References
[1], L. G. Alves, A., Mangioni, G., Rodrigues, F. A., Panzarasa, P., and Moreno., Y. Unfolding the complexity of the global value chain: Strength and entropy in the single-layer, multiplex, and multi-layer international trade networks. Entropy, 20 (12): 909, 2018.
[2]Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F., and Spigler, R.. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77 (1): 137, 2005.
[3]Achard, S. and Bullmore, E.. Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3 (2): e17, 2007.
[4]Adamic, L. A. and Adar, E.. Friends and neighbors on the Web. Social Networks, 25 (3): 211–230, 2003.
[5]Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P.. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9: 1981–2014, 2008.
[6]Akbarzadeh, M. and Estrada, E.. Communicability geometry captures traffic flows in cities. Nature Human Behaviour, 2 (9): 645–652, 2018.
[7]Albert, R., Jeong, H., and Barabási, A.-L.. Error and attack tolerance of complex networks. Nature, 406 (6794): 378, 2000.
[8]Aleta, A., Tuninetti, M., Paolotti, D., Moreno, Y., and Starnini, M.. Link prediction in multiplex networks via triadic closure. Physical Review Research, 2 (4): 042029, 2020.
[9]Alves, L. G. A., Mangioni, G., Cingolani, I., Rodrigues, F. A., Panzarasa, P., and Moreno, Y.. The nested structural organization of the worldwide trade multi-layer network. Scientific Reports, 9 (1): 1–14, 2019.
[10]Amato, R., Díaz-Guilera, A., and Kleineberg, K.-K.. Interplay between social influence and competitive strategical games in multiplex networks. Scientific Reports, 7 (1): 1–8, 2017.
[11]Amato, R., Kouvaris, N. E., San Miguel, M., and Díaz-Guilera, A.. Opinion competition dynamics on multiplex networks. New Journal of Physics, 19 (12): 123019, 2017.
[12]Amelio, A., Mangioni, G., and Tagarelli, A.. Modularity in multilayer networks using redundancy-based resolution and projection-based inter-layer coupling. IEEE Transactions on Network Science and Engineering, 7(3):1198–1214, 1 July–Sept. 2020. https://doi.org/10.1109/TNSE.2019.2913325. [13]Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. M.. A tensor approach to learning mixed membership community models. Journal of Machine Learning Research, 15 (1): 2239–2312, 2014.
[14]Anderson, P. W.. More is different. Science, 177 (4047): 393–396, 1972.
[15]Antonopoulos, C. G. and Shang, Y.. Opinion formation in multiplex networks with general initial distributions. Scientific Reports, 8 (1): 2852, 2018.
[16]Arenas, A., Díaz-Guilera, A., and Pérez-Vicente, C. J.. Synchronization reveals topological scales in complex networks. Physical Review Letters, 96: 114102, 2006.
[17]Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C.. Synchronization in complex networks. Physics Reports, 469(3):93–153, 2008a. https://doi.org/10.1016/j.physrep.2008.09.002 [18]Arenas, A., Fernandez, A., and Gomez, S.. Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10 (5): 053039, 2008b.
[19]Artime, O. and De Domenico, M.. Abrupt transition due to non-local cascade propagation in multiplex systems. New Journal of Physics, 22 (9): 093035, 2020.
[20]Artime, O. and De Domenico., M. Percolation on feature-enriched interconnected systems. Nature Communications, 12 (1): 1–12, 2021.
[21]Artime, O., Fernández-Gracia, J., Ramasco, J. J., and San Miguel, M.. Joint effect of ageing and multilayer structure prevents ordering in the voter model. Scientific Reports, 7 (1): 7166, 2017.
[22]Artime, O., d’Andrea, V., Gallotti, R., Sacco, P. L., and De Domenico, M.. Effectiveness of dismantling strategies on moderated vs. unmoderated online social platforms. Scientific Reports, 10 (1): 1–11, 2020.
[23]Aslak, U., Rosvall, M., and Lehmann, S.. Constrained information flows in temporal networks reveal intermittent communities. Physical Review E, 97 (6): 062312, 2018.
[24]Asllani, M., Busiello, D. M., Carletti, T., Fanelli, D., and Planchon, G.. Turing patterns in multiplex networks. Physical Review E, 90 (4): 042814, 2014.
[25]Asllani, M., Busiello, D. M., Carletti, T., Fanelli, D., and Planchon, G.. Turing instabilities on Cartesian product networks. Scientific Reports, 5 (1): 1–10, 2015.
[26]Azimi-Tafreshi, N.. Cooperative epidemics on multiplex networks. Physical Review E, 93 (4): 042303, 2016.
[27]Azimi-Tafreshi, N., Gómez-Gardenes, J., and Dorogovtsev, S. N.. k—Core percolation on multiplex networks. Physical Review E, 90 (3): 032816, 2014.
[28]Baggio, J. A., BurnSilver, S. B., Arenas, A., Magdanz, J. S., Kofinas, G. P., and De Domenico, M.. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proceedings of the National Academy of Sciences, 113 (48): 13708–13713, 2016.
[29]Bak, P., Tang, C., and Wiesenfeld., K. Self-organized criticality. Physical Review A, 38 (1): 364, 1988.
[30]Barabási, A.-L. and Pósfai, M.. Network science. Cambridge University Press, 2016.
[31]Barrat, A., Barthelemy, M., and Vespignani, A.. Dynamical processes on complex networks. Cambridge University Press, 2008.
[32]Bashan, A., Berezin, Y., Buldyrev, S. V., and Havlin, S.. The extreme vulnerability of interdependent spatially embedded networks. Nature Physics, 9 (10): 667–672, 2013.
[33]Bassett, D. S. and Sporns, O.. Network neuroscience. Nature Neuroscience, 20 (3): 353, 2017.
[34]Battiston, F., Nicosia, V., and Latora, V.. Structural measures for multiplex networks. Physical Review E, 89 (3): 032804, 2014.
[35]Battiston, F., Nicosia, V., and Latora, V.. Efficient exploration of multiplex networks. New Journal of Physics, 18 (4): 043035, 2016.
[36]Battiston, F., Nicosia, V., and Latora, V.. The new challenges of multiplex networks: measures and models. European Physical Journal Special Topics, 226 (3): 401–416, 2017a.
[37]Battiston, F., Perc, M., and Latora, V.. Determinants of public cooperation in multiplex networks. New Journal of Physics, 19 (7): 073017, 2017b.
[38]Battiston, F., Cencetti, G., Iacopini, I., et al. Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 874:1–92, 2020.
[39]Baxter, G. J., Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F.. Avalanche collapse of interdependent networks. Physical Review Letters, 109 (24): 248701, 2012.
[40]Baxter, G. J., Bianconi, G., da Costa, R. A., Dorogovtsev, S. N., and Mendes, J. F. F.. Correlated edge overlaps in multiplex networks. Physical Review E, 94 (1): 012303, 2016.
[41]Bazzi, M., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., and Howison, S. D.. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Modeling & Simulation, 14 (1): 1–41, 2016.
[42]Bazzi, M., Jeub, L. G. S., Arenas, A., Howison, S. D., and Porter, M. A.. A framework for the construction of generative models for mesoscale structure in multilayer networks. Physical Review Research, 2 (2): 023100, 2020.
[43]Beisner, B., Braun, N., Pósfai, M., Vandeleest, J., D’Souza, R., and McCowan, B.. A multiplex centrality metric for complex social networks: Sex, social status, and family structure predict multiplex centrality in rhesus macaques. PeerJ, 8: e8712, 2020.
[44]Bentley, B., Branicky, R., Barnes, C. L., et al. The multilayer connectome of Caenorhabditis elegans. PLoS Computational Biology, 12 (12): 1005283, 2016.
[45]Berezin, Y., Bashan, A., and Havlin, S.. Comment on “Percolation transitions are not always sharpened by making networks interdependent.” Physical Review Letters, 111 (18): 189601, 2013.
[46]Bertagnolli, G. and De Domenico, M.. Diffusion geometry of multiplex and interdependent systems. Physical Review E, 103: 042301, 2021.
[47]Bertagnolli, G., Gallotti, R., and De Domenico, M.. Quantifying efficient information exchange in real network flows. Communications Physics, 4 (1): 1–10, 2021.
[48]Biamonte, J., Faccin, M., and De Domenico, M.. Complex networks from classical to quantum. Communications Physics, 2 (1): 1–10, 2019.
[49]Bianconi, G.. Statistical mechanics of multiplex networks: Entropy and overlap. Physical Review E, 87: 062806, 2013.
[50]Bianconi, G.. Epidemic spreading and bond percolation on multilayer networks. Journal of Statistical Mechanics, 2017 (3): 034001, 2017.
[51]Bianconi, G.. Multilayer networks: Structure and function. Oxford University Press, 2018.
[52]Bianconi, G. and Radicchi, F.. Percolation in real multiplex networks. Physical Review E, 94 (6): 060301, 2016.
[53]Boccaletti, S., Bianconi, G., Criado, R., et al. The structure and dynamics of multilayer networks. Physics Reports, 544 (1): 1–122, 2014.
[54]Boccaletti, S., Pisarchik, A. N., del Genio, C. I., and Amann, A.. Synchronization. Cambridge University Press, 2018.
[55]Boguñá, M., Krioukov, D., and Claffy, K. C.. Navigability of complex networks. Nature Physics, 5 (1): 74, 2009.
[56]Boguñá, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D., and M. Á. Serrano. Network geometry. Nature Reviews Physics, 3:114–135, 2021.
[57]Bonacich, P.. Power and centrality: A family of measures. American Journal of Sociology, 92 (5): 1170–1182, 1987.
[58]Borgatti, S. P. and Everett, M. G.. A graph-theoretic perspective on centrality. Social Networks, 28 (4): 466–484, 2006.
[59]Bosetti, P., Poletti, P., Stella, M., Lepri, B., Merler, S., and De Domenico, M.. Heterogeneity in social and epidemiological factors determines the risk of measles outbreaks. PNAS, 117:30118, 2020.
[60]Bottcher, L. and Porter, M. A.. Classical and quantum random-walk centrality measures in multilayer networks. arxiv preprint arXiv:2012. 07157, 2020.
[61]Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B., and Gross., T. Master stability functions reveal diffusion-driven pattern formation in networks. Physical Review E, 97 (3), 2018.
[62]Brin, S. and Page, L.. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30 (1–7): 107–117, 1998.
[63]Bródka, P., Chmiel, A., Magnani, M., and Ragozini, G.. Quantifying layer similarity in multiplex networks: A systematic study. Royal Society Open Science, 5 (8): 171747, 2018.
[64]Brummitt, C. D., D’Souza, R. M., and Leicht, E. A.. Suppressing cascades of load in interdependent networks. PNAS, 109 (12): E680–E689, 2012 a.
[65]Brummitt, C. D., Lee, K.-M., and Goh, K.-I.. Multiplexity-facilitated cascades in networks. Physical Review E, 85 (4): 045102, 2012 b.
[66]Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A., and Ursino, D.. Measuring betweenness centrality in social internetworking scenarios. In Demey, Y. T. and Panetto, H. (eds.), On the move to meaningful internet systems: OTM 2013 Workshops. OTM 2013. Lecture Notes in Computer Science, vol. 8186. Springer, 2013. https://doi.org/10.1007/978-3-642-41033-8_84 [67]Buendía, V., Villegas, P., Burioni, R., and Muñoz, M. A.. The broad edge of synchronisation: Griffiths effects and collective phenomena in brain networks. arXiv preprint arXiv:2109.11783, 2021.
[68]Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S.. Catastrophic cascade of failures in interdependent networks. Nature, 464 (7291): 1025–1028, 2010.
[69]Buono, C., Alvarez-Zuzek, L. G., Macri, P. A., and Braunstein, L. A.. Epidemics in partially overlapped multiplex networks. PloS One, 9 (3): e92200, 2014.
[70]Burda, Z., Duda, J., Luck, J.-M., and Waclaw, B.. Localization of the maximal entropy random walk. Physical Review Letters, 102 (16): 160602, 2009.
[71]Busiello, D. M., Carletti, T., and Fanelli, D.. Homogeneous-per-layer patterns in multiplex networks. Europhysics Letters, 121 (4): 48006, 2018.
[72]Carchiolo, V., Longheu, A., Malgeri, M., and Mangioni, G.. Communities unfolding in multislice networks. In Complex Networks, pages 187–195. Springer, 2011.
[73]Cardillo, A., Gómez-Gardeñes, J., Zanin, M., et al. Emergence of network features from multiplexity. Scientific Reports, 3 (1), 2013.
[74]Cellai, D., López, E., Zhou, J., Gleeson, J. P., and Bianconi, G.. Percolation in multiplex networks with overlap. Physical Review E, 88 (5): 052811, 2013.
[75]Cellai, D., Dorogovtsev, S. N., and Bianconi, G.. Message passing theory for percolation models on multiplex networks with link overlap. Physical Review E, 94 (3): 032301, 2016.
[76]Centola, D.. The social origins of networks and diffusion. American Journal of Sociology, 120 (5): 1295–1338, 2015.
[77]Chodrow, P. S., Al-Awwad, Z., Jiang, S., and González, M. C.. Demand and congestion in multiplex transportation networks. PloS One, 11 (9): e0161738, 2016.
[78]Chung, F. R. K.. Spectral graph theory. 2nd edition. American Mathematical Society, 1997.
[79]Cimini, G., Squartini, T., Saracco, F., et al. The statistical physics of real-world networks. Nature Reviews Physics, 1 (1): 58–71, 2019.
[80]Cohen, R., Erez, K., Ben-Avraham, D., and Havlin, S.. Breakdown of the Internet under intentional attack. Physical Review Letters, 86 (16): 3682, 2001.
[81]Cozzo, E., Baños, R. A., Meloni, S., and Moreno, Y.. Contact-based social contagion in multiplex networks. Physical Review E, 88 (5): 050801, 2013.
[82]Cozzo, E., Kivelä, M., De Domenico, M., et al. Structure of triadic relations in multiplex networks. New Journal of Physics, 17 (7): 073029, 2015.
[83]Cozzo, E., De Arruda, G. F., Rodrigues, F. A., and Moreno, Y.. Multiplex networks: Basic formalism and structural properties. Springer, 2018.
[84]Criado, R., Flores, J., García del Amo, A., Gómez-Gardeñes, J., and Romance, M.. A mathematical model for networks with structures in the mesoscale. International Journal of Computer Mathematics, 89 (3): 291–309, 2012.
[85]Czaplicka, A., Toral, R., and San Miguel, M.. Competition of simple and complex adoption on interdependent networks. Physical Review E, 94 (6): 062301, 2016.
[86]O’Brien, J. D., Dassios, I. K., and Gleeson, J. P.. Spreading of memes on multiplex networks. New Journal of Physics, 21 (2): 025001, 2019.
[87]Danziger, M. M., Shekhtman, L. M., Bashan, A., Berezin, Y., and Havlin, S.. Vulnerability of interdependent networks and networks of networks. In Interconnected Networks, pages 79–99. Springer, 2016.
[88]Danziger, M. M., Bonamassa, I., Boccaletti, S., and Havlin, S.. Dynamic interdependence and competition in multilayer networks. Nature Physics, 15 (2): 178–185, 2019.
[89]de Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A., and Moreno, Y.. Disease localization in multilayer networks. Physical Review X, 7 (1): 011014, 2017.
[90]De Domenico, M.. Diffusion geometry unravels the emergence of functional clusters in collective phenomena. Physical Review Letters, 118 (16): 168301, 2017.
[91]De Domenico, M.. Multilayer modeling and analysis of human brain networks. GigaScience, 6 (5): 1–8, 2017.
[92]De Domenico, M.. Multilayer network modeling of integrated biological systems. Comment on “Network science of biological systems at different scales: A review” by Gosak et al. Physics of Life Reviews, 2018.
[94]De Domenico, M.. Multilayer networks: Analysis and visualization. Introduction to muxViz with R. Springer-Verlag, 2021.
[95]De Domenico, M. and Biamonte, J.. Spectral entropies as information-theoretic tools for complex network comparison. Physical Review X, 6 (4): 041062, 2016.
[96]De Domenico, M. et al. Complexity explained. OSF, 2019. osf.io/tqgnw. Accessed November 25, 2020. [97]De Domenico, M., Solé-Ribalta, A., Cozzo, E., et al. Mathematical formulation of multilayer networks. Physical Review X, 3 (4): 041022, 2013.
[98]De Domenico, M., Solé-Ribalta, A., Gómez, S., and Arenas, A.. Navigability of interconnected networks under random failures. PNAS, 111 (23): 8351–8356, 2014.
[99]De Domenico, M., Lancichinetti, A., Arenas, A., and Rosvall, M.. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Physical Review X, 5 (1): 011027, 2015.
[100]De Domenico, M., Nicosia, V., Arenas, A., and Latora, V.. Structural reducibility of multilayer networks. Nature Communications, 6: 6864, 2015.
[101]De Domenico, M., Porter, M. A., and Arenas, A.. MuxViz: A tool for multilayer analysis and visualization of networks. Journal of Complex Networks, 3 (2): 159–176, 2015.
[102]De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., and Arenas, A.. Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6: 6868, 2015.
[103]De Domenico, M., Granell, C., Porter, M. A., and Arenas, A.. The physics of spreading processes in multilayer networks. Nature Physics, 12 (10): 901, 2016.
[104]De Domenico, M., Sasai, S., and Arenas, A.. Mapping multiplex hubs in human functional brain networks. Frontiers in Neuroscience, 10: 326, 2016.
[105]Del Genio, C. I., J. Gómez-Gardeñes, Bonamassa, I., and Boccaletti, S.. Synchronization in networks with multiple interaction layers. Science Advances, 2 (11): 1–10, 2016.
[106]del Rio-Chanona, R. M., Korniyenko, Y., Patnam, M., and Porter, M. A.. The multiplex nature of global financial contagions. Applied Network Science, 5 (1): 1–23, 2020.
[107]Della Rossa, F., Pecora, L., Blaha, K., et al. Symmetries and cluster synchronization in multilayer networks. Nature Communications, 11 (1): 1–17, 2020.
[108]Diakonova, M., Nicosia, V., Latora, V., and San Miguel, M.. Irreducibility of multilayer network dynamics: The case of the voter model. New Journal of Physics, 18 (2): 023010, 2016.
[109]Dickison, M., Havlin, S., and Stanley, H. E.. Epidemics on interconnected networks. Physical Review E, 85 (6): 066109, 2012.
[110]Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F.. Critical phenomena in complex networks. Reviews of Modern Physics, 80 (4): 1275, 2008.
[111]Duh, M., Gosak, M., Slavinec, M., and Perc, M.. Assortativity provides a narrow margin for enhanced cooperation on multilayer networks. New Journal of Physics, 21: 123016, 2019.
[112]Edler, D., Bohlin, L., and Rosvall, M.. Mapping higher-order network flows in memory and multilayer networks with infomap. Algorithms, 10 (4): 112, 2017.
[113]Esquivel, A. V. and Rosvall, M.. Compression of flow can reveal overlapping-module organization in networks. Physical Review X, 1 (2): 021025, 2011.
[114]Estrada, E.. The structure of complex networks: Theory and applications. Oxford University Press, 2012.
[115]Estrada, E.. Communicability geometry of multiplexes. New Journal of Physics, 21 (1): 015004, 2019.
[116]Estrada, E. and Gómez-Gardeñes, J.. Communicability reveals a transition to coordinated behavior in multiplex networks. Physical Review E, 89 (4): 042819, 2014.
[118]Fortunato, S.. Community detection in graphs. Physics Reports, 486 (3–5): 75–174, 2010.
[119]Fortunato, S. and Barthelemy, M.. Resolution limit in community detection. PNAS, 104 (1): 36–41, 2007.
[120]Fortunato, S. and Hric, D.. Community detection in networks: A user guide. Physics Reports, 659: 1–44, 2016.
[121]Freeman, L. C., Borgatti, S. P., and White, D. R.. Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13 (2): 141–154, 1991.
[122]Funk, S., Gilad, E., Watkins, C., and Jansen, V. A. A.. The spread of awareness and its impact on epidemic outbreaks. PNAS, 106 (16): 6872–6877, 2009.
[123]Funk, S., Bansal, S., Bauch, C. T., et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics, 10: 21–25, 2015.
[124]Galimberti, E., Bonchi, F., Gullo, F., and Lanciano, T.. Core decomposition in multilayer networks: Theory, algorithms, and applications. ACM Transactions on Knowledge Discovery from Data (TKDD), 14 (1): 1–40, 2020.
[125]Gallotti, R. and Barthelemy, M.. Anatomy and efficiency of urban multimodal mobility. Scientific Reports, 4 (1): 1–9, 2014.
[126]Gallotti, R. and Barthelemy, M.. The multilayer temporal network of public transport in Great Britain. Scientific Data, 2 (1): 1–8, 2015.
[127]Gallotti, R., Bertagnolli, G., and De Domenico, M.. Unraveling the hidden organisation of urban systems and their mobility flows. EPJ Data Science, 10 (1): 1–17, 2021.
[128]Gambuzza, L. V., Frasca, M., and Gómez-Gardeñes, J.. Intra-layer synchronization in multiplex networks. Europhysics Letters, 110 (2): 20010, 2015.
[129]Gao, J., Buldyrev, S. V., Stanley, H. E., and Havlin, S.. Networks formed from interdependent networks. Nature Physics, 8 (1): 40, 2012.
[130]Gauvin, L., Panisson, A., and Cattuto, C.. Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach. PloS One, 9 (1): e86028, 2014.
[131]Ghavasieh, A. and De Domenico, M.. Enhancing transport properties in interconnected systems without altering their structure. Physical Review Research, 2: 013155, 2020.
[132]Ghavasieh, A., Nicolini, C., and De Domenico, M.. Statistical physics of complex information dynamics. Physical Review E, 102: 052304, 2020.
[133]Girvan, M. and Newman, M. E. J.. Community structure in social and biological networks. PNAS, 99 (12): 7821–7826, 2002.
[134]Goldenberg, A., Zheng, A. X., Fienberg, S. E., et al. A survey of statistical network models. Foundations and Trends® in Machine Learning, 2 (2): 129–233, 2010.
[135]Goldenfeld, N.. Lectures on phase transitions and the renormalization group. CRC Press, 2018.
[136]Gomez, S., Diaz-Guilera, A., Gomez-Gardenes, J., et al. Diffusion dynamics on multiplex networks. Physical Review Letters, 110 (2): 028701, 2013.
[137]Gómez-Gardeñes, J., Gómez, S., Arenas, A., and Y. Moreno. Explosive synchronization transitions in scale-free networks. Physical Review Letters, 106 (12): 1–6, 2011a.
[138]Gómez-Gardeñes, J., Romance, M., Criado, R., Vilone, D., and Sánchez, A.. Evolutionary games defined at the network mesoscale: The public goods game. Chaos, 21 (1): 1–10, 2011b.
[139]Gómez-Gardenes, J., Reinares, I., Arenas, A., and Floría, L. M.. Evolution of cooperation in multiplex networks. Scientific Reports, 2: 620, 2012.
[140]Gomez-Gardenes, J., de Domenico, M., Gutierrez, G., Arenas, A., and Gomez, S.. Layer-layer competition in multiplex complex networks. Philosophical Transactions of the Royal Society A, 373 (2056): 20150117, 2015.
[141]Granell, C., Gómez, S., and Arenas, A.. Dynamical interplay between awareness and epidemic spreading in multiplex networks. Physical Review Letters, 111 (12), 2013.
[142]Granell, C., Gómez, S., and Arenas, A.. Competing spreading processes on multiplex networks: Awareness and epidemics. Physical Review E, 90 (1): 012808, 2014.
[143]Grassberger, P.. Percolation transitions in the survival of interdependent agents on multiplex networks, catastrophic cascades, and solid-on-solid surface growth. Physical Review E, 91 (6): 062806, 2015.
[144]Guimera, R. and Amaral, L. A. N.. Functional cartography of complex metabolic networks. Nature, 433 (7028): 895, 2005.
[145]Hackett, A., Cellai, D., Gómez, S., Arenas, A., and Gleeson, J. P.. Bond percolation on multiplex networks. Physical Review X, 6 (2): 021002, 2016.
[146]Halu, A., Mondragón, R. J., P. Panzarasa, and G. Bianconi. Multiplex PageRank. PloS One, 8 (10): e78293, 2013.
[147]Holland, P. W., Laskey, K. B., and Leinhardt, S.. Stochastic blockmodels: First steps. Social Networks, 5 (2): 109–137, 1983.
[148]Holme, P.. Modern temporal network theory: A colloquium. European Physical Journal B, 88 (9): 234, 2015.
[149]Holme, P. and Saramäki, J.. Temporal networks. Physics Reports, 519 (3): 97–125, 2012.
[150]Hu, Y., Zhou, D., Zhang, R., et al. Percolation of interdependent networks with intersimilarity. Physical Review E, 88 (5): 052805, 2013.
[151]Hu, Y., Havlin, S., and Makse, H. A.. Conditions for viral influence spreading through multiplex correlated social networks. Physical Review X, 4 (2): 021031, 2014.
[152]Huang, X., Shao, S., Wang, H., et al. The robustness of interdependent clustered networks. Europhysics Letters, 101 (1): 18002, 2013a.
[153]Huang, X., Vodenska, I., Havlin, S., and Stanley, H. E.. Cascading failures in bi-partite graphs: Model for systemic risk propagation. Scientific Reports, 3: 1219, 2013b.
[154]Iacovacci, J., Rahmede, C., Arenas, A., and Bianconi, G.. Functional multiplex PageRank. Europhysics Letters, 116 (2): 28004, 2016.
[155]Jalan, S. and Singh, A.. Cluster synchronization in multiplex networks. Europhysics Letters, 113 (3): 2–7, 2016.
[156]Jang, S., Lee, J. S., Hwang, S., and Kahng, B.. Ashkin-Teller model and diverse opinion phase transitions on multiplex networks. Physical Review E, 92 (2): 022110, 2015.
[157]Jensen, H. J.. Self-organized criticality: Emergent complex behavior in physical and biological systems, volume 10. Cambridge University Press, 1998.
[158]Katz, L.. A new status index derived from sociometric analysis. Psychometrika, 18 (1): 39–43, 1953.
[159]Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the spread of influence through a social network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 137–146, 2003.
[160]Kenett, D. Y., Gao, J., Huang, X., et al. Network of interdependent networks: Overview of theory and applications. In Networks of Networks: The Last Frontier of Complexity, pages 3–36. Springer, 2014.
[161]Kivelä, M., Arenas, A., Barthelemy, M., et al. Multilayer networks. Journal of Complex Networks, 2 (3): 203–271, 2014.
[162]Kleinberg, J. M.. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46 (5): 604–632, 1999.
[163]Kleineberg, K. K. and Helbing, D.. Topological enslavement in evolutionary games on correlated multiplex networks. New Journal of Physics, 20 (5), 2018.
[164]Kolda, T. G. and Bader, B. W.. Tensor decompositions and applications. SIAM Review, 51 (3): 455–500, 2009.
[165]Kouvaris, N. E., Hata, S., and Díaz-Guilera, A.. Pattern formation in multiplex networks. Scientific Reports, 5 (1): 1–9, 2015.
[166]Kryven, I.. Bond percolation in coloured and multiplex networks. Nature Communications, 10 (1): 1–16, 2019.
[167]Lacasa, L., Mariño, I. P., Miguez, J., et al. Multiplex decomposition of non-Markovian dynamics and the hidden layer reconstruction problem. Physical Review X, 8 (3): 031038, 2018.
[168]Lacasa, L., Stramaglia, S., and Marinazzo, D.. Beyond pairwise network similarity: Exploring mediation and suppression between networks. Communications Physics, 4 (1): 1–8, 2021.
[169]Lambiotte, R., Delvenne, J.-C., and Barahona, M.. Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Transactions on Network Science and Engineering, 1 (2): 76–90, 2014.
[170]Lambiotte, R., Rosvall, M., and Scholtes, I.. From networks to optimal higher-order models of complex systems. Nature Physics, 15 (4): 313–320, 2019.
[171]Latora, V. and Marchiori, M.. Efficient behavior of small-world networks. Physical Review Letters, 87 (19): 198701, 2001.
[172]Latora, V. and Marchiori, M.. Economic small-world behavior in weighted networks. European Physical Journal B, 32 (2): 249–263, 2003.
[173]Latora, V., Nicosia, V., and Russo, G.. Complex networks: Principles, methods and applications. Cambridge University Press, 2017.
[174]Lee, K.-M., Goh, K.-I., and Kim, I.-M.. Sandpiles on multiplex networks. Journal of the Korean Physical Society, 60 (4): 641–647, 2012 a.
[175]Lee, K.-M., Kim, J. Y., Cho, W.-k., Goh, K.-I., and Kim., I. M. Correlated multiplexity and connectivity of multiplex random networks. New Journal of Physics, 14 (3): 033027, 2012 b.
[176]Lee, K.-M., Min, B., and Goh, K.-I.. Towards real-world complexity: An introduction to multiplex networks. European Physical Journal B, 88 (2): 48, 2015.
[177]Leicht, E. A. and D’Souza, R. M.. Percolation on interacting networks. arXiv:0907.0894, 2009.
[178]Leyva, I., Navas, A., Sendiña-Nadal, I., et al. Explosive transitions to synchronization in networks of phase oscillators. Scientific Reports, 3: 1–5, 2013.
[179]Leyva, I., Sendiña-Nadal, I., Sevilla-Escoboza, R., et al. Relay synchronization in multiplex networks. Scientific Reports, 8, 2018.
[180]Li, W., Bashan, A., Buldyrev, S. V., Stanley, H. E., and Havlin, S.. Cascading failures in interdependent lattice networks: The critical role of the length of dependency links. Physical Review Letters, 108 (22): 228702, 2012.
[181]Lima, A., De Domenico, M., Pejovic, V., and Musolesi, M.. Exploiting cellular data for disease containment and information campaigns strategies in country-wide epidemics. In Proc. of 3rd Intern. Conf. on the Analysis of Mobile Phone Datasets, Boston, USA, page 1. NETMOB, 2013.
[182]Lima, A., De Domenico, M., Pejovic, V., and Musolesi, M.. Disease containment strategies based on mobility and information dissemination. Scientific Reports, 5: 10650, 2015.
[183]Louf, R. and Barthelemy, M.. Patterns of residential segregation. PloS One, 11 (6): e0157476, 2016.
[184]Magnani, M., Micenkova, B., and Rossi, L.. Combinatorial analysis of multiple networks. arXiv:1303.4986, 2013.
[185]Mantel, N.. The detection of disease clustering and a generalized regression approach. Cancer Research, 27 (2 Part 1): 209–220, 1967.
[186]Martens, E. A., Barreto, E., Strogatz, S. H., et al. Exact results for the Kuramoto model with a bimodal frequency distribution. Physical Review E, 79 (2): 026204, 2009.
[187]Massaro, E. and Bagnoli, F.. Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method. Physical Review E, 90 (5): 052817, 2014.
[188]Masuda, N., Porter, M. A., and Lambiotte., R. Random walks and diffusion on networks. Physics Reports, 2017.
[189]Matamalas, J. T., Poncela-Casasnovas, J., Gómez, S., and Arenas, A.. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks. Scientific Reports, 5: 9519, 2015.
[190]Menichetti, G., Remondini, D., Panzarasa, P., Mondragón, R. J., and Bianconi, G.. Weighted multiplex networks. PloS One, 9 (6): e97857, 2014.
[191]Migliano, A. B., Page, A. E., Gómez-Gardeñes, J., et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nature Human Behaviour, 1 (2): 1–6, 2017.
[192]Min, B. and Goh, K.-I.. Multiple resource demands and viability in multiplex networks. Physical Review E, 89 (4): 040802, 2014.
[193]Min, B., Do Yi, S., Lee, K.-M., and Goh, K.-I.. Network robustness of multiplex networks with interlayer degree correlations. Physical Review E, 89 (4): 042811, 2014.
[194]Min, B., Lee, S., Lee, K.-M., and Goh, K.-I.. Link overlap, viability, and mutual percolation in multiplex networks. Chaos, Solitons & Fractals, 72: 49–58, 2015.
[195]Molloy, M. and Reed, B.. A critical point for random graphs with a given degree sequence. Random Structures & Algorithms, 6 (2–3): 161–180, 1995.
[196]Morris, R. G. and Barthelemy, M.. Transport on coupled spatial networks. Physical Review Letters, 109 (12): 128703, 2012.
[197]Motter, A. E. and Lai, Y.-C.. Cascade-based attacks on complex networks. Physical Review E, 66 (6): 065102, 2002.
[198]Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P.. Community structure in time-dependent, multiscale, and multiplex networks. Science, 328 (5980): 876–878, 2010.
[199]Nelson, D. R.. Recent developments in phase transitions and critical phenomena. Nature, 269 (5627): 379–383, 1977.
[200]North American Electric Reliability Council Steering Group. Technical a Analysis of the August 14, 2003, blackout: What happened, why, and what did we learn? Technical report, NERC, 2004. Report to the North American Electric Reliability Council Board of Trustees.
[201]Newman, M. E. J.. Modularity and community structure in networks. PNAS, 103 (23): 8577–8582, 2006.
[202]Newman, M. E. J.. Communities, modules and large-scale structure in networks. Nature Physics, 8 (1): 25, 2012.
[203]Newman, M. E. J.. Networks. Oxford University Press, 2018.
[204]Newman, M. E. J., Strogatz, S. H., and Watts, D. J.. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64 (2): 026118, 2001.
[205]Nicosia, V. and Latora, V.. Measuring and modeling correlations in multiplex networks. Physical Review E, 92 (3): 032805, 2015.
[206]Nicosia, V., Bianconi, G., Latora, V., and Barthelemy, M.. Growing multiplex networks. Physical Review Letters, 111: 058701, 2013a.
[207]Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A., and Latora, V.. Remote synchronization reveals network symmetries and functional modules. Physical Review Letters, 110 (17): 1–5, 2013b.
[208]Nicosia, V., Skardal, P. S., Arenas, A., and Latora, V.. Collective phenomena emerging from the interactions between dynamical processes in multiplex networks. Physical Review Letters, 118 (13): 138302, 2017.
[209]Noh, J. D. and Rieger, H.. Random walks on complex networks. Physical Review Letters, 92 (11): 118701, 2004.
[210]North American Electric Reliability Council. 1996 system disturbances. Review of selected 1996 electric system disturbances in North America. Technical report, North American Electric Reliability Council, 2002.
[211]Nowak, M. A. and May, R. M.. Evolutionary games and spatial chaos. Nature, 359: 826–829, 1992.
[212]Nowak, M. A., Tarnita, C. E., and Antal, T.. Evolutionary dynamics in structured populations. Philosophical Transactions of the Royal Society B, 365 (1537): 19–30, 2010.
[213]Nowicki, K. and Snijders, T. A. B.. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96 (455): 1077–1087, 2001.
[214]Osat, S., Faqeeh, A., and Radicchi, F.. Optimal percolation on multiplex networks. Nature Communications, 8 (1): 1540, 2017.
[215]Page, L., Brin, S., Motwani, R., and Winograd, T.. The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford InfoLab, 1999.
[216]Pamfil, A. R., Howison, S. D., Lambiotte, R., and Porter, M. A.. Relating modularity maximization and stochastic block models in multilayer networks. SIAM Journal on Mathematics of Data Science, 1 (4): 667–698, 2019.
[217]Pamfil, A. R., Howison, S. D., and Porter, M. A.. Inference of edge correlations in multilayer networks. Physical Review E, 102 (6): 062307, 2020.
[218]Parshani, R., Buldyrev, S. V., and Havlin, S.. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Physical Review Letters, 105 (4): 048701, 2010.
[219]Pecora, L. M. and Carroll, T. L.. Master stability functions for synchronized coupled systems. Physical Review Letters, 80 (10): 2109–2112, 1998.
[220]Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., and Roy, R.. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nature Communications, 5 (May), 2014.
[221]Peixoto, T. P.. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Physical Review E, 92 (4): 042807, 2015.
[222]Peixoto, T. P.. Nonparametric Bayesian inference of the microcanonical stochastic block model. Physical Review E, 95 (1): 012317, 2017.
[223]Peixoto, T. P.. Bayesian stochastic blockmodeling. In Advances in network clustering and blockmodeling, Wiley, pages 289–332. 2019.
[224]Perc, M., Jordan, J. J., Rand, D. G., et al. Statistical physics of human cooperation. Physics Reports, 687: 1–51, 2017.
[225]Pilosof, S., Porter, M. A., Pascual, M., and Kéfi, S.. The multilayer nature of ecological networks. Nature Ecology & Evolution, 1 (4): 0101, 2017.
[226]Pons, P. and Latapy, M.. Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10 (2): 191–218, 2006.
[227]Pósfai, M., Gao, J., Cornelius, S. P., Barabási, A.-L., and D’Souza, R. M.. Controllability of multiplex, multi-time-scale networks. Physical Review E, 94 (3): 032316, 2016.
[228]Pósfai, M., Braun, N., Beisner, B. A., McCowan, B., and D’Souza, R. M.. Consensus ranking for multi-objective interventions in multiplex networks. New Journal of Physics, 21 (5): 055001, 2019.
[229]Qin, T. and Rohe, K.. Regularized spectral clustering under the degree-corrected stochastic blockmodel. In Advances in neural information processing systems, vol. 2, pages 3120–3128, Curran Associates, 2013.
[230]Radicchi, F.. Percolation in real interdependent networks. Nature Physics, 11 (7): 597–602, 2015.
[231]Radicchi, F. and Arenas, A.. Abrupt transition in the structural formation of interconnected networks. Nature Physics, 9 (11): 717, 2013.
[232]Radicchi, F. and Bianconi, G.. Redundant interdependencies boost the robustness of multiplex networks. Physical Review X, 7: 011013, 2017.
[233]Ramezanian, R., Magnani, M., Salehi, M., and Montesi, D.. Diffusion of innovations over multiplex social networks. In International Symposium on Artificial Intelligence and Signal Processing (AISP), pages 300–304. Institute of Electrical and Electronics Engineers, 2015.
[234]Reis, S. D. S., Hu, Y., Babino, A., et al. Avoiding catastrophic failure in correlated networks of networks. Nature Physics, 10 (10): 762, 2014.
[235]Requejo, R. J. and Díaz-Guilera, A.. Replicator dynamics with diffusion on multiplex networks. Physical Review E, 94 (2): 022301, 2016.
[236]Rosato, V., Issacharoff, L., Tiriticco, F., et al. Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4 (1–2): 63–79, 2008.
[237]Rosvall, M. and Bergstrom, C. T.. An information-theoretic framework for resolving community structure in complex networks. PNAS, 104 (18): 7327–7331, 2007.
[238]Rosvall, M. and Bergstrom, C. T.. Maps of random walks on complex networks reveal community structure. PNAS, 105 (4): 1118–1123, 2008.
[239]Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., and Lambiotte, R.. Memory in network flows and its effects on spreading dynamics and community detection. Nature Communications, 5: 4630, 2014.
[240]Rubinov, M. and Sporns, O.. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52 (3): 1059–1069, 2010.
[241]Saa, A.. Symmetries and synchronization in multilayer random networks. Physical Review E, 97 (4): 042304, 2018.
[242]Sahneh, F. D., Scoglio, C., and Van Mieghem, P.. Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Transactions on Networking (TON), 21 (5): 1609–1620, 2013.
[243]Salehi, M., Sharma, R., Marzolla, M., et al. Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2 (2): 65–83, 2015.
[244]Salnikov, V., Schaub, M. T., and Lambiotte, R.. Using higher-order Markov models to reveal flow-based communities in networks. Scientific Reports, 6: 23194, 2016.
[245]Santoro, A. and Nicosia, V.. Optimal percolation in correlated multilayer networks with overlap. Physical Review Research, 2 (3): 033122, 2020.
[246]Santoro, A., Latora, V., Nicosia, G., and Nicosia, V.. Pareto optimality in multilayer network growth. Physical Review Letters, 121 (12): 128302, 2018.
[247]Santos, F. C., Pacheco, J. M., and Lenaerts, T.. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS, 103 (9): 3490–3494, 2006.
[248]Santos, F. C., Santos, M. D., and Pacheco, J. M.. Social diversity promotes the emergence of cooperation in public goods games. Nature, 454 (7201): 213–216, 2008.
[249]Sanz, J., Xia, C.-Y., Meloni, S., and Moreno, Y.. Dynamics of interacting diseases. Physical Review X, 4 (4): 041005, 2014.
[250]Schneider, C. M., Yazdani, N., Araújo, N. A. M., Havlin, S., and Herrmann, H. J.. Towards designing robust coupled networks. Scientific Reports, 3: 1969, 2013.
[251]Scott, J.. Popularity, mediation and exclusion. In Social network analysis, pages 95–112, Sage, 2017.
[252]Seidman, S. B.. Network structure and minimum degree. Social Networks, 5 (3): 269–287, 1983.
[253]Shekhtman, L. M., Danziger, M. M., and Havlin, S.. Recent advances on failure and recovery in networks of networks. Chaos, Solitons & Fractals, 90: 28–36, 2016.
[254]Singh, A., Ghosh, S., Jalan, S., and Kurths, J.. Synchronization in delayed multiplex networks. Europhysics Letters, 111 (3): 30010, 2015.
[255]Skardal, P. S. and Arenas, A.. Control of coupled oscillator networks with application to microgrid technologies. Science Advances, 1 (7): e1500339, 2015.
[256]Snijders, T. A. B. and Nowicki, K.. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14 (1): 75–100, 1997.
[257]Solá, L., Romance, M., Criado, R., et al. Eigenvector centrality of nodes in multiplex networks. Chaos, 23 (3): 033131, 2013.
[258]Sole-Ribalta, A., De Domenico, M., Kouvaris, N. E., et al. Spectral properties of the Laplacian of multiplex networks. Physical Review E, 88 (3): 032807, 2013.
[259]Solé-Ribalta, A., De Domenico, M., Gómez, S., and Arenas, A.. Centrality rankings in multiplex networks. In Proceedings of the 2014 ACM Conference on Web Science, pages 149–155. Association for Computing Machinery, 2014.
[260]Solé-Ribalta, A., De Domenico, M., Gómez, S., and Arenas, A.. Random walk centrality in interconnected multilayer networks. Physica D, 323: 73–79, 2016.
[261]Solé-Ribalta, A., Gómez, S., and Arenas, A.. Congestion induced by the structure of multiplex networks. Physical Review Letters, 116 (10): 108701, 2016.
[262]Son, S.-W., Grassberger, P., and Paczuski, M.. Percolation transitions are not always sharpened by making networks interdependent. Physical Review Letters, 107 (19): 195702, 2011.
[263]Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., and Paczuski, M.. Percolation theory on interdependent networks based on epidemic spreading. Europhysics Letters, 97 (1): 16006, 2012.
[264]Soriano-Paños, D., Lotero, L., Arenas, A., and Gómez-Gardeñes, J.. Spreading processes in multiplex metapopulations containing different Mobility networks. Physical Review X, 8 (3): 031039, 2018.
[265]Sorrentino, F., Pecora, L. M., Hagerstrom, A. M., Murphy, T. E., and R. Roy. Complete characterization of the stability of cluster synchronization in complex dynamical networks. Science Advances, 2 (4): 1–9, 2016.
[266]Sporns, O.. Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23 (2): 162–171, 2013.
[267]Stanley, H. E.. Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Reviews of Modern Physics, 71 (2): S358, 1999.
[268]Stauffer, D. and Aharony, A.. Introduction to percolation theory. CRC Press, 2018.
[269]Stella, M., Beckage, N. M., Brede, M., and De Domenico, M.. Multiplex model of mental lexicon reveals explosive learning in humans. Scientific Reports, 8 (1): 2259, 2018.
[270]Strogatz, S. H.. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143 (1–4): 1–20, 2000.
[271]Tan, F., Wu, J., Xia, Y., and Chi, K. T.. Traffic congestion in interconnected complex networks. Physical Review E, 89 (6): 062813, 2014.
[272]Taylor, D., Shai, S., Stanley, N., and Mucha, P. J.. Enhanced detectability of community structure in multilayer networks through layer aggregation. Physical Review Letters, 116 (22): 228301, 2016.
[273]Taylor, D., Caceres, R. S., and Mucha, P. J.. Super-resolution community detection for layer-aggregated multilayer networks. Physical Review X, 7 (3): 031056, 2017.
[274]Taylor, D., Porter, M. A., and Mucha, P. J.. Tunable eigenvector-based centralities for multiplex and temporal networks. Multiscale Modeling & Simulation, 19 (1): 113–147, 2021.
[275]Tejedor, A., Longjas, A., Foufoula-Georgiou, E., Georgiou, T. T., and Moreno., Y. Diffusion dynamics and optimal coupling in multiplex networks with directed layers. Physical Review X, 8 (3): 031071, 2018.
[276]Tewarie, P., Hillebrand, A., van Dijk, B. W., et al. Integrating cross-frequency and within band functional networks in resting-state meg: A multi-layer network approach. Neuroimage, 142: 324–336, 2016.
[277]Timóteo, S., Correia, M., Rodríguez-Echeverría, S., Freitas, H., and Heleno, R.. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the great rift landscapes. Nature Communications, 9 (1): 140, 2018.
[278]Torreggiani, S., Mangioni, G., Puma, M. J., and G. Fagiolo. Identifying the community structure of the food-trade international multi-network. Environmental Research Letters, 13 (5): 054026, 2018.
[279]Traag, V. A.. Complex contagion of campaign donations. PloS One, 11 (4): e0153539, 2016.
[280]Trewavas, A.. A brief history of systems biology: “Every object that biology studies is a system of systems.” Francois Jacob (1974). The Plant Cell, 18 (10): 2420–2430, 2006.
[281]Tucker, L. R.. Some mathematical notes on three-mode factor analysis. Psychometrika, 31 (3): 279–311, 1966.
[282]Valdano, E., Ferreri, L., Poletto, C., and Colizza, V.. Analytical computation of the epidemic threshold on temporal networks. Physical Review X, 5 (2): 021005, 2015.
[283]Valdeolivas, A., Tichit, L., Navarro, C., et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics, 2018.
[284]Valdez, L. D., Shekhtman, L., La Rocca, C. E., et al. Cascading failures in complex networks. Journal of Complex Networks, 8 (2): cnaa013, 2020.
[285]Valles-Catala, T., Massucci, F. A., Guimera, R., and Sales-Pardo, M.. Multilayer stochastic block models reveal the multilayer structure of complex networks. Physical Review X, 6 (1): 011036, 2016.
[286]Velásquez-Rojas, F.. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times. Physical Review E, 95 (5): 052315, 2017.
[287]Vermeulen, R., Schymanski, E. L., Barabási, A.-L., and Miller, G. W.. The exposome and health: Where chemistry meets biology. Science, 367 (6476): 392–396, 2020.
[288]Verstraete, N., Jurman, G., Bertagnolli, G., et al. CovMulNet19, integrating proteins, diseases, drugs, and symptoms: A network medicine approach to COVID-19. Network and Systems Medicine, 3 (1): 130–141, 2020.
[289]Vespignani, A.. Complex networks: The fragility of interdependency. Nature, 464 (7291): 984, 2010.
[290]Voitalov, I., van der Hoorn, P., Kitsak, M., Papadopoulos, F., and Krioukov, D.. Weighted hypersoft configuration model. Physical Review Research, 2: 043157, 2020.
[291]Wang, H., Li, Q., D’Agostino, G., et al. Effect of the interconnected network structure on the epidemic threshold. Physical Review E, 88 (2): 022801, 2013.
[292]Wang, X., Li, W., Liu, L., et al. Promoting information diffusion through interlayer recovery processes in multiplex networks. Physical Review E, 96 (3): 032304, 2017.
[293]Wang, Z., Wang, L., and Perc, M.. Degree mixing in multilayer networks impedes the evolution of cooperation. Physical Review E, 89: 052813, 2014.
[294]Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L., and Bauch, C. T.. Coupled disease–behavior dynamics on complex networks: A review. Physics of Life Reviews, 15: 1–29, 2015a.
[295]Wang, Z., Wang, L., Szolnoki, A., and Perc, M.. Evolutionary games on multilayer networks: A colloquium. European Physical Journal B, 88 (5): 1–15, 2015b.
[296]Watts, D. J.. A simple model of global cascades on random networks. PNAS, 99 (9): 5766–5771, 2002.
[297]Watts, D. J. and Strogatz, S. H.. Collective dynamics of small-world networks. Nature, 393 (6684): 440, 1998.
[298]Williamson, B. J., De Domenico, M., and Kadis, D. S.. Multilayer connector hub mapping reveals key brain regions supporting expressive language. Brain Connectivity, 11 (1): 45–55, 2021.
[299]Wu, H., James, R. G., and D’Souza, R. M.. Correlated structural evolution within multiplex networks. Journal of Complex Networks, 8 (2): cnaa014, 2020.
[300]Wu, Q., Fu, X., Small, M., and Xu, X.-J.. The impact of awareness on epidemic spreading in networks. Chaos, 22 (1): 013101, 2012.
[301]Yagan, O. and Gligor, V.. Analysis of complex contagions in random multiplex networks. Physical Review E, 86 (3): 036103, 2012.
[302]Yamamoto, H., Moriya, S., Ide, K., et al. Impact of modular organization on dynamical richness in cortical networks. Science Advances, 4 (11): eaau4914, 2018.
[303]Yuan, Z., Zhao, C., Wang, W.-X., Di, Z., and Lai, Y.-C.. Exact controllability of multiplex networks. New Journal of Physics, 16 (10): 103036, 2014.
[304]Zachary, W. W.. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33 (4): 452–473, 1977.
[305]Zhang, X., Boccaletti, S., Guan, S., and Liu, Z.. Explosive synchronization in adaptive and multilayer networks. Physical Review Letters, 114 (3): 1–5, 2015.
[306]Zhang, Y., Latora, V., and Motter, A. E.. Unified treatment of dynamical processes on generalized networks: Higher-order, multilayer, and temporal interactions. arXiv:2010.00613, 2020.
[307]Zhao, D.-W., Wang, L.-H., Zhi, Y.-F., Zhang, J., and Wang, Z.. The robustness of multiplex networks under layer node-based attack. Scientific Reports, 6: 24304, 2016.
[308]Zhao, K. and Bianconi, G.. Percolation on interacting, antagonistic networks. Journal of Statistical Mechanics, 2013 (05): P05005, 2013.
[309]Artime, O. and De Domenico, M.. From the origin of life to pandemics: Emergent phenomena in complex systems. Philosophical Transactions of the Royal Society A, 380 (2227): 20200410, 2022.