Skip to main content Accessibility help
×
  • Cited by 23
  • Oriol Artime, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Barbara Benigni, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Giulia Bertagnolli, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Valeria d'Andrea, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Riccardo Gallotti, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Arsham Ghavasieh, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Sebastian Raimondo, Complex Multilayer Networks Lab, Fondazione Bruno Kessler, Italy, Manlio De Domenico, Complex Multilayer Networks Lab, Fondazione Bruno Kessler and University of Padova, Italy
Publisher:
Cambridge University Press
Online publication date:
August 2022
Print publication year:
2022
Online ISBN:
9781009085809

Book description

Networks are convenient mathematical models to represent the structure of complex systems, from cells to societies. In the last decade, multilayer network science – the branch of the field dealing with units interacting in multiple distinct ways, simultaneously – was demonstrated to be an effective modeling and analytical framework for a wide spectrum of empirical systems, from biopolymers networks (such as interactome and metabolomes) to neuronal networks (such as connectomes), from social networks to urban and transportation networks. In this Element, a decade after one of the most seminal papers on this topic, the authors review the most salient features of multilayer network science, covering both theoretical aspects and direct applications to real-world coupled/interdependent systems, from the point of view of multilayer structure, dynamics and function. The authors discuss potential frontiers for this topic and the corresponding challenges in the field for the next future.

References

[1], L. G. Alves, A., Mangioni, G., Rodrigues, F. A., Panzarasa, P., and Moreno., Y. Unfolding the complexity of the global value chain: Strength and entropy in the single-layer, multiplex, and multi-layer international trade networks. Entropy, 20 (12): 909, 2018.
[2]Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F., and Spigler, R.. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77 (1): 137, 2005.
[3]Achard, S. and Bullmore, E.. Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3 (2): e17, 2007.
[4]Adamic, L. A. and Adar, E.. Friends and neighbors on the Web. Social Networks, 25 (3): 211230, 2003.
[5]Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P.. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9: 19812014, 2008.
[6]Akbarzadeh, M. and Estrada, E.. Communicability geometry captures traffic flows in cities. Nature Human Behaviour, 2 (9): 645652, 2018.
[7]Albert, R., Jeong, H., and Barabási, A.-L.. Error and attack tolerance of complex networks. Nature, 406 (6794): 378, 2000.
[8]Aleta, A., Tuninetti, M., Paolotti, D., Moreno, Y., and Starnini, M.. Link prediction in multiplex networks via triadic closure. Physical Review Research, 2 (4): 042029, 2020.
[9]Alves, L. G. A., Mangioni, G., Cingolani, I., Rodrigues, F. A., Panzarasa, P., and Moreno, Y.. The nested structural organization of the worldwide trade multi-layer network. Scientific Reports, 9 (1): 114, 2019.
[10]Amato, R., Díaz-Guilera, A., and Kleineberg, K.-K.. Interplay between social influence and competitive strategical games in multiplex networks. Scientific Reports, 7 (1): 18, 2017.
[11]Amato, R., Kouvaris, N. E., San Miguel, M., and Díaz-Guilera, A.. Opinion competition dynamics on multiplex networks. New Journal of Physics, 19 (12): 123019, 2017.
[12]Amelio, A., Mangioni, G., and Tagarelli, A.. Modularity in multilayer networks using redundancy-based resolution and projection-based inter-layer coupling. IEEE Transactions on Network Science and Engineering, 7(3):11981214, 1 July–Sept. 2020. https://doi.org/10.1109/TNSE.2019.2913325.
[13]Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. M.. A tensor approach to learning mixed membership community models. Journal of Machine Learning Research, 15 (1): 22392312, 2014.
[14]Anderson, P. W.. More is different. Science, 177 (4047): 393396, 1972.
[15]Antonopoulos, C. G. and Shang, Y.. Opinion formation in multiplex networks with general initial distributions. Scientific Reports, 8 (1): 2852, 2018.
[16]Arenas, A., Díaz-Guilera, A., and Pérez-Vicente, C. J.. Synchronization reveals topological scales in complex networks. Physical Review Letters, 96: 114102, 2006.
[17]Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C.. Synchronization in complex networks. Physics Reports, 469(3):93153, 2008a. https://doi.org/10.1016/j.physrep.2008.09.002
[18]Arenas, A., Fernandez, A., and Gomez, S.. Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10 (5): 053039, 2008b.
[19]Artime, O. and De Domenico, M.. Abrupt transition due to non-local cascade propagation in multiplex systems. New Journal of Physics, 22 (9): 093035, 2020.
[20]Artime, O. and De Domenico., M. Percolation on feature-enriched interconnected systems. Nature Communications, 12 (1): 112, 2021.
[21]Artime, O., Fernández-Gracia, J., Ramasco, J. J., and San Miguel, M.. Joint effect of ageing and multilayer structure prevents ordering in the voter model. Scientific Reports, 7 (1): 7166, 2017.
[22]Artime, O., d’Andrea, V., Gallotti, R., Sacco, P. L., and De Domenico, M.. Effectiveness of dismantling strategies on moderated vs. unmoderated online social platforms. Scientific Reports, 10 (1): 111, 2020.
[23]Aslak, U., Rosvall, M., and Lehmann, S.. Constrained information flows in temporal networks reveal intermittent communities. Physical Review E, 97 (6): 062312, 2018.
[24]Asllani, M., Busiello, D. M., Carletti, T., Fanelli, D., and Planchon, G.. Turing patterns in multiplex networks. Physical Review E, 90 (4): 042814, 2014.
[25]Asllani, M., Busiello, D. M., Carletti, T., Fanelli, D., and Planchon, G.. Turing instabilities on Cartesian product networks. Scientific Reports, 5 (1): 110, 2015.
[26]Azimi-Tafreshi, N.. Cooperative epidemics on multiplex networks. Physical Review E, 93 (4): 042303, 2016.
[27]Azimi-Tafreshi, N., Gómez-Gardenes, J., and Dorogovtsev, S. N.. k—Core percolation on multiplex networks. Physical Review E, 90 (3): 032816, 2014.
[28]Baggio, J. A., BurnSilver, S. B., Arenas, A., Magdanz, J. S., Kofinas, G. P., and De Domenico, M.. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proceedings of the National Academy of Sciences, 113 (48): 1370813713, 2016.
[29]Bak, P., Tang, C., and Wiesenfeld., K. Self-organized criticality. Physical Review A, 38 (1): 364, 1988.
[30]Barabási, A.-L. and Pósfai, M.. Network science. Cambridge University Press, 2016.
[31]Barrat, A., Barthelemy, M., and Vespignani, A.. Dynamical processes on complex networks. Cambridge University Press, 2008.
[32]Bashan, A., Berezin, Y., Buldyrev, S. V., and Havlin, S.. The extreme vulnerability of interdependent spatially embedded networks. Nature Physics, 9 (10): 667672, 2013.
[33]Bassett, D. S. and Sporns, O.. Network neuroscience. Nature Neuroscience, 20 (3): 353, 2017.
[34]Battiston, F., Nicosia, V., and Latora, V.. Structural measures for multiplex networks. Physical Review E, 89 (3): 032804, 2014.
[35]Battiston, F., Nicosia, V., and Latora, V.. Efficient exploration of multiplex networks. New Journal of Physics, 18 (4): 043035, 2016.
[36]Battiston, F., Nicosia, V., and Latora, V.. The new challenges of multiplex networks: measures and models. European Physical Journal Special Topics, 226 (3): 401416, 2017a.
[37]Battiston, F., Perc, M., and Latora, V.. Determinants of public cooperation in multiplex networks. New Journal of Physics, 19 (7): 073017, 2017b.
[38]Battiston, F., Cencetti, G., Iacopini, I., et al. Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 874:192, 2020.
[39]Baxter, G. J., Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F.. Avalanche collapse of interdependent networks. Physical Review Letters, 109 (24): 248701, 2012.
[40]Baxter, G. J., Bianconi, G., da Costa, R. A., Dorogovtsev, S. N., and Mendes, J. F. F.. Correlated edge overlaps in multiplex networks. Physical Review E, 94 (1): 012303, 2016.
[41]Bazzi, M., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., and Howison, S. D.. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Modeling & Simulation, 14 (1): 141, 2016.
[42]Bazzi, M., Jeub, L. G. S., Arenas, A., Howison, S. D., and Porter, M. A.. A framework for the construction of generative models for mesoscale structure in multilayer networks. Physical Review Research, 2 (2): 023100, 2020.
[43]Beisner, B., Braun, N., Pósfai, M., Vandeleest, J., D’Souza, R., and McCowan, B.. A multiplex centrality metric for complex social networks: Sex, social status, and family structure predict multiplex centrality in rhesus macaques. PeerJ, 8: e8712, 2020.
[44]Bentley, B., Branicky, R., Barnes, C. L., et al. The multilayer connectome of Caenorhabditis elegans. PLoS Computational Biology, 12 (12): 1005283, 2016.
[45]Berezin, Y., Bashan, A., and Havlin, S.. Comment on “Percolation transitions are not always sharpened by making networks interdependent.Physical Review Letters, 111 (18): 189601, 2013.
[46]Bertagnolli, G. and De Domenico, M.. Diffusion geometry of multiplex and interdependent systems. Physical Review E, 103: 042301, 2021.
[47]Bertagnolli, G., Gallotti, R., and De Domenico, M.. Quantifying efficient information exchange in real network flows. Communications Physics, 4 (1): 110, 2021.
[48]Biamonte, J., Faccin, M., and De Domenico, M.. Complex networks from classical to quantum. Communications Physics, 2 (1): 110, 2019.
[49]Bianconi, G.. Statistical mechanics of multiplex networks: Entropy and overlap. Physical Review E, 87: 062806, 2013.
[50]Bianconi, G.. Epidemic spreading and bond percolation on multilayer networks. Journal of Statistical Mechanics, 2017 (3): 034001, 2017.
[51]Bianconi, G.. Multilayer networks: Structure and function. Oxford University Press, 2018.
[52]Bianconi, G. and Radicchi, F.. Percolation in real multiplex networks. Physical Review E, 94 (6): 060301, 2016.
[53]Boccaletti, S., Bianconi, G., Criado, R., et al. The structure and dynamics of multilayer networks. Physics Reports, 544 (1): 1122, 2014.
[54]Boccaletti, S., Pisarchik, A. N., del Genio, C. I., and Amann, A.. Synchronization. Cambridge University Press, 2018.
[55]Boguñá, M., Krioukov, D., and Claffy, K. C.. Navigability of complex networks. Nature Physics, 5 (1): 74, 2009.
[56]Boguñá, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D., and M. Á. Serrano. Network geometry. Nature Reviews Physics, 3:114135, 2021.
[57]Bonacich, P.. Power and centrality: A family of measures. American Journal of Sociology, 92 (5): 11701182, 1987.
[58]Borgatti, S. P. and Everett, M. G.. A graph-theoretic perspective on centrality. Social Networks, 28 (4): 466484, 2006.
[59]Bosetti, P., Poletti, P., Stella, M., Lepri, B., Merler, S., and De Domenico, M.. Heterogeneity in social and epidemiological factors determines the risk of measles outbreaks. PNAS, 117:30118, 2020.
[60]Bottcher, L. and Porter, M. A.. Classical and quantum random-walk centrality measures in multilayer networks. arxiv preprint arXiv:2012. 07157, 2020.
[61]Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B., and Gross., T. Master stability functions reveal diffusion-driven pattern formation in networks. Physical Review E, 97 (3), 2018.
[62]Brin, S. and Page, L.. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30 (1–7): 107117, 1998.
[63]Bródka, P., Chmiel, A., Magnani, M., and Ragozini, G.. Quantifying layer similarity in multiplex networks: A systematic study. Royal Society Open Science, 5 (8): 171747, 2018.
[64]Brummitt, C. D., D’Souza, R. M., and Leicht, E. A.. Suppressing cascades of load in interdependent networks. PNAS, 109 (12): E680E689, 2012 a.
[65]Brummitt, C. D., Lee, K.-M., and Goh, K.-I.. Multiplexity-facilitated cascades in networks. Physical Review E, 85 (4): 045102, 2012 b.
[66]Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A., and Ursino, D.. Measuring betweenness centrality in social internetworking scenarios. In Demey, Y. T. and Panetto, H. (eds.), On the move to meaningful internet systems: OTM 2013 Workshops. OTM 2013. Lecture Notes in Computer Science, vol. 8186. Springer, 2013. https://doi.org/10.1007/978-3-642-41033-8_84
[67]Buendía, V., Villegas, P., Burioni, R., and Muñoz, M. A.. The broad edge of synchronisation: Griffiths effects and collective phenomena in brain networks. arXiv preprint arXiv:2109.11783, 2021.
[68]Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S.. Catastrophic cascade of failures in interdependent networks. Nature, 464 (7291): 10251028, 2010.
[69]Buono, C., Alvarez-Zuzek, L. G., Macri, P. A., and Braunstein, L. A.. Epidemics in partially overlapped multiplex networks. PloS One, 9 (3): e92200, 2014.
[70]Burda, Z., Duda, J., Luck, J.-M., and Waclaw, B.. Localization of the maximal entropy random walk. Physical Review Letters, 102 (16): 160602, 2009.
[71]Busiello, D. M., Carletti, T., and Fanelli, D.. Homogeneous-per-layer patterns in multiplex networks. Europhysics Letters, 121 (4): 48006, 2018.
[72]Carchiolo, V., Longheu, A., Malgeri, M., and Mangioni, G.. Communities unfolding in multislice networks. In Complex Networks, pages 187195. Springer, 2011.
[73]Cardillo, A., Gómez-Gardeñes, J., Zanin, M., et al. Emergence of network features from multiplexity. Scientific Reports, 3 (1), 2013.
[74]Cellai, D., López, E., Zhou, J., Gleeson, J. P., and Bianconi, G.. Percolation in multiplex networks with overlap. Physical Review E, 88 (5): 052811, 2013.
[75]Cellai, D., Dorogovtsev, S. N., and Bianconi, G.. Message passing theory for percolation models on multiplex networks with link overlap. Physical Review E, 94 (3): 032301, 2016.
[76]Centola, D.. The social origins of networks and diffusion. American Journal of Sociology, 120 (5): 12951338, 2015.
[77]Chodrow, P. S., Al-Awwad, Z., Jiang, S., and González, M. C.. Demand and congestion in multiplex transportation networks. PloS One, 11 (9): e0161738, 2016.
[78]Chung, F. R. K.. Spectral graph theory. 2nd edition. American Mathematical Society, 1997.
[79]Cimini, G., Squartini, T., Saracco, F., et al. The statistical physics of real-world networks. Nature Reviews Physics, 1 (1): 5871, 2019.
[80]Cohen, R., Erez, K., Ben-Avraham, D., and Havlin, S.. Breakdown of the Internet under intentional attack. Physical Review Letters, 86 (16): 3682, 2001.
[81]Cozzo, E., Baños, R. A., Meloni, S., and Moreno, Y.. Contact-based social contagion in multiplex networks. Physical Review E, 88 (5): 050801, 2013.
[82]Cozzo, E., Kivelä, M., De Domenico, M., et al. Structure of triadic relations in multiplex networks. New Journal of Physics, 17 (7): 073029, 2015.
[83]Cozzo, E., De Arruda, G. F., Rodrigues, F. A., and Moreno, Y.. Multiplex networks: Basic formalism and structural properties. Springer, 2018.
[84]Criado, R., Flores, J., García del Amo, A., Gómez-Gardeñes, J., and Romance, M.. A mathematical model for networks with structures in the mesoscale. International Journal of Computer Mathematics, 89 (3): 291309, 2012.
[85]Czaplicka, A., Toral, R., and San Miguel, M.. Competition of simple and complex adoption on interdependent networks. Physical Review E, 94 (6): 062301, 2016.
[86]O’Brien, J. D., Dassios, I. K., and Gleeson, J. P.. Spreading of memes on multiplex networks. New Journal of Physics, 21 (2): 025001, 2019.
[87]Danziger, M. M., Shekhtman, L. M., Bashan, A., Berezin, Y., and Havlin, S.. Vulnerability of interdependent networks and networks of networks. In Interconnected Networks, pages 7999. Springer, 2016.
[88]Danziger, M. M., Bonamassa, I., Boccaletti, S., and Havlin, S.. Dynamic interdependence and competition in multilayer networks. Nature Physics, 15 (2): 178185, 2019.
[89]de Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A., and Moreno, Y.. Disease localization in multilayer networks. Physical Review X, 7 (1): 011014, 2017.
[90]De Domenico, M.. Diffusion geometry unravels the emergence of functional clusters in collective phenomena. Physical Review Letters, 118 (16): 168301, 2017.
[91]De Domenico, M.. Multilayer modeling and analysis of human brain networks. GigaScience, 6 (5): 18, 2017.
[92]De Domenico, M.. Multilayer network modeling of integrated biological systems. Comment on “Network science of biological systems at different scales: A review” by Gosak et al. Physics of Life Reviews, 2018.
[93]De Domenico, M.. Multilayer Networks Illustrated, 2020. http://doi.org/10.17605/OSF.IO/GY53K. Accessed November 25, 2020.
[94]De Domenico, M.. Multilayer networks: Analysis and visualization. Introduction to muxViz with R. Springer-Verlag, 2021.
[95]De Domenico, M. and Biamonte, J.. Spectral entropies as information-theoretic tools for complex network comparison. Physical Review X, 6 (4): 041062, 2016.
[96]De Domenico, M. et al. Complexity explained. OSF, 2019. osf.io/tqgnw. Accessed November 25, 2020.
[97]De Domenico, M., Solé-Ribalta, A., Cozzo, E., et al. Mathematical formulation of multilayer networks. Physical Review X, 3 (4): 041022, 2013.
[98]De Domenico, M., Solé-Ribalta, A., Gómez, S., and Arenas, A.. Navigability of interconnected networks under random failures. PNAS, 111 (23): 83518356, 2014.
[99]De Domenico, M., Lancichinetti, A., Arenas, A., and Rosvall, M.. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Physical Review X, 5 (1): 011027, 2015.
[100]De Domenico, M., Nicosia, V., Arenas, A., and Latora, V.. Structural reducibility of multilayer networks. Nature Communications, 6: 6864, 2015.
[101]De Domenico, M., Porter, M. A., and Arenas, A.. MuxViz: A tool for multilayer analysis and visualization of networks. Journal of Complex Networks, 3 (2): 159176, 2015.
[102]De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., and Arenas, A.. Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6: 6868, 2015.
[103]De Domenico, M., Granell, C., Porter, M. A., and Arenas, A.. The physics of spreading processes in multilayer networks. Nature Physics, 12 (10): 901, 2016.
[104]De Domenico, M., Sasai, S., and Arenas, A.. Mapping multiplex hubs in human functional brain networks. Frontiers in Neuroscience, 10: 326, 2016.
[105]Del Genio, C. I., J. Gómez-Gardeñes, Bonamassa, I., and Boccaletti, S.. Synchronization in networks with multiple interaction layers. Science Advances, 2 (11): 110, 2016.
[106]del Rio-Chanona, R. M., Korniyenko, Y., Patnam, M., and Porter, M. A.. The multiplex nature of global financial contagions. Applied Network Science, 5 (1): 123, 2020.
[107]Della Rossa, F., Pecora, L., Blaha, K., et al. Symmetries and cluster synchronization in multilayer networks. Nature Communications, 11 (1): 117, 2020.
[108]Diakonova, M., Nicosia, V., Latora, V., and San Miguel, M.. Irreducibility of multilayer network dynamics: The case of the voter model. New Journal of Physics, 18 (2): 023010, 2016.
[109]Dickison, M., Havlin, S., and Stanley, H. E.. Epidemics on interconnected networks. Physical Review E, 85 (6): 066109, 2012.
[110]Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F.. Critical phenomena in complex networks. Reviews of Modern Physics, 80 (4): 1275, 2008.
[111]Duh, M., Gosak, M., Slavinec, M., and Perc, M.. Assortativity provides a narrow margin for enhanced cooperation on multilayer networks. New Journal of Physics, 21: 123016, 2019.
[112]Edler, D., Bohlin, L., and Rosvall, M.. Mapping higher-order network flows in memory and multilayer networks with infomap. Algorithms, 10 (4): 112, 2017.
[113]Esquivel, A. V. and Rosvall, M.. Compression of flow can reveal overlapping-module organization in networks. Physical Review X, 1 (2): 021025, 2011.
[114]Estrada, E.. The structure of complex networks: Theory and applications. Oxford University Press, 2012.
[115]Estrada, E.. Communicability geometry of multiplexes. New Journal of Physics, 21 (1): 015004, 2019.
[116]Estrada, E. and Gómez-Gardeñes, J.. Communicability reveals a transition to coordinated behavior in multiplex networks. Physical Review E, 89 (4): 042819, 2014.
[117]EUROCONTROL. Ash-cloud of April and May 2010: Impact on air traffic, 2010. https://www.eurocontrol.int/publication/ash-cloud-april-and-may-2010-impact-air-traffic. Accessed March 17, 2020.
[118]Fortunato, S.. Community detection in graphs. Physics Reports, 486 (3–5): 75174, 2010.
[119]Fortunato, S. and Barthelemy, M.. Resolution limit in community detection. PNAS, 104 (1): 3641, 2007.
[120]Fortunato, S. and Hric, D.. Community detection in networks: A user guide. Physics Reports, 659: 144, 2016.
[121]Freeman, L. C., Borgatti, S. P., and White, D. R.. Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13 (2): 141154, 1991.
[122]Funk, S., Gilad, E., Watkins, C., and Jansen, V. A. A.. The spread of awareness and its impact on epidemic outbreaks. PNAS, 106 (16): 68726877, 2009.
[123]Funk, S., Bansal, S., Bauch, C. T., et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics, 10: 2125, 2015.
[124]Galimberti, E., Bonchi, F., Gullo, F., and Lanciano, T.. Core decomposition in multilayer networks: Theory, algorithms, and applications. ACM Transactions on Knowledge Discovery from Data (TKDD), 14 (1): 140, 2020.
[125]Gallotti, R. and Barthelemy, M.. Anatomy and efficiency of urban multimodal mobility. Scientific Reports, 4 (1): 19, 2014.
[126]Gallotti, R. and Barthelemy, M.. The multilayer temporal network of public transport in Great Britain. Scientific Data, 2 (1): 18, 2015.
[127]Gallotti, R., Bertagnolli, G., and De Domenico, M.. Unraveling the hidden organisation of urban systems and their mobility flows. EPJ Data Science, 10 (1): 117, 2021.
[128]Gambuzza, L. V., Frasca, M., and Gómez-Gardeñes, J.. Intra-layer synchronization in multiplex networks. Europhysics Letters, 110 (2): 20010, 2015.
[129]Gao, J., Buldyrev, S. V., Stanley, H. E., and Havlin, S.. Networks formed from interdependent networks. Nature Physics, 8 (1): 40, 2012.
[130]Gauvin, L., Panisson, A., and Cattuto, C.. Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach. PloS One, 9 (1): e86028, 2014.
[131]Ghavasieh, A. and De Domenico, M.. Enhancing transport properties in interconnected systems without altering their structure. Physical Review Research, 2: 013155, 2020.
[132]Ghavasieh, A., Nicolini, C., and De Domenico, M.. Statistical physics of complex information dynamics. Physical Review E, 102: 052304, 2020.
[133]Girvan, M. and Newman, M. E. J.. Community structure in social and biological networks. PNAS, 99 (12): 78217826, 2002.
[134]Goldenberg, A., Zheng, A. X., Fienberg, S. E., et al. A survey of statistical network models. Foundations and Trends® in Machine Learning, 2 (2): 129233, 2010.
[135]Goldenfeld, N.. Lectures on phase transitions and the renormalization group. CRC Press, 2018.
[136]Gomez, S., Diaz-Guilera, A., Gomez-Gardenes, J., et al. Diffusion dynamics on multiplex networks. Physical Review Letters, 110 (2): 028701, 2013.
[137]Gómez-Gardeñes, J., Gómez, S., Arenas, A., and Y. Moreno. Explosive synchronization transitions in scale-free networks. Physical Review Letters, 106 (12): 16, 2011a.
[138]Gómez-Gardeñes, J., Romance, M., Criado, R., Vilone, D., and Sánchez, A.. Evolutionary games defined at the network mesoscale: The public goods game. Chaos, 21 (1): 110, 2011b.
[139]Gómez-Gardenes, J., Reinares, I., Arenas, A., and Floría, L. M.. Evolution of cooperation in multiplex networks. Scientific Reports, 2: 620, 2012.
[140]Gomez-Gardenes, J., de Domenico, M., Gutierrez, G., Arenas, A., and Gomez, S.. Layer-layer competition in multiplex complex networks. Philosophical Transactions of the Royal Society A, 373 (2056): 20150117, 2015.
[141]Granell, C., Gómez, S., and Arenas, A.. Dynamical interplay between awareness and epidemic spreading in multiplex networks. Physical Review Letters, 111 (12), 2013.
[142]Granell, C., Gómez, S., and Arenas, A.. Competing spreading processes on multiplex networks: Awareness and epidemics. Physical Review E, 90 (1): 012808, 2014.
[143]Grassberger, P.. Percolation transitions in the survival of interdependent agents on multiplex networks, catastrophic cascades, and solid-on-solid surface growth. Physical Review E, 91 (6): 062806, 2015.
[144]Guimera, R. and Amaral, L. A. N.. Functional cartography of complex metabolic networks. Nature, 433 (7028): 895, 2005.
[145]Hackett, A., Cellai, D., Gómez, S., Arenas, A., and Gleeson, J. P.. Bond percolation on multiplex networks. Physical Review X, 6 (2): 021002, 2016.
[146]Halu, A., Mondragón, R. J., P. Panzarasa, and G. Bianconi. Multiplex PageRank. PloS One, 8 (10): e78293, 2013.
[147]Holland, P. W., Laskey, K. B., and Leinhardt, S.. Stochastic blockmodels: First steps. Social Networks, 5 (2): 109137, 1983.
[148]Holme, P.. Modern temporal network theory: A colloquium. European Physical Journal B, 88 (9): 234, 2015.
[149]Holme, P. and Saramäki, J.. Temporal networks. Physics Reports, 519 (3): 97125, 2012.
[150]Hu, Y., Zhou, D., Zhang, R., et al. Percolation of interdependent networks with intersimilarity. Physical Review E, 88 (5): 052805, 2013.
[151]Hu, Y., Havlin, S., and Makse, H. A.. Conditions for viral influence spreading through multiplex correlated social networks. Physical Review X, 4 (2): 021031, 2014.
[152]Huang, X., Shao, S., Wang, H., et al. The robustness of interdependent clustered networks. Europhysics Letters, 101 (1): 18002, 2013a.
[153]Huang, X., Vodenska, I., Havlin, S., and Stanley, H. E.. Cascading failures in bi-partite graphs: Model for systemic risk propagation. Scientific Reports, 3: 1219, 2013b.
[154]Iacovacci, J., Rahmede, C., Arenas, A., and Bianconi, G.. Functional multiplex PageRank. Europhysics Letters, 116 (2): 28004, 2016.
[155]Jalan, S. and Singh, A.. Cluster synchronization in multiplex networks. Europhysics Letters, 113 (3): 27, 2016.
[156]Jang, S., Lee, J. S., Hwang, S., and Kahng, B.. Ashkin-Teller model and diverse opinion phase transitions on multiplex networks. Physical Review E, 92 (2): 022110, 2015.
[157]Jensen, H. J.. Self-organized criticality: Emergent complex behavior in physical and biological systems, volume 10. Cambridge University Press, 1998.
[158]Katz, L.. A new status index derived from sociometric analysis. Psychometrika, 18 (1): 3943, 1953.
[159]Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the spread of influence through a social network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 137146, 2003.
[160]Kenett, D. Y., Gao, J., Huang, X., et al. Network of interdependent networks: Overview of theory and applications. In Networks of Networks: The Last Frontier of Complexity, pages 336. Springer, 2014.
[161]Kivelä, M., Arenas, A., Barthelemy, M., et al. Multilayer networks. Journal of Complex Networks, 2 (3): 203271, 2014.
[162]Kleinberg, J. M.. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46 (5): 604632, 1999.
[163]Kleineberg, K. K. and Helbing, D.. Topological enslavement in evolutionary games on correlated multiplex networks. New Journal of Physics, 20 (5), 2018.
[164]Kolda, T. G. and Bader, B. W.. Tensor decompositions and applications. SIAM Review, 51 (3): 455500, 2009.
[165]Kouvaris, N. E., Hata, S., and Díaz-Guilera, A.. Pattern formation in multiplex networks. Scientific Reports, 5 (1): 19, 2015.
[166]Kryven, I.. Bond percolation in coloured and multiplex networks. Nature Communications, 10 (1): 116, 2019.
[167]Lacasa, L., Mariño, I. P., Miguez, J., et al. Multiplex decomposition of non-Markovian dynamics and the hidden layer reconstruction problem. Physical Review X, 8 (3): 031038, 2018.
[168]Lacasa, L., Stramaglia, S., and Marinazzo, D.. Beyond pairwise network similarity: Exploring mediation and suppression between networks. Communications Physics, 4 (1): 18, 2021.
[169]Lambiotte, R., Delvenne, J.-C., and Barahona, M.. Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Transactions on Network Science and Engineering, 1 (2): 7690, 2014.
[170]Lambiotte, R., Rosvall, M., and Scholtes, I.. From networks to optimal higher-order models of complex systems. Nature Physics, 15 (4): 313320, 2019.
[171]Latora, V. and Marchiori, M.. Efficient behavior of small-world networks. Physical Review Letters, 87 (19): 198701, 2001.
[172]Latora, V. and Marchiori, M.. Economic small-world behavior in weighted networks. European Physical Journal B, 32 (2): 249263, 2003.
[173]Latora, V., Nicosia, V., and Russo, G.. Complex networks: Principles, methods and applications. Cambridge University Press, 2017.
[174]Lee, K.-M., Goh, K.-I., and Kim, I.-M.. Sandpiles on multiplex networks. Journal of the Korean Physical Society, 60 (4): 641647, 2012 a.
[175]Lee, K.-M., Kim, J. Y., Cho, W.-k., Goh, K.-I., and Kim., I. M. Correlated multiplexity and connectivity of multiplex random networks. New Journal of Physics, 14 (3): 033027, 2012 b.
[176]Lee, K.-M., Min, B., and Goh, K.-I.. Towards real-world complexity: An introduction to multiplex networks. European Physical Journal B, 88 (2): 48, 2015.
[177]Leicht, E. A. and D’Souza, R. M.. Percolation on interacting networks. arXiv:0907.0894, 2009.
[178]Leyva, I., Navas, A., Sendiña-Nadal, I., et al. Explosive transitions to synchronization in networks of phase oscillators. Scientific Reports, 3: 15, 2013.
[179]Leyva, I., Sendiña-Nadal, I., Sevilla-Escoboza, R., et al. Relay synchronization in multiplex networks. Scientific Reports, 8, 2018.
[180]Li, W., Bashan, A., Buldyrev, S. V., Stanley, H. E., and Havlin, S.. Cascading failures in interdependent lattice networks: The critical role of the length of dependency links. Physical Review Letters, 108 (22): 228702, 2012.
[181]Lima, A., De Domenico, M., Pejovic, V., and Musolesi, M.. Exploiting cellular data for disease containment and information campaigns strategies in country-wide epidemics. In Proc. of 3rd Intern. Conf. on the Analysis of Mobile Phone Datasets, Boston, USA, page 1. NETMOB, 2013.
[182]Lima, A., De Domenico, M., Pejovic, V., and Musolesi, M.. Disease containment strategies based on mobility and information dissemination. Scientific Reports, 5: 10650, 2015.
[183]Louf, R. and Barthelemy, M.. Patterns of residential segregation. PloS One, 11 (6): e0157476, 2016.
[184]Magnani, M., Micenkova, B., and Rossi, L.. Combinatorial analysis of multiple networks. arXiv:1303.4986, 2013.
[185]Mantel, N.. The detection of disease clustering and a generalized regression approach. Cancer Research, 27 (2 Part 1): 209220, 1967.
[186]Martens, E. A., Barreto, E., Strogatz, S. H., et al. Exact results for the Kuramoto model with a bimodal frequency distribution. Physical Review E, 79 (2): 026204, 2009.
[187]Massaro, E. and Bagnoli, F.. Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method. Physical Review E, 90 (5): 052817, 2014.
[188]Masuda, N., Porter, M. A., and Lambiotte., R. Random walks and diffusion on networks. Physics Reports, 2017.
[189]Matamalas, J. T., Poncela-Casasnovas, J., Gómez, S., and Arenas, A.. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks. Scientific Reports, 5: 9519, 2015.
[190]Menichetti, G., Remondini, D., Panzarasa, P., Mondragón, R. J., and Bianconi, G.. Weighted multiplex networks. PloS One, 9 (6): e97857, 2014.
[191]Migliano, A. B., Page, A. E., Gómez-Gardeñes, J., et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nature Human Behaviour, 1 (2): 16, 2017.
[192]Min, B. and Goh, K.-I.. Multiple resource demands and viability in multiplex networks. Physical Review E, 89 (4): 040802, 2014.
[193]Min, B., Do Yi, S., Lee, K.-M., and Goh, K.-I.. Network robustness of multiplex networks with interlayer degree correlations. Physical Review E, 89 (4): 042811, 2014.
[194]Min, B., Lee, S., Lee, K.-M., and Goh, K.-I.. Link overlap, viability, and mutual percolation in multiplex networks. Chaos, Solitons & Fractals, 72: 4958, 2015.
[195]Molloy, M. and Reed, B.. A critical point for random graphs with a given degree sequence. Random Structures & Algorithms, 6 (2–3): 161180, 1995.
[196]Morris, R. G. and Barthelemy, M.. Transport on coupled spatial networks. Physical Review Letters, 109 (12): 128703, 2012.
[197]Motter, A. E. and Lai, Y.-C.. Cascade-based attacks on complex networks. Physical Review E, 66 (6): 065102, 2002.
[198]Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P.. Community structure in time-dependent, multiscale, and multiplex networks. Science, 328 (5980): 876878, 2010.
[199]Nelson, D. R.. Recent developments in phase transitions and critical phenomena. Nature, 269 (5627): 379383, 1977.
[200]North American Electric Reliability Council Steering Group. Technical a Analysis of the August 14, 2003, blackout: What happened, why, and what did we learn? Technical report, NERC, 2004. Report to the North American Electric Reliability Council Board of Trustees.
[201]Newman, M. E. J.. Modularity and community structure in networks. PNAS, 103 (23): 85778582, 2006.
[202]Newman, M. E. J.. Communities, modules and large-scale structure in networks. Nature Physics, 8 (1): 25, 2012.
[203]Newman, M. E. J.. Networks. Oxford University Press, 2018.
[204]Newman, M. E. J., Strogatz, S. H., and Watts, D. J.. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64 (2): 026118, 2001.
[205]Nicosia, V. and Latora, V.. Measuring and modeling correlations in multiplex networks. Physical Review E, 92 (3): 032805, 2015.
[206]Nicosia, V., Bianconi, G., Latora, V., and Barthelemy, M.. Growing multiplex networks. Physical Review Letters, 111: 058701, 2013a.
[207]Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A., and Latora, V.. Remote synchronization reveals network symmetries and functional modules. Physical Review Letters, 110 (17): 15, 2013b.
[208]Nicosia, V., Skardal, P. S., Arenas, A., and Latora, V.. Collective phenomena emerging from the interactions between dynamical processes in multiplex networks. Physical Review Letters, 118 (13): 138302, 2017.
[209]Noh, J. D. and Rieger, H.. Random walks on complex networks. Physical Review Letters, 92 (11): 118701, 2004.
[210]North American Electric Reliability Council. 1996 system disturbances. Review of selected 1996 electric system disturbances in North America. Technical report, North American Electric Reliability Council, 2002.
[211]Nowak, M. A. and May, R. M.. Evolutionary games and spatial chaos. Nature, 359: 826829, 1992.
[212]Nowak, M. A., Tarnita, C. E., and Antal, T.. Evolutionary dynamics in structured populations. Philosophical Transactions of the Royal Society B, 365 (1537): 1930, 2010.
[213]Nowicki, K. and Snijders, T. A. B.. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96 (455): 10771087, 2001.
[214]Osat, S., Faqeeh, A., and Radicchi, F.. Optimal percolation on multiplex networks. Nature Communications, 8 (1): 1540, 2017.
[215]Page, L., Brin, S., Motwani, R., and Winograd, T.. The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford InfoLab, 1999.
[216]Pamfil, A. R., Howison, S. D., Lambiotte, R., and Porter, M. A.. Relating modularity maximization and stochastic block models in multilayer networks. SIAM Journal on Mathematics of Data Science, 1 (4): 667698, 2019.
[217]Pamfil, A. R., Howison, S. D., and Porter, M. A.. Inference of edge correlations in multilayer networks. Physical Review E, 102 (6): 062307, 2020.
[218]Parshani, R., Buldyrev, S. V., and Havlin, S.. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Physical Review Letters, 105 (4): 048701, 2010.
[219]Pecora, L. M. and Carroll, T. L.. Master stability functions for synchronized coupled systems. Physical Review Letters, 80 (10): 21092112, 1998.
[220]Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., and Roy, R.. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nature Communications, 5 (May), 2014.
[221]Peixoto, T. P.. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Physical Review E, 92 (4): 042807, 2015.
[222]Peixoto, T. P.. Nonparametric Bayesian inference of the microcanonical stochastic block model. Physical Review E, 95 (1): 012317, 2017.
[223]Peixoto, T. P.. Bayesian stochastic blockmodeling. In Advances in network clustering and blockmodeling, Wiley, pages 289332. 2019.
[224]Perc, M., Jordan, J. J., Rand, D. G., et al. Statistical physics of human cooperation. Physics Reports, 687: 151, 2017.
[225]Pilosof, S., Porter, M. A., Pascual, M., and Kéfi, S.. The multilayer nature of ecological networks. Nature Ecology & Evolution, 1 (4): 0101, 2017.
[226]Pons, P. and Latapy, M.. Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10 (2): 191218, 2006.
[227]Pósfai, M., Gao, J., Cornelius, S. P., Barabási, A.-L., and D’Souza, R. M.. Controllability of multiplex, multi-time-scale networks. Physical Review E, 94 (3): 032316, 2016.
[228]Pósfai, M., Braun, N., Beisner, B. A., McCowan, B., and D’Souza, R. M.. Consensus ranking for multi-objective interventions in multiplex networks. New Journal of Physics, 21 (5): 055001, 2019.
[229]Qin, T. and Rohe, K.. Regularized spectral clustering under the degree-corrected stochastic blockmodel. In Advances in neural information processing systems, vol. 2, pages 31203128, Curran Associates, 2013.
[230]Radicchi, F.. Percolation in real interdependent networks. Nature Physics, 11 (7): 597602, 2015.
[231]Radicchi, F. and Arenas, A.. Abrupt transition in the structural formation of interconnected networks. Nature Physics, 9 (11): 717, 2013.
[232]Radicchi, F. and Bianconi, G.. Redundant interdependencies boost the robustness of multiplex networks. Physical Review X, 7: 011013, 2017.
[233]Ramezanian, R., Magnani, M., Salehi, M., and Montesi, D.. Diffusion of innovations over multiplex social networks. In International Symposium on Artificial Intelligence and Signal Processing (AISP), pages 300304. Institute of Electrical and Electronics Engineers, 2015.
[234]Reis, S. D. S., Hu, Y., Babino, A., et al. Avoiding catastrophic failure in correlated networks of networks. Nature Physics, 10 (10): 762, 2014.
[235]Requejo, R. J. and Díaz-Guilera, A.. Replicator dynamics with diffusion on multiplex networks. Physical Review E, 94 (2): 022301, 2016.
[236]Rosato, V., Issacharoff, L., Tiriticco, F., et al. Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4 (1–2): 6379, 2008.
[237]Rosvall, M. and Bergstrom, C. T.. An information-theoretic framework for resolving community structure in complex networks. PNAS, 104 (18): 73277331, 2007.
[238]Rosvall, M. and Bergstrom, C. T.. Maps of random walks on complex networks reveal community structure. PNAS, 105 (4): 11181123, 2008.
[239]Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., and Lambiotte, R.. Memory in network flows and its effects on spreading dynamics and community detection. Nature Communications, 5: 4630, 2014.
[240]Rubinov, M. and Sporns, O.. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52 (3): 10591069, 2010.
[241]Saa, A.. Symmetries and synchronization in multilayer random networks. Physical Review E, 97 (4): 042304, 2018.
[242]Sahneh, F. D., Scoglio, C., and Van Mieghem, P.. Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Transactions on Networking (TON), 21 (5): 16091620, 2013.
[243]Salehi, M., Sharma, R., Marzolla, M., et al. Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2 (2): 6583, 2015.
[244]Salnikov, V., Schaub, M. T., and Lambiotte, R.. Using higher-order Markov models to reveal flow-based communities in networks. Scientific Reports, 6: 23194, 2016.
[245]Santoro, A. and Nicosia, V.. Optimal percolation in correlated multilayer networks with overlap. Physical Review Research, 2 (3): 033122, 2020.
[246]Santoro, A., Latora, V., Nicosia, G., and Nicosia, V.. Pareto optimality in multilayer network growth. Physical Review Letters, 121 (12): 128302, 2018.
[247]Santos, F. C., Pacheco, J. M., and Lenaerts, T.. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS, 103 (9): 34903494, 2006.
[248]Santos, F. C., Santos, M. D., and Pacheco, J. M.. Social diversity promotes the emergence of cooperation in public goods games. Nature, 454 (7201): 213216, 2008.
[249]Sanz, J., Xia, C.-Y., Meloni, S., and Moreno, Y.. Dynamics of interacting diseases. Physical Review X, 4 (4): 041005, 2014.
[250]Schneider, C. M., Yazdani, N., Araújo, N. A. M., Havlin, S., and Herrmann, H. J.. Towards designing robust coupled networks. Scientific Reports, 3: 1969, 2013.
[251]Scott, J.. Popularity, mediation and exclusion. In Social network analysis, pages 95112, Sage, 2017.
[252]Seidman, S. B.. Network structure and minimum degree. Social Networks, 5 (3): 269287, 1983.
[253]Shekhtman, L. M., Danziger, M. M., and Havlin, S.. Recent advances on failure and recovery in networks of networks. Chaos, Solitons & Fractals, 90: 2836, 2016.
[254]Singh, A., Ghosh, S., Jalan, S., and Kurths, J.. Synchronization in delayed multiplex networks. Europhysics Letters, 111 (3): 30010, 2015.
[255]Skardal, P. S. and Arenas, A.. Control of coupled oscillator networks with application to microgrid technologies. Science Advances, 1 (7): e1500339, 2015.
[256]Snijders, T. A. B. and Nowicki, K.. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14 (1): 75100, 1997.
[257]Solá, L., Romance, M., Criado, R., et al. Eigenvector centrality of nodes in multiplex networks. Chaos, 23 (3): 033131, 2013.
[258]Sole-Ribalta, A., De Domenico, M., Kouvaris, N. E., et al. Spectral properties of the Laplacian of multiplex networks. Physical Review E, 88 (3): 032807, 2013.
[259]Solé-Ribalta, A., De Domenico, M., Gómez, S., and Arenas, A.. Centrality rankings in multiplex networks. In Proceedings of the 2014 ACM Conference on Web Science, pages 149155. Association for Computing Machinery, 2014.
[260]Solé-Ribalta, A., De Domenico, M., Gómez, S., and Arenas, A.. Random walk centrality in interconnected multilayer networks. Physica D, 323: 7379, 2016.
[261]Solé-Ribalta, A., Gómez, S., and Arenas, A.. Congestion induced by the structure of multiplex networks. Physical Review Letters, 116 (10): 108701, 2016.
[262]Son, S.-W., Grassberger, P., and Paczuski, M.. Percolation transitions are not always sharpened by making networks interdependent. Physical Review Letters, 107 (19): 195702, 2011.
[263]Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., and Paczuski, M.. Percolation theory on interdependent networks based on epidemic spreading. Europhysics Letters, 97 (1): 16006, 2012.
[264]Soriano-Paños, D., Lotero, L., Arenas, A., and Gómez-Gardeñes, J.. Spreading processes in multiplex metapopulations containing different Mobility networks. Physical Review X, 8 (3): 031039, 2018.
[265]Sorrentino, F., Pecora, L. M., Hagerstrom, A. M., Murphy, T. E., and R. Roy. Complete characterization of the stability of cluster synchronization in complex dynamical networks. Science Advances, 2 (4): 19, 2016.
[266]Sporns, O.. Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23 (2): 162171, 2013.
[267]Stanley, H. E.. Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Reviews of Modern Physics, 71 (2): S358, 1999.
[268]Stauffer, D. and Aharony, A.. Introduction to percolation theory. CRC Press, 2018.
[269]Stella, M., Beckage, N. M., Brede, M., and De Domenico, M.. Multiplex model of mental lexicon reveals explosive learning in humans. Scientific Reports, 8 (1): 2259, 2018.
[270]Strogatz, S. H.. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143 (1–4): 120, 2000.
[271]Tan, F., Wu, J., Xia, Y., and Chi, K. T.. Traffic congestion in interconnected complex networks. Physical Review E, 89 (6): 062813, 2014.
[272]Taylor, D., Shai, S., Stanley, N., and Mucha, P. J.. Enhanced detectability of community structure in multilayer networks through layer aggregation. Physical Review Letters, 116 (22): 228301, 2016.
[273]Taylor, D., Caceres, R. S., and Mucha, P. J.. Super-resolution community detection for layer-aggregated multilayer networks. Physical Review X, 7 (3): 031056, 2017.
[274]Taylor, D., Porter, M. A., and Mucha, P. J.. Tunable eigenvector-based centralities for multiplex and temporal networks. Multiscale Modeling & Simulation, 19 (1): 113147, 2021.
[275]Tejedor, A., Longjas, A., Foufoula-Georgiou, E., Georgiou, T. T., and Moreno., Y. Diffusion dynamics and optimal coupling in multiplex networks with directed layers. Physical Review X, 8 (3): 031071, 2018.
[276]Tewarie, P., Hillebrand, A., van Dijk, B. W., et al. Integrating cross-frequency and within band functional networks in resting-state meg: A multi-layer network approach. Neuroimage, 142: 324336, 2016.
[277]Timóteo, S., Correia, M., Rodríguez-Echeverría, S., Freitas, H., and Heleno, R.. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the great rift landscapes. Nature Communications, 9 (1): 140, 2018.
[278]Torreggiani, S., Mangioni, G., Puma, M. J., and G. Fagiolo. Identifying the community structure of the food-trade international multi-network. Environmental Research Letters, 13 (5): 054026, 2018.
[279]Traag, V. A.. Complex contagion of campaign donations. PloS One, 11 (4): e0153539, 2016.
[280]Trewavas, A.. A brief history of systems biology: “Every object that biology studies is a system of systems.” Francois Jacob (1974). The Plant Cell, 18 (10): 24202430, 2006.
[281]Tucker, L. R.. Some mathematical notes on three-mode factor analysis. Psychometrika, 31 (3): 279311, 1966.
[282]Valdano, E., Ferreri, L., Poletto, C., and Colizza, V.. Analytical computation of the epidemic threshold on temporal networks. Physical Review X, 5 (2): 021005, 2015.
[283]Valdeolivas, A., Tichit, L., Navarro, C., et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics, 2018.
[284]Valdez, L. D., Shekhtman, L., La Rocca, C. E., et al. Cascading failures in complex networks. Journal of Complex Networks, 8 (2): cnaa013, 2020.
[285]Valles-Catala, T., Massucci, F. A., Guimera, R., and Sales-Pardo, M.. Multilayer stochastic block models reveal the multilayer structure of complex networks. Physical Review X, 6 (1): 011036, 2016.
[286]Velásquez-Rojas, F.. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times. Physical Review E, 95 (5): 052315, 2017.
[287]Vermeulen, R., Schymanski, E. L., Barabási, A.-L., and Miller, G. W.. The exposome and health: Where chemistry meets biology. Science, 367 (6476): 392396, 2020.
[288]Verstraete, N., Jurman, G., Bertagnolli, G., et al. CovMulNet19, integrating proteins, diseases, drugs, and symptoms: A network medicine approach to COVID-19. Network and Systems Medicine, 3 (1): 130141, 2020.
[289]Vespignani, A.. Complex networks: The fragility of interdependency. Nature, 464 (7291): 984, 2010.
[290]Voitalov, I., van der Hoorn, P., Kitsak, M., Papadopoulos, F., and Krioukov, D.. Weighted hypersoft configuration model. Physical Review Research, 2: 043157, 2020.
[291]Wang, H., Li, Q., D’Agostino, G., et al. Effect of the interconnected network structure on the epidemic threshold. Physical Review E, 88 (2): 022801, 2013.
[292]Wang, X., Li, W., Liu, L., et al. Promoting information diffusion through interlayer recovery processes in multiplex networks. Physical Review E, 96 (3): 032304, 2017.
[293]Wang, Z., Wang, L., and Perc, M.. Degree mixing in multilayer networks impedes the evolution of cooperation. Physical Review E, 89: 052813, 2014.
[294]Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L., and Bauch, C. T.. Coupled disease–behavior dynamics on complex networks: A review. Physics of Life Reviews, 15: 129, 2015a.
[295]Wang, Z., Wang, L., Szolnoki, A., and Perc, M.. Evolutionary games on multilayer networks: A colloquium. European Physical Journal B, 88 (5): 115, 2015b.
[296]Watts, D. J.. A simple model of global cascades on random networks. PNAS, 99 (9): 57665771, 2002.
[297]Watts, D. J. and Strogatz, S. H.. Collective dynamics of small-world networks. Nature, 393 (6684): 440, 1998.
[298]Williamson, B. J., De Domenico, M., and Kadis, D. S.. Multilayer connector hub mapping reveals key brain regions supporting expressive language. Brain Connectivity, 11 (1): 4555, 2021.
[299]Wu, H., James, R. G., and D’Souza, R. M.. Correlated structural evolution within multiplex networks. Journal of Complex Networks, 8 (2): cnaa014, 2020.
[300]Wu, Q., Fu, X., Small, M., and Xu, X.-J.. The impact of awareness on epidemic spreading in networks. Chaos, 22 (1): 013101, 2012.
[301]Yagan, O. and Gligor, V.. Analysis of complex contagions in random multiplex networks. Physical Review E, 86 (3): 036103, 2012.
[302]Yamamoto, H., Moriya, S., Ide, K., et al. Impact of modular organization on dynamical richness in cortical networks. Science Advances, 4 (11): eaau4914, 2018.
[303]Yuan, Z., Zhao, C., Wang, W.-X., Di, Z., and Lai, Y.-C.. Exact controllability of multiplex networks. New Journal of Physics, 16 (10): 103036, 2014.
[304]Zachary, W. W.. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33 (4): 452473, 1977.
[305]Zhang, X., Boccaletti, S., Guan, S., and Liu, Z.. Explosive synchronization in adaptive and multilayer networks. Physical Review Letters, 114 (3): 15, 2015.
[306]Zhang, Y., Latora, V., and Motter, A. E.. Unified treatment of dynamical processes on generalized networks: Higher-order, multilayer, and temporal interactions. arXiv:2010.00613, 2020.
[307]Zhao, D.-W., Wang, L.-H., Zhi, Y.-F., Zhang, J., and Wang, Z.. The robustness of multiplex networks under layer node-based attack. Scientific Reports, 6: 24304, 2016.
[308]Zhao, K. and Bianconi, G.. Percolation on interacting, antagonistic networks. Journal of Statistical Mechanics, 2013 (05): P05005, 2013.
[309]Artime, O. and De Domenico, M.. From the origin of life to pandemics: Emergent phenomena in complex systems. Philosophical Transactions of the Royal Society A, 380 (2227): 20200410, 2022.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.