optimization: An Interior-Point Approach. Chichester, UK: John Wiley & Sons, 1997.
[418] Roth, V. The Generalized LASSO. IEEE Trans. Neural Networks, 15(1): 16–28, 2004.
[419] Roy, R., Kailath, T. ESPRIT – Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust., Speech, Signal Processing, 37: 297–301, 1989.
[420] Rudin, L., Osher, S., Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D, 60: 259–268, 1992.
[421] Saad, Y. The Lanczos biothogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal., 19: 485-506, 1982.
[422] Saad, Y. Numerical Methods for Large Eigenvalue Problems. New York: Manchester University Press, 1992.
[423] Salehi, H. On the alternating projections theorem and bivariate stationary stichastic processes. Trans. Amer. Math. Soc., 128: 121–134, 1967.
[424] Samson, C. A unified treatment of fast algorithms for identification. Inter. J. Control, 35: 909–934, 1982.
[425] Scales, L.E. Introduction to Non-linear Optimization. London: Macmillan, 1985.
[426] Schmidt, R.O. Multiple emitter location and signal parameter estimation. Proc RADC Spectral Estimation Workshop, NY: Rome, 243–258, 1979.
[427] Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propagat., 34: 276–280, 1986.
[428] Schott, J.R. Matrix Analysis for Statistics. Wiley: New York, 1997.
[429] Schoukens, J., Pintelon, R., Vandersteen, G., Guillaume, P. Frequency-domain system identification using nonparametric noise models estimated from a small number of data sets. Automatica, 33(6): 1073–1086, 1997.
[430] Schutz, B. Geometrical Methods of Mathematical Physics. Cambridge: Cambridge University Press, 1980.
[431] Schultz, T., Seidel, H.P. Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Visualization Comput. Graphics, 14: 1635–1642, 2008.
[432] Scutari, G., Palomar, D.P., Facchinei, F., Pang, J.S. Convex optimization, game theory, variational inequality theory. IEEE Signal Processing Mag., 27(3): 35–49, 2010.
[433] Searle, S.R. Matrix Algebra Useful for Statististics. New York: John Wiley & Sons, 1982.
[434] Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J. Document clustering using nonnegative matrix factorization. Inf. Processing & Management, 42(2): 373–386, 2006.
[435] Shashua, A., Levin, A. Linear image coding for regression and classification using the tensor-rank principle. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2001.
[436] Shashua, A., Zass, R., Hazan, T. Multi-way clustering using super-symmetric nonnegative tensor factorization. In Proc. European Conf. on Computer Vision, Graz, Austria, May 2006.
[437] Shavitt, I., Bender, C.F., Pipano, A., Hosteny, R.P. The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices. J. Comput. Phys., 11: 90–108, 1973.
[438] Sherman, J., Morrison, W.J. Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix (abstract). Ann. Math. Statist., 20: 621, 1949.
[439] Sherman, J., MorrisonW. J. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist., 21: 124–127, 1950.
[440] Shewchuk, J.R. An introduction to the conjugate gradient method without the agonizing pain. Available at http://quake-papers/painless-conjugategradient- pics.ps(1994).
[441] Shivappa, S.T., Trivedi, M.M., Rao, B.D. Audiovisual information fusion in human-computer interfaces and intelligent environments: a survey. Proc. IEEE, 98(10): 1692–1715, 2010.
[442] Sidiropoulos, N.D., Bro, R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemometrics, 14: 229–239, 2000.
[443] Sidiropoulos, N.D., Bro, R. On communication diversity for blind identifiability and the uniqueness of low-rank decomposition of N-way arrays. In Proc. Int. Conf. Acoust. Speech Signal Processing, vol. 5: 2449–2452, 2000.
[444] Sidiropoulos, N.D., Bro, R., Giannakis, G.B. Parallel factor analysis in sensor array processing. IEEE Trans. Signal Processing, 48(8): 2377–2388, 2000.
[445] Sidiropoulos, N.D., Liu, H. Identifiability results for blind beamforming in incoherent multipath with small delay spread. IEEE Trans. Signal Processing, 49(1): 228–236, 2001.
[446] Sidiropoulos, N.D., Papalexakis, E.E., Faloutsos, C. Parallel randomly compressed cubes: a scalable distributed architecture for big tensor decomposition. IEEE Signal Processing Mag., 33(9): 57–70, 2014.
[447] Silva, V., Lim, L.H. Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30(3): 1084–1127, 2008.
[448] Simon, J.C. Patterns and Operators: The Foundations and Data Representation. North Oxford Academic Publishers, 1986.
[449] Solomentsev, E.D. Euclidean space. Encyclopedia of Mathematics. Springer, 2011.
[450] Sorber, L., Barel, M.V., Lathauwer, D.L. Tensorlab v2.0. Available at http://www.tensorlab.net/(2014).
[451] Sorensen, M., Lathauwer, L.D. Blind signal separation via tensor decomposition with Vandermonde factor: canonical polyadic decomposition. IEEE Trans. Signal Processing, 61(22): 5507–5519, 2013.
[452] Spivak, M. A Comprehensive Introduction to Differential Geometry, 2nd edn. (five volumes). New York: Publish or Perish Press, 1979.
[453] Stein, D.W. J., Beaven S.G., Hoff L.E., Winter E.M., Schaum A.P., Stocker A.D. Anomaly detection from hyperspectral imagery. IEEE Signal Processing Mag., 19(1): 58–69, 2002.
[454] Stewart, G.W. On the early history of the singular value decomposition. SIAM Review, 35(4): 551–566, 1993.
[455] Stewart, G.W., Sun, J.G. Matrix Perturbation Theory. New York: Academic Press, 1990.
[456] Stiefel, E. Richtungsfelder und ferparallelismus in n-dimensionalem mannig faltigkeiten. Commentarii Math Helvetici, 8: 305–353, 1935.
[457] Stoica, P., Sorelius, J., Cedervall, M., Söderström T. Error-in-variables modeling: an instrumental variable approach. In Recent Advances in Total Least Squares Techniques and Error-in-Variables Modeling (Van Huffel, S. ed.). Philadelphia, PA: SIAM, 1997.
[458] Sun, J., Zeng, H., Liu, H., Lu, Y., Chen, Z. Cubesvd: a novel approach to personalized web search. In Proc. 14th Inter. Conf. on World Wide Web, 652–662, 2005.
[459] Sun, Y., Gao, J., Hong, X., Mishra, B., Yin, B. Heterogeneous tensor decomposition for clustering via manifold optimization. IEEE Trans. Pattern Anal. Machine Intell., 38(3): 476–489, 2016.
[460] Syau, Y.R. A note on convex functions. Inter. J. Math. & Math. Sci. 22(3): 525–534, 1999.
[461] Takeuchi, K., Yanai, H., Mukherjee, B.N. The Foundations of Multivariante Analysis. New York: Wiley, 1982.
[462] Tibshirani, R. Regression shrinkage and selection via the lasso. J.R. Statist. Soc. B, 58: 267–288, 1996.
[463] Tichavsky, P., Phan, A.H., Koldovsky, Z. Cramer–Rao-induced bounds for CANDECOMP/PARAFAC tensor decomposition. IEEE Trans. Signal Processing, 61(8): 1986–1997, 2013.
[464] Tikhonov, A. Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4: 1035–1038, 1963.
[465] Tikhonov, A., Arsenin, V. Solution of Ill-Posed Problems. New York: Wiley, 1977.
[466] Tisseur, F., Meerbergen, K. Quadratic eigenvalue problem. SIAM Review, 43(2): 235–286, 2001.
[467] Toeplitz, O. Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen. I Teil: Theorie der L-Formen, Math Annal, 70: 351–376, 1911.
[468] Tomasi, G., Bro, R. A comparison of algorithms for fitting the PARAFAC model. Computat. Statist. Data Anal., 50(7): 1700–1734, 2006.
[469] Tou, J.T., Gonzalez, R.C. Pattern Recognition Principles. London: Addison- Wesley Publishing Comp, 1974.
[470] Tropp, J.A. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10): 2231–2242, 2004.
[471] Tropp, J.A. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory, 52(3): 1030–1051, 2006.
[472] Tropp, J.A., Wright, S.J. Computational methods for sparse solution of linear inverse problems. Proc. IEEE, 98(6): 948–958, 2010.
[473] Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Statist. Phys., 52: 479–487, 1988.
[474] Tsallis, C. The nonadditive entropy Sq and its applications in physics and elsewhere: some remarks. Entropy, 13: 1765–1804, 2011.
[475] Tucker, L.R. Implications of factor analysis of three-way matrices for measurement of change. In Problems in Measuring Change (Harris, C.W. ed.), Wisconsin: University of Wisconsin Press, 122–137, 1963.
[476] Tucker, L.R. The extension of factor analysis to three-dimensional matrices. In Contributions to Mathematical Psychology (Gulliksen H., Frederiksen N. eds.), New York: Holt, Rinehart & Winston, 109–127, 1964.
[477] Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika, 31: 279–311, 1966.
[478] Turk, M. Multimodal interaction: a review. Pattern Recog. Lett., 36(1): 189–195, 2014.
[479] van der Kloot, W.A., Kroonenberg, P.M. External analysis with three-mode principal component models, Psychometrika, 50: 479-494, 1985.
[480] van der Veen, A.J. Joint diagonalization via subspace fitting techniques. Proc. 2001 IEEE Inter. Conf. on Acoust., Speech, Signal Processing, vol. 5: 2773– 2776, 2001.
[481] Van Huffel, S. (ed.). Recent Advances in Total Least Squares Techniques and Error-in-Variables Modeling. Philadelphia, PA: SIAM, 1997.
[482] Van Huffel, S. TLS applications in biomedical signal processing. In Recent Advances in Total Least Squares Techniques and Error-in-Variables Modeling (Van Huffel, S. ed.). Philadelphia, PA: SIAM, 1997.
[483] Van Loan, C.F. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13: 76–83, 1976.
[484] Van Loan, C.F. Matrix computations and signal processing. In Selected Topics in Signal Processing (Haykin, S. ed.). Englewood Cliffs: Prentice-Hall, 1989.
[485] van Overschee, P., De Moor, B. Subspace Identification for Linear Systems. Boston, MA: Kluwer, 1996.
[486] Van Huffel, S., Vandewalle, J. Analysis and properties of the generalized total least squares problem Ax = b when some or all columns in A are subject to error. SIAM J. Matrix Anal. Appl., 10: 294–315, 1989.
[487] Vandaele, P., Moonen, M. Two deterministic blind channel estimation algorithms based on oblique projections. Signal Processing, 80: 481–495, 2000.
[488] Vandenberghe, L. Lecture Notes for EE236C (Spring 2011-12), UCLA.
[489] Vanderbei, R.J. An interior-point algorithm for nonconvex nonlinear programming. Available at http://orfe.princeton.edu/rvdb/pdf/talks/level3/nl.pdf (2000)
[490] Vanderbei, R.J., Shanno, D.F. An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl., 13(1-3): 231–252, 1999.
[491] Vasilescu, M.A.O., Terzopoulos, D. Multilinear analysis of image ensembles: TensorFaces. In Proc. European Conf. on Computer Vision, Copenhagen, Denmark, 447–460, 2002.
[492] Vasilescu, M.A.O., Terzopoulos D. Multilinear image analysis for facial recognition. In Proc. Inter. Conf. on Pattern Recognition, Quebec City, Canada, 2002.
[493] Veen, A.V. D. Algebraic methods for deterministic blind beamforming. Proc. IEEE, 86: 1987–2008, 1998.
[494] Veganzones, M.A., Cohen, J.E., Farias, R.C., Chanussot, J., Comon, P. Nonnegative tensor CP decomposition of hyperspectral data. IEEE Trans. Geosci. Remote Sensing, 54(5): 2577–2588, 2016.
[495] Viberg, M., Ottersten, B. Sensor array processing based on subspace fitting. IEEE Trans. Signal Processing, 39: 1110–1121, 1991.
[496] Vollgraf, R., Obermayer, K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Processing, 54(9): 3270–3278, 2006.
[497] Wächter, A., Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. Ser. A, 106(1): 25–57, 2006.
[498] Wang, H. Coordinate descent algorithm for covariance graphical lasso. Stat. Comput., 24: 521–529, 2014.
[499] Wang, H., Ahuja, N. Compact representation of multidimensional data using tensor rank-one decomposition. In Proc. Inter. Conf. on Pattern Recognition, Vol. 1, 44–47, 2004.
[500] Wang, H., Amini, A. Cardiac motion and deformation recovery from MRI: a review. IEEE Trans. Medical Imaging, 31(2): 487–503, 2012.
[501] Wang, W., Sanei, S., Chambers, J.A. Penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources. IEEE Trans. Signal Processing, 53(5): 1654–1669, 2005.
[502] Watkins, D.S. Understanding the QR algorithm. SIAM Review, 24(4): 427–440, 1982.
[503] Watson, G.A. Characterization of the subdifferential of some matrix norms, Linear Algebra Appl., 170: 33–45, 1992.
[504] Wax, M., Sheinvald, J. A least squares approach to joint diagonalization. IEEE Signal Processing Lett., 4(2): 52–53, 1997.
[505] Weiss, A.J., Friedlander, B. Array processing using joint diagonalization. Signal Processing, 50(3): 205–222, 1996.
[506] Welling, M., Weber, M. Positive tensor factorization. Pattern Recognition Lett., 22: 1255–1261, 2001.
[507] Whiteford, H.A., Degenhardt, L., et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet, 382(9904): 1575–1586, 2013.
[508] Wiesel, A., Eldar, Y.C., Beck, A. Maximum likelihood estimation in linear models with Gaussian model matrix, IEEE Signal Processing Lett., 13: 292–295, 2006.
[509] Wiesel, A., Eldar, Y.C., Yeredor, A. Linear regression with Gaussian model uncertainty: algorithms and bounds, IEEE Trans. Signal Processing, 56: 2194–2205, 2008.
[510] Wilkinson, J.H. The Algerbaic Eigenvalue Problem. Oxford, UK: Clarendon Press, 1965.
[511] Wirtinger, W. Zur formalen Theorie der Funktionen von mehr Komplexen vromnderlichen. Math. Ann., 97: 357–375, 1927.
[512] Wolf, J.K. Redundancy, the discrete Fourier transform, and impulse noise cancellation. IEEE Trans. Commun, 31: 458–461, 1983.
[513] Woodbury, M.A. Inverting modified matrices. Memorandum Report 42, Statistical Research Group, Princeton, 1950.
[514] Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In Proc. Adv. Neural Inf. Processing Syst., 87(4): 20:3–20:56, 2009.
[515] Xu, H., Caramanis, C., Mannor, S. Robust regression and Lasso. IEEE Trans. Inform. Theory, 56(7): 3561–3574, 2010.
[516] Xu, G., Cho, Y., Kailath, T. Application of fast subspace decomposition to signal processing and communication problems. IEEE Trans. Signal Processing, 42: 1453–1461, 1994.
[517] Xu, G., Kailath, T. A fast algorithm for signal subspace decomposition and its performance analysis. In Proc. Inter. Conf. of Acoust., Speech and Signal Processing, Toronto, Canada, 3069–3072, 1991.
[518] Xu, G., Kailath, T. Fast subspace decomposition. IEEE Trans. Signal Processing, 42: 539–551, 1994.
[519] Xu, G., Kailath, T. Fast estimation of principal eigenspace using Lanczos algorithm. SIAM J. Matrix Anal. Appl. 15(3): 974–994, 1994.
[520] Xu, L., Oja, E., Suen, C. Modified Hebbian learning for curve and surface fitting. Neural Networks, 5: 441–457, 1992.
[521] Yan, H., Paynabar, K., Shi, J. Image-based process monitoring using low-rank tensor decomposition. IEEE Trans. Automation Sci. Eng., 12(1): 216–227, 2015.
[522] Yang, B. Projection approximation subspace tracking. IEEE Trans. Signal Processing, 43: 95–107, 1995.
[523] Yang, B. An extension of the PASTd algorithm to both rank and subspace tracking. IEEE Signal Processing Lett., 2(9): 179–182, 1995.
[524] Yang, J., Yuan, X. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput., 82: 301–329, 2013.
[525] Yang, J.F., Kaveh, M. Adaptive eigensubspace algorithms for direction or frequency estimation and tracking. IEEE Trans. Acoust., Speech, Signal Processing, 36: 241–251, 1988.
[526] Yang, X., Sarkar, T.K., Arvas, E. A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix. IEEE Trans. Acoust., Speech, Signal Processing, 37: 1550–1556, 1989.
[527] Yang, Y., Yang, Q. Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl., 31: 2517–2530, 2010.
[528] Yang, W., Gao, Y., Shi, Y., Cao, L. MRM-Lasso: a sparse multiview feature selection method via low-rank analysis. IEEE Trans. Neural Networks Learning Syst., 26(11): 2801-2815, 2015.
[529] Yeniay, O., Ankara, B. Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl., 10(1): 45–56, 2005.
[530] Yeredor, A. Non-orthogonal joint diagonalization in the least squares sense with application in blind source separation. IEEE Trans. Signal Processing, 50(7): 1545–1553, 2002.
[531] Yeredor, A. Time-delay estimation in mixtures. In Proc. 2003 IEEE Inter. Conf. on Acoustics, Speech, and Signal Processing, 5: 237–240, 2003.
[532] Yin, W., Osher, S., Goldfarb, D., Darbon, J. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci., 1(1): 143–168, 2008.
[533] Yokota, T., Zhao, Q., Cichocki, A. Smooth PARAFAC decomposition for tensor completion. IEEE Trans. Signal Processing, 64(20): 5423–5436, 2016.
[534] Youla, D.C. Generalized image restoration by the method of altenating projections. IEEE Trans. Circuits Syst., 25: 694–702, 1978.
[535] Yu, X., Tong, L. Joint channel and symbol estimation by oblique projections. IEEE Trans. Signal Processing, 49(12): 3074–3083, 2001.
[536] Yu, Y.L. Nesterov's optimal gradient method. 2009. Available at http://www.webdocs.cs. ualberta.ca/yaoliang/mytalks/NS.pdf(2009).
[537] Yuan, M., Lin, Y. Model selection and estimation in regression with grouped variables. J. Royal Statist. Soc., Series B, 68(1): 49–67, 2006.
[538] Zass, R., Shashua, A. Nonnegative sparse PCA. In Proc. Conf. on Neural Information Processing Systems, Vancuver, Canada, 2006.
[539] Zdunek, R., Cichocki, A. Nonnegative matrix factorization with constrained second-order optimization. Signal Processing, 87(8): 1904–1916, 2007.
[540] Zha, H. The restricted singular value decomposition of matrix triplets. SIAM J. Matrix Anal. Appl., 12: 172–194, 1991.
[541] Zhang, X., Wen, G., Dai, W. A tensor decomposition-based anomaly detection algorithm for hyperspectral image. IEEE Trans. Geosci. Remote Sensing, 54(10): 5801–5820, 2016.
[542] Zhang, X.D. Numerical computations of left and right pseudo inverse matrices (in Chinese). Kexue Tongbao, 7(2): 126, 1982.
[543] Zhang, X.D., Liang, Y.C. Prefiltering-based ESPRIT for estimating parameters of sinusoids in non-Gaussian ARMA noise. IEEE Trans. Signal Processing, 43: 349–353, 1995.
[544] Zhang, Z.Y. Nonnegative matrix factorization: models, algorithms and applications. Intell. Syst. Ref. Library, 24(6): 99–134, 2012.
[545] Zhou, G., Cichocki, A. TDALAB: tensor decomposition laboratory, LABSP, Wako-shi, Japan. Available at http://bsp.brain.riken.jp/TDALAB/(2013).
[546] Zhou, H. TensorReg toolbox for Matlab, 2013.