Skip to main content Accessibility help
×
  • Cited by 20
Publisher:
Cambridge University Press
Online publication date:
July 2016
Print publication year:
2016
Online ISBN:
9781139045650

Book description

The possibility that we live in a higher-dimensional world with spatial dimensions greater than three started with the early work of Kaluza and Klein. However, in addressing experimental constraints, early model-builders were forced to compactify these extra dimensions to very tiny scales. With the development of brane-world scenarios it became possible to consider novel compactifications which allow the extra dimensions to be large or to provide observable effects of these dimensions at experimentally accessible energy scales. This book provides a comprehensive account of these recent developments, keeping the high-energy physics implications in focus. After an historical survey of the idea of extra dimensions, the book deals in detail with models of large extra dimensions, warped extra dimensions and other models such as universal extra dimensions. The theoretical and phenomenological implications are discussed in a pedagogical manner for both researchers and graduate students.

Reviews

'The book offers a detailed introduction to the topic of extra dimensions within the context of fundamental physics. It consists of fourteen chapters … clearly aimed at research students with an interest in both fundamental physics and exploring the possibility of extra dimensions. It is a very interesting book.'

John Bartlett Source: Mathematics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] M., Jammer, Concepts of Space: The Histories of Theories of Space in Physics. Cambridge, MA: Harvard University Press, 1954.
[2] J., d'Alembert, ‘Dimension’ in Encyclopédie ou Dictionnaire Raissoné des Sciences, des Arts et Métiers. Paris: Briasson, 1751.
[3] J., Lagrange, Mécanique Analytique. Paris: Gauthier-Villars, 1888.
[4] E., Watkins (ed.), Kant: Natural Science. Cambridge: Cambridge University Press, 2012.
[5] P., Ehrenfest, ‘In what way does it become manifest in the fundamental laws of physics that space has three dimensions’, Proceedings of the Amsterdam Academy, vol. 20, pp. 200–9, 1917.
[6] M., Tegmark, ‘On the dimensionality of space-time’, Class. Quant. Grav., vol. 14, pp. L69–L75, 1997.
[7] H., More, Enchiridion Metaphysicum. Ed. and Intro. G. A. J., Rogers. Bristol: Thoemmes Press, 1997.
[8] J., Zollner, Transcendental Physics. Trans. C. C., Massey. London: W. H. Harrison, 1880.
[9] A. F., Mobius, Der Barycentrische Calcul. Leipzig: Johann Ambrosius Barth, 1827.
[10] L., Schlafli, Theorie der Vielfachen Kontinuität. Zurich: Zurcher & Furrer, 1852.
[11] W., Stringham, ‘Regular figures in n-dimensional space’, American Journal of Mathematics, vol. III, pp. 1–12, 1880.
[12] C. H., Hinton, The Fourth Dimension. London: Swann Sonnenschein & Co., 1904.
[13] G., Nordstrom, ‘On the possibility of unifying the electromagnetic and the gravitational fields’, Phys. Z., vol. 15, pp. 504–6, 1914.
[14] T., kaluza, ‘on the problem of unity in physics’, sitzungsber. preuss. akad. wiss. Berlin (Math.Phys.), vol. 1921, pp. 966–72, 1921.
[15] L. O, 'Raifeartaigh and N., Straumann, ‘Early history of gauge theories and Kaluza-Klein theories, hep-ph/9810524’. 1998.
[16] P., Jordan, ‘Formation of the stars and development of the universe’, Nature, vol. 164, pp. 637–40, 1949.
[17] O., Klein, ‘Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English)’, Z. Phys., vol. 37, pp. 895–906, 1926.
[18] O., Klein, ‘On the theory of charged fields’, Surveys High Energ. Phys., vol. 5, pp. 269–85, 1986.
[19] Y., Cho and P. G., Freund, ‘Nonabelian gauge fields in Nambu-Goldstone fields’, Phys.Rev., vol. D12, p. 1711, 1975.
[20] E., Cremmer and J., Scherk, ‘Spontaneous compactification of extra space dimensions’, Nucl.Phys., vol. B118, p. 61, 1977.
[21] E., Witten, ‘Search for a realistic Kaluza-Klein theory’, Nucl.Phys., vol. B186, p. 412, 1981.
[22] P. G., Freund and M. A., Rubin, ‘Dynamics of dimensional reduction’, Phys.Lett., vol. B97, pp. 233–5, 1980.
[23] M., Awada, M., Duff and C., Pope, ‘N=8 supergravity breaks down to N=1’, Phys.Rev.Lett., vol. 50, p. 294, 1983.
[24] J., Scherk and J. H., Schwarz, ‘Dual models for nonhadrons’, Nucl.Phys., vol. B81, pp. 118–44, 1974.
[25] N., Arkani-Hamed, S., Dimopoulos and G., Dvali, ‘The Hierarchy problem and new dimensions at a millimeter’, Phys.Lett., vol. B429, pp. 263–72, 1998.
[26] L., Randall and R., Sundrum, ‘A large mass hierarchy from a small extra dimension’, Phys.Rev.Lett., vol. 83, pp. 3370–3, 1999.
[27] S., Glashow, ‘Partial symmetries of weak interactions’, Nucl.Phys., vol. 22, pp. 579–88, 1961.
[28] S., Weinberg, ‘A model of leptons’, Phys.Rev.Lett., vol. 19, pp. 1264–6, 1967.
[29] A., Salam, ‘Weak and electromagnetic interactions’ in N., Svartholm (ed.), Elementary Particle Theory: Nobel Symposium, No. 8. Ed. N. Svartholm Stockholm: Almqvist and Wiksell, 1968.
[30] S., Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge: Cambridge University Press, 1995.
[31] S., Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications. Cambridge: Cambridge University Press, 1996.
[32] T., Cheng and L., Li, Gauge Theory of Elementary Particle Physics. Oxford: Clarendon (Oxford Science Publications), 1984.
[33] M. E., Peskin and D. V., Schroeder, An Introduction to Quantum Field Theory. Reading, USA: Addison-Wesley, 1995.
[34] E., Leader and E., Predazzi, An Introduction to Gauge Theories and Modern Particle Physics. Vols. 1 and 2. Cambridge: Cambridge University Press, 1996.
[35] V. D., Barger and R., Phillips, Collider Physics. Redwood City, USA: Addison-Wesley, 1987.
[36] E., Reya, ‘Perturbative quantum chromodynamics’, Phys.Rept., vol. 69, p. 195, 1981.
[37] A. J., Buras, ‘Asymptotic freedom in deep inelastic processes in the leading order and beyond’, Rev.Mod.Phys., vol. 52, p. 199, 1980.
[38] R. K., Ellis, W. J., Stirling and B., Webber, QCD and Collider Physics. Cambridge: Cambridge University Press, 1996.
[39] T., Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories. Singapore: World Scientific, 1998.
[40] J., Field, Applications of Perturbative QCD. New York: Perseus Books, 1989.
[41] P. W., Higgs, ‘Broken Symmetries and the Masses of Gauge Bosons’, Phys.Rev.Lett., vol. 13, pp. 508–9, 1964.
[42] P. W., Higgs, ‘Broken symmetries, massless particles and gauge fields’, Phys.Lett., vol. 12, pp. 132–3, 1964.
[43] F., Englert and R., Brout, ‘Broken symmetry and the mass of gauge vector mesons’, Phys.Rev.Lett., vol. 13, pp. 321–3, 1964.
[44] G., 't Hooft, ‘Renormalization of massless Yang-Mills fields’, Nucl.Phys., vol. B33, pp. 173–99, 1971.
[45] G., 't Hooft, ‘Renormalizable Lagrangians for massive Yang-Mills fields’, Nucl.Phys., vol. B35, pp. 167–88, 1971.
[46] G., 't Hooft and M., Veltman, ‘Regularization and renormalization of gauge fields’, Nucl.Phys., vol. B44, pp. 189–213, 1972.
[47] G., Altarelli, R., Barbieri and F., Caravaglios, ‘Electroweak precision tests: A concise review’, Int.J.Mod.Phys., vol. A13, pp. 1031–58, 1998.
[48] D., Bardin and G., Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions. Oxford: Oxford University Press, 1999.
[49] J. D., Wells, ‘TASI lecture notes: Introduction to precision electroweak analysis’, in J., Terning, C. E. M., Wagner and D., Zeppenfield (eds.), Physics in D ≥4, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2004, pp. 41–64, 2005.
[50] K., Olive et al., ‘Review of particle physics’, Chin. Phys., vol. C38, p. 090001, 2014.
[51] G., Ross, Grand Unified Theories. Reading, USA: Benjamin/Cummings, 1984.
[52] R., Mohapatra, Unification and Supersymmetry: The Frontiers of Quark- Lepton Physics. New York: Springer-Verlag, 1986.
[53] S., Weinberg, The Quantum theory of Fields. Vol. 3: Supersymmetry. Cambridge: Cambridge University Press, 2000.
[54] Binetruy, Pierre, Supersymmetry: Theory, Experiment and Cosmology. Oxford: Oxford University Press, 2006.
[55] H. P., Nilles, ‘Supersymmetry, supergravity and particle physics’, Phys. Rept., vol. 110, pp. 1–162, 1984.
[56] H. E., Haber and G. L., Kane, ‘The search for supersymmetry: Probing physics beyond the Standard Model’, Phys.Rept., vol. 117, pp. 75–263, 1985.
[57] S. P., Martin, ‘TASI 2011 lectures notes: Two-component fermion notation and supersymmetry’, 2012.
[58] M. A., Luty, ‘2004 TASI lectures on supersymmetry breaking’, in J., Terning, C. E. M., Wagner and D., Zeppenfeld (eds.), Physics in D >=4, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2004, pp. 495–582, 2005.
[59] E., Farhi and L., Susskind, ‘Technicolor’, Phys.Rept., vol. 74, p. 277, 1981.
[60] R. K., Kaul, ‘Technicolor’, Rev.Mod.Phys., vol. 55, p. 449, 1983.
[61] R. S., Chivukula, ‘Models of electroweak symmetry breaking: Course’, 1998.
[62] N., Straumann, ‘On Pauli's invention of non-Abelian Kaluza-Klein theory in 1953, gr-qc/0012054’, pp. 1063–6, 2000.
[63] G., Veneziano, ‘Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories’, Nuovo Cim., vol. A57, pp. 190–7, 1968.
[64] Y., Nambu, ‘Quark model and the factorization of the Veneziano amplitude in symmetries and quark models (ed. R. Chand p. 269)’, pp. 269–78, 1970.
[65] T., Goto, ‘Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model’, Prog.Theor.Phys., vol. 46, pp. 1560–9, 1971.
[66] J., Scherk, ‘An introduction to the theory of dual models and strings’, Rev.Mod.Phys., vol. 47, pp. 123–64, 1975.
[67] J. H., Schwarz, ‘Superstring theory’, Phys.Rept., vol. 89, pp. 223–322, 1982.
[68] M. B., Green, J., Schwarz and E., Witten, Superstring Theory. Vol. 1: Introduction. Cambridge: Cambridge University Press, 1987.
[69] M. B., Green, J., Schwarz and E., Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology. Cambridge: Cambridge University Press, 1987.
[70] J., Polchinski, String Theory. Vol. 1: An Introduction to the Bosonic String. Cambridge: Cambridge University Press, 1998.
[71] J., Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond. Cambridge: Cambridge University Press, 1998.
[72] C., Johnson, D-branes. Cambridge: Cambridge University Press, 2003.
[73] B., Zwiebach, A First Course in String Theory. Cambridge: Cambridge University Press, 2004.
[74] A. M., Polyakov, ‘Quantum geometry of bosonic strings’, Phys.Lett., vol. B103, pp. 207–10, 1981.
[75] L., Brink, P. Di, Vecchia and P. S., Howe, ‘A locally supersymmetric and reparametrization invariant action for the spinning string’, Phys.Lett., vol. B65, pp. 471–4, 1976.
[76] F., Gliozzi, J., Scherk and D. I., Olive, ‘Supersymmetry, supergravity theories and the dual spinor model’, Nucl.Phys., vol. B122, pp. 253–90, 1977.
[77] P., Ramond, ‘Dual theory for free fermions’, Phys.Rev., vol. D3, pp. 2415– 18, 1971.
[78] A., Neveu and J., Schwarz, ‘Factorizable dual model of pions’, Nucl.Phys., vol. B31, pp. 86–112, 1971.
[79] J. E., Paton and H.-M., Chan, ‘Generalized Veneziano model with isospin’, Nucl.Phys., vol. B10, pp. 516–20, 1969.
[80] M. B., Green and J. H., Schwarz, ‘Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory’, Phys.Lett., vol. B149, pp. 117– 22, 1984.
[81] D. J., Gross et al., ‘Heterotic string theory. 1. The free heterotic string’, Nucl.Phys., vol. B256, p. 253, 1985.
[82] D. J., Gross et al., ‘Heterotic string theory. 2. The interacting heterotic string’, Nucl.Phys., vol. B267, p. 75, 1986.
[83] P., Candelas et al., ‘Vacuum configurations for superstrings’, Nucl. Phys., vol. B258, pp. 46–74, 1985.
[84] L. J., Dixon et al., ‘Strings on orbifolds’, Nucl. Phys., vol. B261, pp. 678–86, 1985.
[85] L. J., Dixon et al., ‘Strings on orbifolds. 2’, Nucl. Phys., vol. B274, pp. 285– 314, 1986.
[86] R., Savit, ‘Duality in field theory and statistical systems’, Rev.Mod.Phys., vol. 52, p. 453, 1980.
[87] S. R., Coleman, ‘The quantum sine-Gordon equation as the massive Thirring model’, Phys.Rev., vol. D11, p. 2088, 1975.
[88] E., Bogomol'nyi, ‘Stability of classical solutions’, Sov. J. Nucl. Phys., vol. 24, p. 449, 1976.
[89] M., Prasad and C. M., Sommerfield, ‘An exact classical solution for the 't Hooft monopole and the Julia-Zee dyon’, Phys.Rev.Lett., vol. 35, pp. 760–62, 1975.
[90] N., Seiberg, ‘Exact results on the space of vacua of four-dimensional SUSY gauge theories’, Phys.Rev., vol. D49, pp. 6857–63, 1994.
[91] N., Seiberg and E., Witten, ‘Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD’, Nucl.Phys., vol. B431, pp. 484–550, 1994.
[92] N., Seiberg and E., Witten, ‘Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory’, Nucl.Phys., vol. B426, pp. 19–52, 1994.
[93] N., Seiberg, ‘Electric-magnetic duality in supersymmetric non-Abelian gauge theories’, Nucl.Phys., vol. B435, pp. 129–46, 1995.
[94] O., Aharony et al., ‘Large N field theories, string theory and gravity’, Phys.Rept., vol. 323, pp. 183–386, 2000.
[95] J. M., Maldacena, ‘TASI 2003 lectures on AdS / CFT’, in J. M., Maldacena (ed.), Progress in String Theory, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2003 (ed. J.M. Maldacena), pp. 155–203, 2003.
[96] J. G., Russo, ‘Large N field theories from superstrings’, PoS, vol. silafae-III, p. 044, 2000.
[97] P. Di, Vecchia, ‘Large N gauge theories and AdS / CFT correspondence’, hep-th/9908148 (1999).
[98] E., Imeroni, ‘The gauge / string correspondence towards realistic gauge theories’, hep-th/0312070 (2003).
[99] A. V., Manohar, ‘Large N QCD’, hep-ph/9802419 (1998).
[100] J. M., Maldacena, ‘The large N limit of superconformal field theories and supergravity’, Int. J. Theor. Phys., vol. 38, pp. 1113–33, 1999.
[101] S. S., Gubser, I. R., Klebanov and A. M., Polyakov, ‘Gauge theory correlators from noncritical string theory’, Phys. Lett., vol. B428, pp. 105–14, 1998.
[102] E., Witten, ‘Anti-de Sitter space and holography’, Adv. Theor. Math. Phys., vol. 2, pp. 253–91, 1998.
[103] H., Georgi, ‘Effective field theory’, Ann. Rev. Nucl. Part. Sci., vol. 43, pp. 209–52, 1993.
[104] J., Polchinski, ‘Effective field theory and the Fermi surface’, hepth/ 9210046 (1992).
[105] A. V., Manohar, ‘Effective field theories’, Lect. Notes Phys., vol. 479, pp. 311–62, 1997.
[106] D. B., Kaplan, ‘Effective field theories: Lectures given at the Seventh Summer School in Nuclear Physics: “Symmetries” at the Institute for Nuclear Theory, Seattle.’, 1995.
[107] I. Z., Rothstein, ‘TASI lectures on effective field theories’, hep-ph/0308266 (2003).
[108] W., Buchmuller and D., Wyler, ‘Effective Lagrangian analysis of new interactions and flavor conservation’, Nucl.Phys., vol. B268, pp. 621–53, 1986.
[109] R., Sundrum, ‘Effective field theory for a three-brane universe’, Phys.Rev., vol. D59, p. 085009, 1999.
[110] R., Sundrum, ‘Compactification for a three-brane universe’, Phys.Rev., vol. D59, p. 085010, 1999.
[111] V., Rubakov and M., Shaposhnikov, ‘Do we live inside a domain wall?’, Phys.Lett., vol. B125, pp. 136–8, 1983.
[112] K., Akama, ‘An early proposal of “brane world” ’, Lect. Notes Phys., vol. 176, pp. 267–71, 1982.
[113] V., Rubakov, ‘Large and infinite extra dimensions: An introduction’, Phys.Usp., vol. 44, pp. 871–93, 2001.
[114] G., Dvali and M. A., Shifman, ‘Domain walls in strongly coupled theories’, Phys.Lett., vol. B396, pp. 64–9, 1997.
[115] I., Antoniadis, ‘A possible new dimension at a few TeV’, Phys.Lett., vol. B246, pp. 377–84, 1990.
[116] I., Antoniadis, C., Munoz and M., Quiros, ‘Dynamical supersymmetry breaking with a large internal dimension’, Nucl.Phys., vol. B397, pp. 515–38, 1993.
[117] I., Antoniadis and K., Benakli, ‘Limits on extra dimensions in orbifold compactifications of superstrings’, Phys.Lett., vol. B326, pp. 69–78, 1994.
[118] I., Antoniadis, K., Benakli and M., Quiros, ‘Production of Kaluza-Klein states at future colliders’, Phys.Lett., vol. B331, pp. 313–20, 1994.
[119] I., Antoniadis et al., ‘New dimensions at a millimeter to a Fermi and superstrings at a TeV’, Phys.Lett., vol. B436, pp. 257–63, 1998.
[120] E. A., Mirabelli, M., Perelstein and M. E., Peskin, ‘Collider signatures of new large space dimensions’, Phys.Rev.Lett., vol. 82, pp. 2236–9, 1999.
[121] G. F., Giudice, R., Rattazzi and J. D., Wells, ‘Quantum gravity and extra dimensions at high-energy colliders’, Nucl.Phys., vol. B544, pp. 3–38, 1999.
[122] T., Han, J. D., Lykken and R.-J., Zhang, ‘On Kaluza-Klein states from large extra dimensions’, Phys.Rev., vol. D59, p. 105006, 1999.
[123] A., Einstein, ‘The foundation of the General Theory of Relativity’, Annalen Phys., vol. 49, pp. 769–822, 1916.
[124] S., Weinberg, Gravitation and Cosmology. New York: John Wiley & Sons, 1972.
[125] R., Contino et al., ‘Graviton loops and brane observables’, JHEP, vol. 0106, p. 005, 2001.
[126] N., Arkani-Hamed, S., Dimopoulos and G., Dvali, ‘Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity’, Phys.Rev., vol. D59, p. 086004, 1999.
[127] V. D., Barger et al., ‘Astrophysical constraints on large extra dimensions’, Phys.Lett., vol. B461, pp. 34–42, 1999.
[128] L. J., Hall and D., Tucker-Smith, ‘Cosmological constraints on theories with large extra dimensions’, Phys.Rev., vol. D60, p. 085008, 1999.
[129] M., Fairbairn, ‘Cosmological constraints on large extra dimensions’, Phys.Lett., vol. B508, pp. 335–9, 2001.
[130] S., Hannestad and G. G., Raffelt, Stringent neutron star limits on large extra dimensions', Phys.Rev.Lett., vol. 88, p. 071301, 2002.
[131] S., Chatrchyan et al., ‘Search for dark matter and large extra dimensions in monojet events in pp collisions at √ s = 7 TeV’, JHEP, vol. 1209, p. 094, 2012.
[132] J. L., Hewett, ‘Indirect collider signals for extra dimensions’, Phys.Rev.Lett., vol. 82, pp. 4765–8, 1999.
[133] P., Mathews, S., Raychaudhuri and K., Sridhar, ‘Getting to the top with extra dimensions’, Phys.Lett., vol. B450, pp. 343–7, 1999.
[134] P., Mathews, S., Raychaudhuri and K., Sridhar, ‘Large extra dimensions and deep inelastic scattering at HERA’, Phys.Lett., vol. B455, pp. 115–19, 1999.
[135] P., Mathews, S., Raychaudhuri and K., Sridhar, ‘Testing TeV scale quantum gravity using dijet production at the Tevatron’, JHEP, vol. 0007, p. 008, 2000.
[136] Charles W., Misner, K. S., Thorne and J. A., Wheeler, Gravitation. San Francisco: W. H. Freeman, 1973.
[137] R. M., Wald, General Relativity. Chicago: University of Chicago Press, 1984.
[138] J. B., Hartle, Gravity: An Introduction to Einstein's General Relativity. San Francisco: Addison-Wesley, 2003.
[139] Sean, Carroll, Spacetime and Geometry: An Introduction to General Relativity. San Francisco: Addison-Wesley, 2004.
[140] B. F., Schultz, A First Course in General Relativity. Cambridge: Cambridge University Press, 1985.
[141] T. P., Cheng, Relativity, Gravitation and Cosmology: A Basic Introduction. Oxford: Oxford University Press, 2005.
[142] T., Banks and W., Fischler, ‘A Model for high-energy scattering in quantum gravity’, hep-th/9906038 (1999).
[143] S. B., Giddings and S. D., Thomas, ‘High-energy colliders as black hole factories: The end of short distance physics’, Phys.Rev., vol. D65, p. 056010, 2002.
[144] R., Emparan, G. T., Horowitz and R. C., Myers, ‘Black holes radiate mainly on the brane’, Phys.Rev.Lett., vol. 85, pp. 499–502, 2000.
[145] S., Dimopoulos and G. L., Landsberg, ‘Black holes at the LHC’, Phys.Rev.Lett., vol. 87, p. 161602, 2001.
[146] P., Kanti, ‘Black holes in theories with large extra dimensions: A review’, Int.J.Mod.Phys., vol. A19, pp. 4899–951, 2004.
[147] P., Kanti, ‘Black holes at the LHC’, Lect. Notes Phys., vol. 769, pp. 387– 423, 2009.
[148] E., Winstanley, ‘Hawking radiation from rotating brane black holes’, arXiv:0708.2656 (2007).
[149] G. L., Landsberg, ‘Black holes at future colliders and beyond’, J. Phys., vol. G32, pp. R337–R365, 2006.
[150] P. D. D, 'Eath, Black Holes: Gravitational Interactions. Oxford: Oxford University Press, 1996.
[151] D. M., Eardley and S. B., Giddings, ‘Classical black hole production in high-energy collisions’, Phys.Rev., vol. D66, p. 044011, 2002.
[152] H., Yoshino and Y., Nambu, ‘High-energy headon collisions of particles and hoop conjecture’, Phys.Rev., vol. D66, p. 065004, 2002.
[153] H., Yoshino and Y., Nambu, ‘Black hole formation in the grazing collision of high-energy particles’, Phys.Rev., vol. D67, p. 024009, 2003.
[154] H., Yoshino and V. S., Rychkov, ‘Improved analysis of black hole formation in high-energy particle collisions’, Phys.Rev., vol. D71, p. 104028, 2005.
[155] M., Voloshin, ‘Semiclassical suppression of black hole production in particle collisions’, Phys.Lett., vol. B518, pp. 137–42, 2001.
[156] S. N., Solodukhin, ‘Classical and quantum cross-section for black hole production in particle collisions’, Phys.Lett., vol. B533, pp. 153–61, 2002.
[157] E., Kohlprath and G., Veneziano, ‘Black holes from high-energy beam–beam collisions’, JHEP, vol. 0206, p. 057, 2002.
[158] P., Kanti and J., March-Russell, ‘Calculable corrections to brane black hole decay. 1. The scalar case’, Phys.Rev., vol. D66, p. 024023, 2002.
[159] P., Kanti and J., March-Russell, ‘Calculable corrections to brane black hole decay. 2. Greybody factors for spin 1/2 and 1’, Phys.Rev., vol. D67, p. 104019, 2003.
[160] D., Ida, K.-y., Oda and S. C., Park, ‘Rotating black holes at future colliders: Greybody factors for brane fields’, Phys.Rev., vol. D67, p. 064025, 2003.
[161] L. A., Anchordoqui et al., ‘Inelastic black hole production and large extra dimensions’, Phys.Lett., vol. B594, pp. 363–7, 2004.
[162] P., Meade and L., Randall, ‘Black holes and quantum gravity at the LHC’, JHEP, vol. 0805, p. 003, 2008.
[163] X., Calmet, W., Gong and S. D., Hsu, ‘Colorful quantum black holes at the LHC’, Phys.Lett., vol. B668, pp. 20–3, 2008.
[164] P., Nicolini et al., ‘Production and evaporation of Planck scale black holes at the LHC’, pp. 2495–7, 2015.
[165] D. M., Gingrich, ‘Quantum black holes with charge, colour, and spin at the LHC’, J. Phys., vol. G37, p. 105008, 2010.
[166] C. M., Harris et al., ‘Exploring higher dimensional black holes at the large hadron collider’, JHEP, vol. 05, p. 053, 2005.
[167] S., Chatrchyan et al., ‘Search for microscopic black holes in pp collisions at sqrt(s) = 8 TeV’, JHEP, vol. 1307, p. 178, 2013.
[168] S., Chatrchyan √ et al., ‘Search for microscopic black holes in pp collisions at s = 7 TeV’, JHEP, vol. 1204, p. 061, 2012.
[169] V., Khachatryan et al., ‘Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at √ s = 8 TeV’, Phys.Rev., vol. D91, no. 5, p. 052009, 2015.
[170] S., Chatrchyan et al., ‘Search for narrow resonances and quantum black h√oles in inclusive and b-tagged dijet mass spectra from pp collisions at s = 7 TeV’, JHEP, vol. 01, p. 013, 2013.
[171] G., Aad et al., ‘Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at sqrt(s) = 8 TeV’, JHEP, vol. 1408, p. 103, 2014.
[172] K., Kong, ‘Phenomenology of universal extra dimensions, Report no. UMI- 32-28761’, 2006.
[173] H.-C., Cheng, K. T., Matchev, and M., Schmaltz, ‘Radiative corrections to Kaluza-Klein masses’, Phys.Rev., vol. D66, p. 036005, 2002.
[174] G., Bhattacharyya et al., ‘Power law blitzkrieg in universal extra dimension scenarios’, Nucl.Phys., vol. B760, pp. 117–27, 2007.
[175] M., Blennow et al., ‘RG running in a minimal UED model in light of recent LHC Higgs mass bounds’, Phys.Lett., vol. B712, pp. 419–24, 2012.
[176] A., Datta and S., Raychaudhuri, ‘Vacuum stability constraints and LHC searches for a model with a universal extra dimension’, Phys.Rev., vol. D87, no. 3, p. 035018, 2013.
[177] D., Hooper and S., Profumo, ‘Dark matter and collider phenomenology of universal extra dimensions’, Phys.Rept., vol. 453, pp. 29–115, 2007.
[178] G., Servant, ‘Status report on universal extra dimensions after LHC8,arXiv:1401.4176 [hep-ph]’, Mod. Phys. Lett. vol. A30, 1540011, 2015.
[179] K., Agashe, N., Deshpande, and G., Wu, ‘Universal extra dimensions and b —> s gamma’, Phys.Lett., vol. B514, pp. 309–14, 2001.
[180] A. J., Buras et al., ‘The impact of universal extra dimensions on B —> X(s) gamma, B —> X(s) gluon, B —> X(s) mu+ mu-, K(L) —> pi0 e+ e- and epsilon-prime / epsilon’, Nucl.Phys., vol. B678, pp. 455–90, 2004.
[181] I., Gogoladze and C., Macesanu, ‘Precision electroweak constraints on Universal Extra Dimensions revisited’, Phys.Rev., vol. D74, p. 093012, 2006.
[182] J., Oliver, J., Papavassiliou and A., Santamaria, ‘Universal extra dimensions and Z —> b anti-b’, Phys.Rev., vol. D67, p. 056002, 2003.
[183] A., Datta, A., Patra, and S., Raychaudhuri, ‘Higgs boson decay constraints on a model with a universal extra dimension’, Phys.Rev., vol. D89, no. 9, p. 093008, 2014.
[184] G., Belanger et al., ‘Testing minimal universal extra dimensions using Higgs boson searches at the LHC’, Phys.Rev., vol. D87, no. 1, p. 016008, 2013.
[185] G., Belanger, M., Kakizaki and A., Pukhov, ‘Dark matter in UED: The role of the second KK level’, JCAP, vol. 1102, p. 009, 2011.
[186] O., Lahav and A. R., Liddle, ‘The cosmological parameters 2014, arXiv:1401.1389 [astro-ph.CO]’, 2014.
[187] B., Bhattacherjee et al., ‘Boosted top quark signals for heavy vector boson excitations in a universal extra dimension model’, Phys.Rev., vol. D82, p. 055006, 2010.
[188] L., Edelhauser, T., Flacke and M., Kramer, ‘Constraints on models with universal extra dimensions from dilepton searches at the LHC’, JHEP, vol. 1308, p. 091, 2013.
[189] T., Flacke, K., Kong and S. C., Park, ‘A review on non-minimal universal extra dimensions’, Mod.Phys.Lett., vol. A30, no. 05, p. 1530003, 2015.
[190] D., Choudhury et al., ‘Exploring two universal extra dimensions at the CERN LHC’, JHEP, vol. 1204, p. 057, 2012.
[191] L., Randall and R., Sundrum, ‘An alternative to compactification’, Phys.Rev.Lett., vol. 83, pp. 4690–3, 1999.
[192] J. P., Conlon, F., Quevedo and K., Suruliz, ‘Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking’, JHEP, vol. 0508, p. 007, 2005.
[193] V., Balasubramanian et al., ‘Systematics of moduli stabilisation in Calabi- Yau flux compactifications’, JHEP, vol. 0503, p. 007, 2005.
[194] J., Conlon et al., ‘Sparticle spectra and LHC signatures for large volume string compactifications’, JHEP, vol. 0708, p. 061, 2007.
[195] T., Gherghetta, ‘TASI lectures on a holographic view of beyond the Standard Model physics’, in C., Csaki and S., Dodelson (eds.), Physics of the Large and the Small, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2009, 2010.
[196] R., Sundrum, ‘To the fifth dimension and back’, TASI 2004 lectures, 2005.
[197] C., Csaki, ‘TASI lectures on extra dimensions and branes’, in J., Terning, C. E. E., Wagner and D., Zeppenfeld (eds.), Physics in D >=4, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2004, pp. 605–98, 2004.
[198] C., Csaki, J., Hubisz, and P., Meade, ‘TASI lectures on electroweak symmetry breaking from extra dimensions’, in H. E., Haber and A. E., Nelson (eds.), Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s), Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2002, pp. 703–76, 2005.
[199] R., Rattazzi, ‘Cargese lectures on extra-dimensions’, in D., Kazakov and G., Smajda (eds.), Particle Physics and Cosmology: The Interface, Proceedings of the NATO Advanced Study Institute – Cargese 2003, pp. 461–517, 2003.
[200] C., Csaki, J., Erlich and J., Terning, ‘The effective Lagrangian in the Randall-Sundrum model and electroweak physics’, Phys.Rev., vol. D66, p. 064021, 2002.
[201] W. D., Goldberger and M. B., Wise, ‘Bulk fields in the Randall-Sundrum compactification scenario’, Phys.Rev., vol. D60, p. 107505, 1999.
[202] T., Gherghetta and A., Pomarol, ‘Bulk fields and supersymmetry in a slice of AdS’, Nucl.Phys., vol. B586, pp. 141–62, 2000.
[203] P., Breitenlohner and D. Z., Freedman, ‘Positive energy in anti-de Sitter backgrounds and gauged extended supergravity’, Phys.Lett., vol. B115, p. 197, 1982.
[204] P., Breitenlohner and D. Z., Freedman, ‘Stability in gauged extended supergravity’, Annals Phys., vol. 144, p. 249, 1982.
[205] Y., Grossman and M., Neubert, ‘Neutrino masses and mixings in nonfactorizable geometry’, Phys.Lett., vol. B474, pp. 361–71, 2000.
[206] S., Chang et al., ‘Bulk standard model in the Randall-Sundrum background’, Phys.Rev., vol. D62, p. 084025, 2000.
[207] H., Davoudiasl, J., Hewett and T., Rizzo, ‘Bulk gauge fields in the Randall- Sundrum model’, Phys.Lett., vol. B473, pp. 43–9, 2000.
[208] A., Pomarol, ‘Gauge bosons in a five-dimensional theory with localized gravity’, Phys.Lett., vol. B486, pp. 153–57, 2000.
[209] K., Skenderis and P. K., Townsend, ‘Gravitational stability and renormalization group flow’, Phys.Lett., vol. B468, pp. 46–51, 1999.
[210] A., Chamblin and G., Gibbons, ‘Supergravity on the brane’, Phys.Rev.Lett., vol. 84, pp. 1090–3, 2000.
[211] C., Csaki et al., ‘Universal aspects of gravity localized on thick branes’, Nucl.Phys., vol. B581, pp. 309–38, 2000.
[212] D., Buchholz and K., Fredenhagen, ‘Dilations and interaction’, J. Math. Phys., vol. 18, pp. 1107–11, 1977.
[213] G. F., Dell' Antonio, ‘On dilatation invariance and the Wilson expansion’, Nuovo Cim., vol. A12, pp. 756–62, 1972.
[214] J. T., Lopuszanski, ‘On the supersymmetry charges in the theory of scalar and spinor free fields’, Rept. Math. Phys., vol. 9, pp. 301–7, 1976.
[215] S., Weinberg, ‘Minimal fields of canonical dimensionality are free’, Phys. Rev., vol. D86, p. 105015, 2012.
[216] G., Mack, ‘All unitary ray representations of the conformal group SU(2,2) with positive energy’, Commun. Math. Phys., vol. 55, p. 1, 1977.
[217] S., Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge: Cambridge University Press, 1985.
[218] N., Arkani-Hamed, M., Porrati and L., Randall, ‘Holography and phenomenology’, JHEP, vol. 0108, p. 017, 2001.
[219] R., Rattazzi and A., Zaffaroni, ‘Comments on the holographic picture of the Randall-Sundrum model’, JHEP, vol. 0104, p. 021, 2001.
[220] M., Perez-Victoria, ‘Randall-Sundrum models and the regularized AdS / CFT correspondence’, JHEP, vol. 0105, p. 064, 2001.
[221] R., Contino and A., Pomarol, ‘Holography for fermions’, JHEP, vol. 0411, p. 058, 2004.
[222] B., Batell and T., Gherghetta, ‘Holographic mixing quantified’, Phys.Rev., vol. D76, p. 045017, 2007.
[223] B., Batell and T., Gherghetta, ‘Warped phenomenology in the holographic basis’, Phys.Rev., vol. D77, p. 045002, 2008.
[224] S., Kumar Rai and S., Raychaudhuri, ‘Single photon signals for warped quantum gravity at a linear e+ e- collider’, JHEP, vol. 0310, p. 020, 2003.
[225] W. D., Goldberger and M. B., Wise, ‘Modulus stabilization with bulk fields’, Phys.Rev.Lett., vol. 83, pp. 4922–5, 1999.
[226] W. D., Goldberger and M. B., Wise, ‘Phenomenology of a stabilized modulus’, Phys.Lett., vol. B475, pp. 275–9, 2000.
[227] O. DeWolfe et al., ‘Modeling the fifth-dimension with scalars and gravity’, Phys.Rev., vol. D62, p. 046008, 2000.
[228] D., Freedman et al., ‘Renormalization group flows from holography supersymmetry and a c theorem’, Adv. Theor. Math. Phys., vol. 3, pp. 363–417, 1999.
[229] C., Csaki, M. L., Graesser and G. D., Kribs, ‘Radion dynamics and electroweak physics’, Phys.Rev., vol. D63, p. 065002, 2001.
[230] G. F., Giudice, R., Rattazzi and J. D., Wells, ‘Graviscalars from higher dimensional metrics and curvature Higgs mixing’, Nucl.Phys., vol. B595, pp. 250–76, 2001.
[231] K.-m., Cheung, ‘Phenomenology of radion in Randall-Sundrum scenario’, Phys.Rev., vol. D63, p. 056007, 2001.
[232] U., Mahanta, ‘Unitarity bound on the radion mass in the Randall-Sundrum model, hep-ph/0004128’, 2000.
[233] U., Mahanta, ‘New physics, precision electroweak data and an upper bound on Higgs mass, hep-ph/0009096’, 2000.
[234] M., Frank, B., Korutlu and M., Toharia, ‘Radion phenomenology with 3 and 4 generations’, Phys.Rev., vol. D84, p. 115020, 2011.
[235] N., Desai, U., Maitra and B., Mukhopadhyaya, ‘An updated analysis of radion-higgs mixing in the light of LHC data’, JHEP, vol. 1310, p. 093, 2013.
[236] K., Agashe, G., Perez and A., Soni, ‘B-factory signals for a warped extra dimension’, Phys.Rev.Lett., vol. 93, p. 201804, 2004.
[237] K., Agashe, G., Perez and A., Soni, ‘Flavor structure of warped extra dimension models’, Phys.Rev., vol. D71, p. 016002, 2005.
[238] S. J., Huber, ‘Flavor violation and warped geometry’, Nucl.Phys., vol. B666, pp. 269–88, 2003.
[239] G., Burdman, ‘Constraints on the bulk standard model in the Randall- Sundrum scenario’, Phys.Rev., vol. D66, p. 076003, 2002.
[240] G., Burdman, ‘Flavor violation in warped extra dimensions and CP asymmetries in B decays’, Phys.Lett., vol. B590, pp. 86–94, 2004.
[241] S., Casagrande et al., ‘Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests’, JHEP, vol. 0810, p. 094, 2008.
[242] M., Bauer et al., ‘Flavor physics in the Randall-Sundrum model: II. Treelevel weak-interaction processes’, JHEP, vol. 1009, p. 017, 2010.
[243] S. J., Huber and Q., Shafi, ‘Higgs mechanism and bulk gauge boson masses in the Randall-Sundrum model’, Phys.Rev., vol. D63, p. 045010, 2001.
[244] K., Agashe et al., ‘RS1, custodial isospin and precision tests’, JHEP, vol. 0308, p. 050, 2003.
[245] K., Agashe and R., Contino, ‘The minimal composite Higgs model and electroweak precision tests’, Nucl.Phys., vol. B742, pp. 59–85, 2006.
[246] M., Carena et al., ‘Precision electroweak data and unification of couplings in warped extra dimensions’, Phys.Rev., vol. D68, p. 035010, 2003.
[247] K., Agashe et al., ‘A custodial symmetry for Zb anti-b’, Phys.Lett., vol. B641, pp. 62–6, 2006.
[248] M., Carena et al., ‘Warped fermions and precision tests’, Phys.Rev., vol. D71, p. 015010, 2005.
[249] H., Davoudiasl et al., ‘Warped 5-dimensional models: Phenomenological status and experimental prospects’, New J. Phys., vol. 12, p. 075011, 2010.
[250] R., Barbieri et al., ‘Electroweak symmetry breaking after LEP-1 and LEP- 2’, Nucl.Phys., vol. B703, pp. 127–46, 2004.
[251] J. A., Cabrer, G., von Gersdorff and M., Quiros, ‘Warped electroweak breaking without custodial symmetry’, Phys.Lett., vol. B697, pp. 208–14, 2011.
[252] M., Carena et al., ‘Electroweak constraints on warped models with custodial symmetry’, Phys.Rev., vol. D76, p. 035006, 2007.
[253] K., Agashe et al., ‘LHC signals from warped extra dimensions’, Phys.Rev., vol. D77, p. 015003, 2008.
[254] B., Lillie, L., Randall and L.-T., Wang, ‘The bulk RS KK-gluon at the LHC’, JHEP, vol. 0709, p. 074, 2007.
[255] G., Aad et al., ‘Search for t?t resonances in the lepton plus jets final state with ATLAS using 4.7 fb-1 of pp collisions at √ s = 7 TeV’, Phys.Rev., vol. D88, no. 1, p. 012004, 2013.
[256] M., Guchait, F., Mahmoudi and K., Sridhar, ‘Associated production of a Kaluza-Klein excitation of a gluon with a t anti-t pair at the LHC’, Phys.Lett., vol. B666, pp. 347–51, 2008.
[257] B. C., Allanach et al., ‘Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model’, JHEP, vol. 1003, p. 014, 2010.
[258] K., Agashe et al., ‘LHC signals for warped electroweak neutral gauge bosons’, Phys.Rev., vol. D76, p. 115015, 2007.
[259] K., Agashe et al., ‘LHC signals for warped electroweak charged gauge bosons’, Phys.Rev., vol. D80, p. 075007, 2009.
[260] C., Dennis et al., ‘Multi-W events at LHC from a warped extra dimension with custodial symmetry’, hep-ph/0701158 (2007).
[261] R., Contino and G., Servant, ‘Discovering the top partners at the LHC using same-sign dilepton final states’, JHEP, vol. 0806, p. 026, 2008.
[262] R., Contino, Y., Nomura and A., Pomarol, ‘Higgs as a holographic pseudo- Goldstone boson’, Nucl.Phys., vol. B671, pp. 148–74, 2003.
[263] K., Agashe, R., Contino and A., Pomarol, ‘The minimal composite Higgs model’, Nucl.Phys., vol. B719, pp. 165–87, 2005.
[264] R., Contino and A., Pomarol, ‘The holographic composite Higgs’, Comptes Rendus Physique, vol. 8, pp. 1058–67, 2007.
[265] R., Contino, L., Da Rold and A., Pomarol, ‘Light custodians in natural composite Higgs models’, Phys.Rev., vol. D75, p. 055014, 2007.
[266] N., Arkani-Hamed and M., Schmaltz, ‘Hierarchies without symmetries from extra dimensions’, Phys. Rev., vol. D61, p. 033005, 2000.
[267] N., Arkani-Hamed, Y., Grossman and M., Schmaltz, ‘Split fermions in extra dimensions and exponentially small cross-sections at future colliders’, Phys. Rev., vol. D61, p. 115004, 2000.
[268] J. N., Ng, ‘Neutrino mass models in extra dimensions’, J. Korean Phys. Soc., vol. 45, pp. S341–S346, 2004.
[269] T., Gherghetta, ‘Dirac neutrino masses with Planck scale lepton number violation’, Phys. Rev. Lett., vol. 92, p. 161601, 2004.
[270] G., Perez and L., Randall, ‘Natural neutrino masses and mixings from warped geometry’, JHEP, vol. 01, p. 077, 2009.
[271] A. M., Iyer and S. K., Vempati, ‘Bulk Majorana mass terms and Dirac neutrinos in the Randall-Sundrum model’, Phys. Rev., vol. D88, no. 7, p. 073005, 2013.
[272] K. R., Dienes, E., Dudas and T., Gherghetta, ‘Extra space-time dimensions and unification’, Phys. Lett., vol. B436, pp. 55–65, 1998.
[273] K. R., Dienes, E., Dudas and T., Gherghetta, ‘Grand unification at intermediate mass scales through extra dimensions’, Nucl. Phys., vol. B537, pp. 47–108, 1999.
[274] K., Agashe, A., Delgado and R., Sundrum, ‘Grand unification in RS1’, Annals Phys., vol. 304, pp. 145–64, 2003.
[275] E., Shuster, ‘Killing spinors and supersymmetry on AdS’, Nucl. Phys., vol. B554, pp. 198–214, 1999.
[276] P., Brax, C. van de, Bruck and A.-C., Davis, ‘Brane world cosmology’, Rept. Prog. Phys., vol. 67, pp. 2183–232, 2004.
[277] M., Sasaki, ‘Brane-world cosmology and inflation’, Pramana, vol. 63, pp. 785–96, 2004.
[278] D., Lust, ‘Intersecting brane worlds: A path to the standard model?’, Class. Quant. Grav., vol. 21, pp. S1399–S1424, 2004.
[279] M., Berkooz, M. R., Douglas and R. G., Leigh, ‘Branes intersecting at angles’, Nucl. Phys., vol. B480, pp. 265–78, 1996.
[280] W. A., Bardeen and R. B., Pearson, ‘Local gauge invariance and the bound state nature of hadrons’, Phys. Rev., vol. D14, p. 547, 1976.
[281] N., Arkani-Hamed, A. G., Cohen and H., Georgi, ‘(De)constructing dimensions’, Phys. Rev. Lett., vol. 86, pp. 4757–61, 2001.
[282] N., Arkani-Hamed, A. G., Cohen and H., Georgi, ‘Electroweak symmetry breaking from dimensional deconstruction’, Phys. Lett., vol. B513, pp. 232– 40, 2001.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.