This short introduction to microlocal analysis is presented, in the spirit of Hörmander, in the classical framework of partial differential equations. This theory has important applications in areas such as harmonic and complex analysis, and also in theoretical physics. Here Grigis and Sjöstrand emphasise the basic tools, especially the method of stationary phase, and they discuss wavefront sets, elliptic operators, local symplectic geometry, and WKB-constructions. The contents of the book correspond to a graduate course given many times by the authors. It should prove to be useful to mathematicians and theoretical physicists, either to enrich their general knowledge of this area, or as preparation for the current research literature.
"...an excellent introduction to microlocal analysis for graduate students and for mathematicians who wish to understand the basic ideas of calculus with classical pseudodifferential and Fourier integral operators....The exposition yields in an elegant form almost all basic tools related to microlocal analysis and it will be very helpful for any graduate student dealing with partial differential equations and mathematical physics." Vesselin M. Petkov, Mathematical Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.