Skip to main content Accessibility help
×
  • Cited by 6
Publisher:
Cambridge University Press
Online publication date:
November 2020
Print publication year:
2020
Online ISBN:
9781108782371

Book description

The discovery of artificial electromagnetic materials, called metamaterials, not only redefines the human perception of constitutive parameters in electromagnetic theory, but also brings forward new phenomena, such as negative refraction. We provide a comprehensive introduction to the unique characteristics of metamaterials, starting with Maxwell's equations and the kDB coordinate system, and moving through to theoretical concepts and design principles of negative refraction in metamaterials. For each kind of media, including isotropic, anisotropic and bianisotropic metamaterials, we discuss the characteristic waves and their properties. We show examples of negative refraction both theoretically and experimentally.

References

1.Maxwell, JC. A treatise on electricity and magnetism. London: Constable and Company; 1873.
2.Marder, MP. Condensed matter physics. 2nd ed. New Jersey: John Wiley & Sons, Inc; 2010.
3.Rothwell, EJ, Cloud, MJ. Electromagnetics. New York: CRC Press; 2008.
4.Kong, JA. Electromagnetic wave theory. Cambridge: Wiley and Sons, EMW Publishing; 2008.
5.Cui, TJ, Smith, DR, Liu, R. Metamaterials – theory, design, and applications. New York: Springer; 2010.
6.Pendry, JB, Holden, AJ, Stewart, WJ, Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996 Jun;76:47734776.
7.Maslovski, SI, Tretyakov, SA, Belov, PA. Wire media with negative effective permittivity: A quasi-static model. Microwave and Optical Technology Letters. 2002;35(1):4751.
8.Pendry, JB, Holden, AJ, Robbins, DJ, Stewart, WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques. 1999 Nov;47(11):20752084.
9.O’Brien, S, Pendry, JB. Magnetic activity at infrared frequencies in structured metallic photonic crystals. Journal of Physics: Condensed Matter. 2002;14(25):6383.
10.Shelby, RA, Smith, DR, Schultz, S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):7779.
11.Smith, DR, Padilla, WJ, Vier, DC, Nemat-Nasser, SC, Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000 May;84:41844187.
12.Chen, H, Wang, Z, Zhang, R, Wang, H, Lin, S, Yu, F, et al. A meta-substrate to enhance the bandwidth of metamaterials. Scientific Reports. 2014;4:5264.
13.Yen, TJ, Padilla, WJ, Fang, N, Vier, DC, Smith, DR, Pendry, JB, et al. Terahertz magnetic response from artificial materials. Science. 2004;303(5663):14941496.
14.Linden, S, Enkrich, C, Wegener, M, Zhou, J, Koschny, T, Soukoulis, CM. Magnetic response of metamaterials at 100 terahertz. Science. 2004;306(5700):13511353.
15.Zhou, J, Koschny, T, Kafesaki, M, Economou, EN, Pendry, JB, Soukoulis, CM. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett. 2005 Nov;95:223902.
16.Zhang, S, Fan, W, Malloy, KJ, Brueck, SRJ, Panoiu, NC, Osgood, RM. Near-infrared double negative metamaterials. Opt Express. 2005 Jun;13(13):49224930.
17.Valentine, J, Zhang, S, Zentgra, T, Ulin-Avila, E, Genov, DA, Bartal, G, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature. 2008;455:376.
18.Marqués, R, Medina, F, Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B. 2002 Apr;65:144440.
19.Chen, X, Wu, BI, Kong, JA, Grzegorczyk, TM. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys Rev E. 2005 Apr;71:046610.
20.Smith, DR, Gollub, J, Mock, JJ, Padilla, WJ, Schurig, D. Calculation and measurement of bianisotropy in a split ring resonator metamaterial. Journal of Applied Physics. 2006;100(2):024507.
21.Xu, X, Quan, B, Gu, C, Wang, L. Bianisotropic response of microfabricated metamaterials in the terahertz region. J Opt Soc Am B. 2006 Jun;23(6):11741180.
22.Rill, MS, Plet, C, Thiel, M, Staude, I, von Freymann, G, Linden, S, et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature Materials. 2008;7:543546.
23.Rill, MS, Kriegler, CE, Thiel, M, von Freymann, G, Linden, S, Wegener, M. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation. Opt Lett. 2009 Jan;34(1):1921.
24.Kraft, M, Braun, A, Luo, Y, Maier, SA, Pendry, JB. Bianisotropy and magnetism in plasmonic gratings. ACS Photonics. 2016;3(5):764769.
25.Kriegler, CE, Rill, MS, Linden, S, Wegener, M. Bianisotropic photonic metamaterials. IEEE Journal of Selected Topics in Quantum Electronics. 2010 March;16(2):367375.
26.Falcone, F, Lopetegi, T, Laso, MAG, Baena, JD, Bonache, J, Beruete, M, et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett. 2004 Nov;93:197401.
27.Wang, Z, Yao, K, Chen, M, Chen, H, Liu, Y. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys Rev Lett. 2016 Oct;117:157401.
28.Li, Z, Aydin, K, Ozbay, E. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Phys Rev E. 2009 Feb;79:026610.
29.Hasar, UC, Barroso, JJ, Bute, M, Muratoglu, A, Ertugrul, M. Boundary effects on the determination of electromagnetic properties of bianisotropic metamaterials from scattering parameters. IEEE Transactions on Antennas and Propagation. 2016 Aug;64(8):34593469.
30.Hasar, UC, Barroso, JJ. Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials. Progress In Electromagnetics Research. 2011;112:109124.
31.Ouchetto, O, Qiu, CW, Zouhdi, S, Li, LW, Razek, A. Homogenization of 3-D periodic bianisotropic metamaterials. IEEE Transactions on Microwave Theory and Techniques. 2006 Nov;54(11):38933898.
32.Smith, DR, Schultz, S, Markoš, P, Soukoulis, CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002 Apr;65:195104.
33.Chen, X, Grzegorczyk, TM, Wu, BI, Pacheco, J, Kong, JA. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E. 2004 Jul;70:016608.
34.Tretyakov, S, Nefedov, I, Sihvola, A, Maslovski, S, Simovski, C. Waves and energy in chiral nihility. Journal of Electromagnetic Waves and Applications. 2003;17(5):695706.
35.Pendry, JB. A chiral route to negative refraction. Science. 2004;306(5700):13531355.
36.Monzon, C, Forester, DW. Negative refraction and focusing of circularly polarized waves in optically active media. Phys Rev Lett. 2005 Sep;95:123904.
37.Rogacheva, AV, Fedotov, VA, Schwanecke, AS, Zheludev, NI. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett. 2006 Oct;97:177401.
38.Plum, E, Zhou, J, Dong, J, Fedotov, VA, Koschny, T, Soukoulis, CM, et al. Metamaterial with negative index due to chirality. Phys Rev B. 2009 Jan;79:035407.
39.Zhou, J, Dong, J, Wang, B, Koschny, T, Kafesaki, M, Soukoulis, CM. Negative refractive index due to chirality. Phys Rev B. 2009 Mar;79:121104.
40.Zhang, S, Park, YS, Li, J, Lu, X, Zhang, W, Zhang, X. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009 Jan;102:023901.
41.Plum, E, Fedotov, VA, Schwanecke, AS, Zheludev, NI, Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Applied Physics Letters. 2007;90(22):223113.
42.Decker, M, Klein, MW, Wegener, M, Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt Lett. 2007 Apr;32(7):856858.
43.Kuwata-Gonokami, M, Saito, N, Ino, Y, Kauranen, M, Jefimovs, K, Vallius, T, et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett. 2005 Nov;95:227401.
44.Gansel, JK, Thiel, M, Rill, MS, Decker, M, Bade, K, Saile, V, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325(5947):15131515.
45.Menzel, C, Helgert, C, Rockstuhl, C, Kley, EB, Tünnermann, A, Pertsch, T, et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett. 2010 Jun;104:253902.
46.Fedotov, VA, Mladyonov, PL, Prosvirnin, SL, Rogacheva, AV, Chen, Y, Zheludev, NI. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett. 2006 Oct;97:167401.
47.Hendry, E, Carpy, T, Johnston, J, Popland, M, Mikhaylovskiy, RV, Lapthorn, AJ, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology. 2010;5:783787.
48.Schäferling, M, Dregely, D, Hentschel, M, Giessen, H. Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys Rev X. 2012 Aug;2:031010.
49.Wang, Z, Cheng, F, Winsor, T, Liu, Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology. 2016;27(41):412001.
50.Liu, N, Liu, H, Zhu, S, Giessen, H. Stereometamaterials. Nature Photonics. 2009;3:157162.
51.Hentschel, M, Schäferling, M, Weiss, T, Liu, N, Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Letters. 2012;12(5):25422547.
52.Helgert, C, Pshenay-Severin, E, Falkner, M, Menzel, C, Rockstuhl, C, Kley, EB, et al. Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Letters. 2011;11(10):44004404.
53.Cui, Y, Kang, L, Lan, S, Rodrigues, S, Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Letters. 2014;14(2):10211025.
54.Menzel, C, Paul, T, Rockstuhl, C, Pertsch, T, Tretyakov, S, Lederer, F. Validity of effective material parameters for optical fishnet metamaterials. Phys Rev B. 2010 Jan;81:035320.
55.Simovski, CR, Tretyakov, SA. On effective electromagnetic parameters of artificial nanostructured magnetic materials. Photonics and Nanostructures – Fundamentals and Applications. 2010;8(4):254263.
56.Jones, RC. A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J Opt Soc Am. 1941 Jul;31(7):488493.
57.Menzel, C, Rockstuhl, C, Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A. 2010 Nov;82:053811.
58.Potton, RJ. Reciprocity in optics. Reports on Progress in Physics. 2004;67(5):717.
59.Kaschke, J, Gansel, JK, Wegener, M. On metamaterial circular polarizers based on metal N-helices. Opt Express. 2012 Nov;20(23):2601226020.
60.Kaschke, J, Blome, M, Burger, S, Wegener, M. Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers. Opt Express. 2014 Aug;22(17):1993619946.
61.Kwon, DH, Werner, DH, Kildishev, AV, Shalaev, VM. Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. Opt Express. 2008 Aug;16(16):1182211829.
62.Zhao, R, Koschny, T, Soukoulis, CM. Chiral metamaterials: Retrieval of the effective parameters with and without substrate. Opt Express. 2010 Jul;18(14):1455314567.
63.Saba, M, Turner, MD, Mecke, K, Gu, M, Schröder-Turk, GE. Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets. Phys Rev B. 2013 Dec;88:245116.
64.Wang, B, Zhou, J, Koschny, T, Kafesaki, M, Soukoulis, CM. Chiral metamaterials: Simulations and experiments. Journal of Optics A: Pure and Applied Optics. 2009;11(11):114003.
65.Wang, Z, Jia, H, Yao, K, Cai, W, Chen, H, Liu, Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics. 2016;3(11):20962101.
66.Koschny, T, Zhang, L, Soukoulis, CM. Isotropic three-dimensional left-handed metamaterials. Phys Rev B. 2005 Mar;71:121103.
67.Gay-Balmaz, P, Martin, OJF. Efficient isotropic magnetic resonators. Applied Physics Letters. 2002;81(5):939941.
68.Simovski, CR, He, S. Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles. Physics Letters A. 2003;311(23):254263.
69.Verney, E, Sauviac, B, Simovski, CR. Isotropic metamaterial electromagnetic lens. Physics Letters A. 2004;331(3–4):244247.
70.Baena, JD, Jelinek, L, Marqués, R, Zehentner, J. Electrically small isotropic three-dimensional magnetic resonators for metamaterial design. Applied Physics Letters. 2006;88(13):134108.
71.Holloway, CL, Kuester, EF, Baker-Jarvis, J, Kabos, P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Transactions on Antennas and Propagation. 2003 Oct;51(10):25962603.
72.Vendik, I, Vendik, O, Kolmakov, I, Odit, M. Modelling of isotropic double negative media for microwave applications. Opto-Electronics Review. 2006;14(3):179.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.