Skip to main content Accessibility help
×
  • Cited by 5
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      November 2023
      November 2023
      ISBN:
      9781009179713
      9781009179706
      Dimensions:
      (229 x 152 mm)
      Weight & Pages:
      0.63kg, 316 Pages
      Dimensions:
      Weight & Pages:
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Optimal mass transport has emerged in the past three decades as an active field with wide-ranging connections to the calculus of variations, PDEs, and geometric analysis. This graduate-level introduction covers the field's theoretical foundation and key ideas in applications. By focusing on optimal mass transport problems in a Euclidean setting, the book is able to introduce concepts in a gradual, accessible way with minimal prerequisites, while remaining technically and conceptually complete. Working in a familiar context will help readers build geometric intuition quickly and give them a strong foundation in the subject. This book explores the relation between the Monge and Kantorovich transport problems, solving the former for both the linear transport cost (which is important in geometric applications) and for the quadratic transport cost (which is central in PDE applications), starting from the solution of the latter for arbitrary transport costs.

    Reviews

    ‘Francesco Maggi's book is a detailed and extremely well written explanation of the fascinating theory of Monge-Kantorovich optimal mass transfer. I especially recommend Part IV's discussion of the ‘linear’ cost problem and its subtle mathematical resolution.’

    Lawrence C. Evans - University of California, Berkeley

    ‘Over the last three decades, optimal transport has revolutionized the mathematical analysis of inequalities, differential equations, dynamical systems, and their applications to physics, economics, and computer science. By exposing the interplay between the discrete and Euclidean settings, Maggi's book makes this development uniquely accessible to advanced undergraduates and mathematical researchers with a minimum of prerequisites. It includes the first textbook accounts of the localization technique known as needle decomposition and its solution to Monge's centuries old cutting and filling problem (1781). This book will be an indispensable tool for advanced undergraduates and mathematical researchers alike.’

    Robert McCann - University of Toronto

    ‘The author brings original and pedagogical ideas and illuminating remarks to his presentation, so his book is absolutely worth working with for teaching, solo learning, reading groups and research … Francesco Maggi’s book can be recommended to anybody interested in the topic.’

    Nicolas Juillet Source: MathSciNet

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents


    Page 1 of 2



    Page 1 of 2


    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.