[AP04] Dimitris, Achlioptas and Yuval, Peres. The threshold for random k-SAT is 2k(ln2-O(k)). J. Amer. Math. Soc., 17 4: 947–973, 2004.

[ABGM13] Daniel, Ahlberg, Erik I., Broman, Simon, Griffiths, and Robert, Morris. Noise sensitivity in continuum percolation, Israel J. Math., to appear.

[AS00] Noga, Alon and Joel H., Spencer. The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, second edition, 2000. With an appendix on the life and work of Paul Erdős.

[B65] John F., Banzhaf. Weighted voting doesn't work: A mathematical analysisRutgers Law Review, 19(2):317343, 1965.

[BA91] David J., Barsky and Michael, Aizenman. Percolation critical exponents under the triangle condition. Ann. Probab., 19(4):1520–1536, 1991.

[BGT13] Mohsen, Bayati, David, Gamarnik, and Prasad, Tetali. Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. Ann. Probab., 41(6):4080–4115, 2013.

[B75] William, Becker. Inequalities in Fourier analysis. Ann. Math., 2nd series 102(1):159–182, 1975.

[B12] Vincent, Beffara. Schramm-Loewner evolution and other conformally invariant objects “Probability and statistical physics in two and more dimensions.” (D., Ellwood, C., Newman, V., Sidoravicius, and W., Werner, editors). Proceedings of the Clay Mathematics Institute Summer School and XIV Brazilian School of Probability (Buzios, Brazil), Clay Mathematics Proceedings 15 (2012), 1–48.

[BDC12] Vincent, Beffara and Hugo, Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1, Prob. Theory Relat. Fields, 153(3-4):511–542, 2012.

[BCHs+96] Mihir, Bellare, Don, Coppersmith, Johan, Hastad, Marcos, Kivi, and Madhu, Sudan. Linear testing in characteristic two. IEEE Trans. Informat. Theory,42(6):1781–1796, 1996.

[BOL87] Michael, Ben-Or and Nathan, Linial. Collective coin flipping. Randomness and Computation (S., Micali, ed.), Advances in Computing Research, Vol. 5. JAI Press, December 1989.

[BR08] Michel, Benaïm and Raphaël, Rossignol. Exponential concentration for first passage percolation through modified Poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat., 44(3):544–573, 2008.

[BKS99] Itai, Benjamini, Gil, Kalai, and Oded, Schramm. Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math., (90):5–43 (2001), 1999.

[BKS03] Itai, Benjamini, Gil, Kalai, and Oded, Schramm. First passage percolation has sublinear distance variance. Ann. Probab., 31(4):1970–1978, 2003.

[BSW05] Itai, Benjamini, Oded, Schramm, and David B., Wilson. Balanced Boolean functions that can be evaluated so that every input bit is unlikely to be read. In STOC'05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 244–250. ACM, New York, 2005.

[BLR93] Manuel, Blum, Michael, Luby, and Ronitt, Rubinfeld. Self-testing/correcting with applications to numerical problems. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (Baltimore, MD, 1990), pp. 549–595, 1993.

[BR06a] Béla, Bollobás and Oliver, Riordan. A short proof of the Harris-Kesten theorem. Bull. London Math. Soc., 38(3):470–484, 2006.

[BR06b] Béla, Bollobás and Oliver, Riordan. Sharp thresholds and percolation in the plane. Random Struct. Algorith., 29(4): 524–548, 2006.

[B70] Aline, Bonami. Étude des coefficients de Fourierdes fonctions de Lp(G). Ann. Inst. Fourier (Grenoble), 20 fasc. 2, 335–402, 1970.

[Bor82] Christer, Borell. Positivity improving operators and hypercontractivity. Math. Z., 180(2):225–234, 1982.

[Bor85] Christer, Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrsch. Verw. Gebiete, 70(1):1–13, 1985.

[Bou02] Jean, Bourgain. On the distributions of the Fourier spectrum of Boolean functions. Israel J. Math., 131:269–276, 2002.

[BKK+92] Jean, Bourgain, Jeff, Kahn, Gil, Kalai, Yitzhak, Katznelson, and Nathan, Linial. The influence of variables in product spaces. Israel J. Math., 77(1-2):55–64, 1992.

[BGS13] Erik I., Broman, Christophe, Garban, and Jeffrey E., Steif. Exclusion sensitivity of Boolean functions. Probab. Theor. Rel. Fields, 155(3-4):621–663, 2013.

[Ch08] Sourav, Chatterjee. Chaos, concentration, and multiple valleys. Preprint. arXiv:0810.4221, 2008.

[Ch09] Sourav, Chatterjee. Disorder chaos and multiple valleys in spin glasses. Preprint. arXiv:0907.3381, 2009.

[Ch13a] Sourav, Chatterjee. The universal relation between scaling exponents in first-passage percolation. To appear in Annals Math., 177(2):663–697, 2013.

[Ch14] Sourav, Chatterjee. Superconcentration and related topics. Springer Monographs in Mathematics. Springer, New York.

[DGP14] Hugo, Duminil-Copin, Christophe, Garban, and Gábor, Pete. The near-critical planar FK-Ising model. Commun. Math. Phys., 326(1):1–35, 2014.

[DHN11] Hugo, Duminil-Copin, Clément Hongler, and Pierre, Nolin. Pierre connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Comm. Pure Appl. Math. 64(9): 1165–1198, 2011.

[Feder69] Paul, Federbush. Partially alternate derivation of a result of Nelson. J. Math. Phys., 10: 50–52, 1969.

[FW07] Klaus, Fleischmann and Vitali, Wachtel. Lower deviation probabilities for supercritical Galton-Watson processes. Ann. Inst. Henri Poincaré Probab. Stat., 43(2): 233–255, 2007.

[FN06] Luiz Renato, Fontes and Charles, Newman. The full Brownian web as scaling limit of stochastic flows. Stock. Dyn., 6(2): 213–228, 2006.

[Fri98] Ehud, Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27–35, 1998.

[Fri99] Ehud, Friedgut. Sharp thresholds of graph properties, and the k-sat problem. With an appendix by Jean Bourgain. J. Am. Math. Soc., 12(4): 1017–1054, 1999.

[Fri04] Ehud, Friedgut. Influences in product spaces: KKL and BKKKL revisited. Combin. Probab. Comput., 13(1):17–29, 2004.

[FKW02] Ehud, Friedgut, Jeff, Kahn, and Avi, Wigderson. Computing graph properties of randomized subcube partitions. In Randomization and Approximation Techniques in Computer Science, vol. 2483 of Lecture Notes in Computes Science, pp. 105–113. Springer, Berlin, 2002.

[FK96] Ehud, Friedgut and Gil, Kalai. Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc., 124(10):2993–3002, 1996.

[Gar11] Christophe, Garban. Oded Schramm's contributions to noise sensitivity. Ann. Probab., 39((5):1702–1767, 2011.

[GPS10] Christophe, Garban, Gábor, Pete, and Oded, Schramm. The Fourier spectrum of critical percolation. Acta Mathematica, 205(1):19–104, 2010.

[Gr12] Ben T., Graham. Sublinear variance for directed last-passage percolation. J. Theor. Probab. 25(3): 687–702, 2012.

[GG06] Ben T., Graham and Geoffrey R., Grimmett. Influence and sharp-threshold theorems for monotonic measures. Ann. Probab., 34(5):1726–1745, 2006.

[GG11] Ben T., Graham and Geoffrey R., Grimmett. Sharp thresholds for the random-cluster and Ising models. Ann. Appl. Probab., 21(1):240–265, 2011.

[Gri99] Geoffrey, Grimmett. Percolation, 2nd ed. Grundlehren der mathematischen Wissenschaften 321. Springer-Verlag, Berlin, 1999.

[Gri06] Geoffrey, Grimmett. The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften 333. Springer-Verlag, Berlin, 2006.

[Gro75] Leonard, Gross. Logarithmic Sobolev inequalities. Am. J. Math., 97(4):1061–1083, 1975.

[HPS97] Olle, Haggstrom, Yuval, Peres, and Jeffrey E., Steif. Dynamical percolation. Ann. Inst. H. Poincaré Probab. Statist., 33(4):497–528, 1997.

[Haj91] Péter, Hajnal. An Ω(n4/3) lower bound on the randomized complexity of graph properties. Combinatorica, 11(2):131–143, 1991.

[Haj92] Péter, Hajnal. Decision tree complexity of Boolean functions. In Sets, Graphs and Numbers (Budapest, 1991), Vol. 60 of Colloq. Math. Soc. János Bolyai, pp. 375–389. North-Holland, Amsterdam, 1992.

[HPS13] Alan, Hammond, Gábor, Pete, and Oded, Schramm. Local time on the exceptional set of dynamical percolation, and the Incipient Infinite Cluster. Preprint. arXiv:1208.3826, 2012.

[HS94] Takashi, Hara and Gordon, Slade. Mean-field behaviour and the lace expansion. In Probability and Phase Transition (Cambridge, 1993), Vol. 420 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 87–122. Kluwer Academic, Dordrecht, 1994.

[LJR04] Yves Le, Jan and Olivier, Raimond. Sticky flows on the circle and their noises. Probab. Theory Relat. Fields, 129(1): 63–82, 2004.

[Joh00] Kurt, Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000.

[KKL88] Jeff, Kahn, Gil, Kalai, and Nathan, Linial. The influence of variables on boolean functions. 29th Annual Symposium on Foundations of Computer Science, pp. 68–80, 1988.

[Kal02] Gil, Kalai. A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem. Adv. Appl. Math., 29(3): 412–126, 2002.

[KK13] Nathan, Keller and Guy, Kindler. Quantitative relation between noise sensitivity and influences. Combinatorica, 33(1):45–71, 2013.

[Kes80] Harry, Kesten. The critical probability of bond percolation on the square lattice equals ½. Commun. Math. Phys., 74(1):41–59, 1980.

[Kes87] Harry, Kesten. Scaling relations for 2D-percolation. Commun. Math. Phys., 109(1):109–156, 1987.

[KZ87] Harry, Kesten and Yu, Zhang. Strict inequalities for some critical exponents in two-dimensional percolation. J. Statist. Phys., 46(5-6):1031–1055, 1987.

[KKMO07] Subhash, Khot, Guy, Kindler, Elchanan, Mossel, and Ryan, O'Donnell. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.

[Kor03] Aleksei D., Korshunov. Monotone Boolean functions. Uspekhi Mat. Nauk, 58(5(353)):89–162, 2003.

[LSW02] Gregory F., Lawler, Oded, Schramm, and Wendelin, Werner. One-arm exponent for critical 2D percolation. Electron. J. Probab., 7(2), 13 pp. (electronic), 2002.

[LS] Eyal, Lubetzky and Jeffrey E., Steif. Strong noise sensitivity and random graphs. Ann. Probab., to appear.

[Lyo11] Russell, Lyons. Probability on Trees and Networks. Cambridge University Press, in preparation. Written with the assistance of Y. Peres. In preparation. Current version available at http://php.indiana.edu/-rdlyons/.

[Mar74] Grigoriǐ A., Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy Peredači Informacii, 10(2):101–108, 1974.

[MMZ06] Stephan, Mertens, Marc Mézard abd Riccardo, Zecchina. Threshold values of random K-SAT from the cavity method. Random Struct. Algorith., 28(3): 340–373, 2006.

[Mez03] Marc, Mézard. Optimization and physics: On the satisfiability of random Boolean formulae. (English summary). Ann. Henri Poincaré, 4 (Suppl. 1): S475–S488, 2003.

[MO03] Elchanan, Mossel and Ryan, O'Donnell. On the noise sensitivity of mono-tone functions. Random Struct. Algorithms., 23(3):333–350, 2003.

[MO05] Elchanan, Mossel and Ryan, O'Donnell. Coin flipping from a cosmic source: On error correction of truly random bits. Random Struct. Algorith., 26(4):418–436, 2005.

[MOO10] Elchanan, Mossel, Ryan, O'Donnell, and Krzysztof, Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Ann. Math., 171(1):295–341, 2010.

[MOR+06] Elchanan, Mossel, Ryan, O'Donnell, Oded, Regev, Jeffrey E., Steif, and Benny, Sudakov. Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality. Israel J. Math., 154:299–336, 2006.

[MOS03] Elchanan, Mossel, Ryan, O'Donnell, and Rocco P., Servedio. Learning juntas. In STOC'03: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 206–212, ACM, New York, 2003.

[Nel66] Edward, Nelson. A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, MA, 1965), pp. 69–73. MIT Press, Cambridge, MA, 1966.

[NP95] Charles M., Newman and Marcelo S. T., Piza. Divergence of shape fluctuations in two dimensions. Ann. Probab.,23(3):977–1005, 1995.

[Nol09] Pierre, Nolin. Near-critical percolation in two dimensions. Electron. J. Probab., 13(55):1562–1623, 2009.

[O'D] Ryan, O'Donnell. History of the hypercontractivity theorem. http://boolean-analysis.blogspot.com/.

[O'D03a] Ryan, O'Donnell. http://www.cs.cmu.edu/~odonnell/boolean-analysis/, 2003. Course homepage.

[O D03b] Ryan, O'Donnell. Computational Applications ofNoise Sensitivity. PhD thesis, MIT, 2003.

[O D08] Ryan, O'Donnell. Some topics in analysis of Boolean functions. In STOC'08, pp. 569–578. ACM, New York, 2008.

[O D14] Ryan, O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[OSSS05] Ryan, O'Donnell, Michael, Saks, Oded, Schramm, and Rocco, Servedio. Every decision tree has an influential variable. FOCS, 2005.

[OS07] Ryan, O'Donnell and Rocco A., Servedio. Learning monotone decision trees in polynomial time. SIAM J. Comput., 37(3):827–844 (electronic), 2007.

[PP94] Robin, Pemantle and Yuval, Peres. Planar first-passage percolation times are not tight. In Probability and Phase Transition (Cambridge, 1993), Vol. 420 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 261–264. Kluwer Academic, Dordrecht, 1994.

[P46] Lionel, Penrose. The elementary statistics of majority votingJ. Roy. Statist. Soc., 109(1):5357, 1946.

[P04] Yuval, Peres. Noise stability of weighted majority. arXiv:0412.5377, 2004

[PSSW07] Yuval, Peres, Oded, Schramm, Scott, Sheffield, and David B., Wilson. Random-turn hex and other selection games. Am. Math. Mon., 114(5):373–387, 2007.

[Re00] David, Reimer. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput., 9(1):27–32, 2000.

[RW10] Oliver, Riordan and Nicholas, Wormald. The diameter of sparse random graphs. Combin. Probab. Comput., 19(5-6):835–926, 2010.

[RV75] Ronald L., Rivest and Jean, Vuillemin. A generalization and proof of the Aanderaa-Rosenberg conjecture. In Seventh Annual ACM Symposium on Theory ofComputing (Albuquerque, NM, 1975), pp. 6–11. Assoc. Comput. Mach., New York, 1975.

[Ros08] Raphael, Rossignol. Threshold phenomena on product spaces: BKKKL revisited (once more). Electron. Comm. Probab., 13, 35–44, 2008.

[Rus81] Lucio, Russo. On the critical percolation probabilities. Z. Wahrsch. Verw. Gebiete, 56(2):229–237, 1981.

[Rus82] Lucio, Russo. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete, 61(1):129–139, 1982.

[Sch00] Oded, Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000.

[SS11] Oded, Schramm and Stanislav, Smirnov. On the scaling limits of planar per-colation. With an appendix by Christophe Garban. Ann. Probab., volume in honor of Oded Schramm, 39(5):1768–1814, 2011.

[SS10] Oded, Schramm and Jeffrey, Steif. Quantitative noise sensitivity and exceptional times for percolation. Ann. Math., 171(2):619–672, 2010.

[Smi01] Stanislav, Smirnov. Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math., 333(3):239–244, 2001.

[SW01] Stanislav, Smirnov and Wendelin, Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8(5-6):729–744, 2001.

[Ste09] Jeffrey, Steif. A survey of dynamical percolation. Fractal Geometry and Stochastics, IV, Birkhauser, Boston, pp. 145–174, 2009.

[Tal94] Michel, Talagrand. On Russo's approximate zero-one law. Ann. Probab., 22(3):1576–1587, 1994.

[Tal96] Michel, Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243–258, 1996.

[Tal97] Michel, Talagrand. On boundaries and influences. Combinatorica, 17(2):275–285, 1997.

[TW98] Balint, Toth and Wendelin, Werner. The true self-repelling motion. Probab. Theory Relat. Fields, 111(3): 375–452, 1998.

[Tsi04] Boris, Tsirelson. Scaling limit, noise, stability. Lectures on probability theory and statistics, pp. 1–106, Lecture Notes in Mathematics, 1840, Springer, Berlin, 2004.

[Tsi05] Boris, Tsirelson. Percolation, boundary, noise: An experiment. Preprint. math/0506269, 2005.

[Wer07] Wendelin, Werner. Lectures on Two-dimensional Critical Percolation. IAS Park City Graduate Summer School, 2007.