Skip to main content Accessibility help
×
  • Cited by 7
Publisher:
Cambridge University Press
Online publication date:
June 2022
Print publication year:
2022
Online ISBN:
9781009168076

Book description

Percolation theory is a well studied process utilized by networks theory to understand the resilience of networks under random or targeted attacks. Despite their importance, spatial networks have been less studied under the percolation process compared to the extensively studied non-spatial networks. In this Element, the authors will discuss the developments and challenges in the study of percolation in spatial networks ranging from the classical nearest neighbors lattice structures, through more generalized spatial structures such as networks with a distribution of edge lengths or community structure, and up to spatial networks of networks.

References

Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378382.
Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509512. doi: https://doi.org/10.1126/science.286.5439.509.
Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1101.
Bashan, A., et al. (2013). The extreme vulnerability of interdependent spatially embedded networks. Nature Physics, 9(10), 667672.
Bell, M. G., & Iida, Y. (1997). Transportation network analysis. Wiley Online Library.
Ben-Avraham, D., et al. (2003). Geographical embedding of scale-free networks. PhysicaA: Statistical Mechanics and Its Applications, 330(1–2), 107116.
Berezin, Y., et al. (2015). Localized attacks on spatially embedded networks with dependencies. Scientific Reports, 5(1),15.
Bianconi, G., Pin, P., & Marsili, M. (2009). Assessing the relevance of node features for network structure. Proceedings of the National Academy of Sciences, 106(28), 1143311438.
Bogu ná, M., et al. (2021). Network geometry. Nature Reviews Physics, Nature Publishing Group 3(2), 114135.
Bollobás, B. (1985). Random Graphs. London Mathematical Society Monographs, Academic Press, London.
Bonamassa, I., et al. (2019). Critical stretching of mean-field regimes in spatial networks. Physical Review Letters, 123(8), 088301.
Buldyrev, S. V., et al. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 10251028.
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336349.
Bunde, A., & Havlin, S. (1991). Fractals and disordered systems. Springer, New York.
Cohen, R., Havlin, S., & Ben-Avraham, D. (2003). Efficient immunization strategies for computer networks and populations. Physical Review Letters, 91(24), 247901.
Cohen, R., et al. (2000). Resilience of the internet to random breakdowns. Physical Review Letters, 85(21), 4626.
Cohen, R., et al. (2001). Breakdown of the internet under intentional attack. Physical Review Letters, 86(16), 3682.
Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences, 103(7), 20152020.
Danziger, M. M., et al. (2013). Interdependent spatially embedded networks: dynamics at percolation threshold. In 2013 International Conference on Signal-Image Technology & Internet-Based Systems (pp. 619625). doi: https://doi.org/10.1109/SITIS.2013.101
Danziger, M. M., et al. (2016). The effect of spatiality on multiplex networks. EPL (Europhysics Letters), 115(3), 36002.
Danziger, M. M., et al. (2020). Faster calculation of the percolation correlation length on spatial networks. Physical Review E, 101(1), 013306.
Daqing, L., et al. (2011). Dimension of spatially embedded networks. Nature Physics, 7(6), 481484.
Den Nijs, M. (1979). A relation between the temperature exponents of the eight-vertex and q-state Potts model. Journal of Physics A: Mathematical and General, 12(10), 1857.
Dong, G., et al. (2018). Resilience of networks with community structure behaves as if under an external field. Proceedings of the National Academy of Sciences, 115(27), 69116915.
Donges, J. F., et al. (2009). Complex networks in climate dynamics. The European Physical Journal Special Topics, 174(1), 157179.
Dosenbach, N. U., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 1107311078.
Emmerich, T., et al. (2013). Complex networks embedded in space: dimension and scaling relations between mass, topological distance, and Euclidean distance. Physical Review E, 87(3), 032802.
Ercsey-Ravasz, M., et al. (2013). A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron, 80(1), 184197.
Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290.
Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1), 1760.
Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topology. ACM SIGCOMM Computer Communication Review, 29(4), 251262.
Fan, J., et al. (2017). Network analysis reveals strongly localized impacts of El Ni no. Proceedings of the National Academy of Sciences, 114(29), 75437548.
Fan, J., et al. (2018). Structural resilience of spatial networks with inter-links behaving as an external field. New Journal of Physics, 20(9), 093003.
Gallos, L. K., et al. (2012). A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proceedings of the National Academy of Sciences, 109(8), 28252830.
Gao, J., Li, D., & Havlin, S. (2014). From a single network to a network of networks. National Science Review, 1(3), 346356.
Gao, J., et al. (2011). Robustness of a network of networks. Physical Review Letters, 107(19), 195701.
Gao, J., et al. (2012). Networks formed from interdependent networks. Nature Physics, 8(1), 40.
Gastner, M. T., & Newman, M. E. (2006). The spatial structure of networks. The European Physical Journal B-Condensed Matter and Complex Systems, 49(2), 247252.
Gibson, T. E., et al. (2016). On the origins and control of community types in the human microbiome. PLoS Computational Biology, 12(2), e1004688.
Goldenberg, J., & Levy, M. (2009). Distance is not dead: social interaction and geographical distance in the internet era. arXiv preprint arXiv:0906.3202.
Gross, B., & Havlin, S. (2020). Epidemic spreading and control strategies in spatial modular network. Applied Network Science, 5(1), 114.
Gross, B., et al. (2017). Multi-universality and localized attacks in spatially embedded networks. In Proceedings of the Asia-Pacific Econophysics Conference 2016 – Big Data Analysis and Modeling toward Super Smart Society – (APEC-SSS2016) JPS Conference Proceedings, 16, 011002. doi: https://doi.org/10.7566/JPSCP.16.01100
Gross, B., et al. (2020a). Interconnections between networks acting like an external field in a first-order percolation transition. Physical Review E, 101(2), 022316.
Gross, B., et al. (2020b). Two transitions in spatial modular networks. New Journal of Physics, 22(5), 053002.
Gross, B., et al. (2021). Interdependent transport via percolation backbones in spatial networks. Physica A: Statistical Mechanics and Its Applications, 567(9), 125644.
Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. N. (2005). The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, 102(22), 77947799.
Hajdu, L., Bóta, A., Krész, M., Khani, A., & Gardner, L. M. (2019). Discovering the hidden community structure of public transportation networks. Networks and Spatial Economics, 20(1), 209231.
Halu, A., Mukherjee, S., & Bianconi, G. (2014). Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. Physical Review E, 89(1), 012806.
Hamedmoghadam, H., etal. (2021). Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks. Nature Communications, 12(1), 110.
Havlin, S., & Nossal, R. (1984). Topological properties of percolation clusters. Journal ofPhysics A: Mathematical and General, 17(8), L427.
Horvát, S., et al. (2016). Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS biology, 14(7), e1002512.
Hu, Y., et al. (2011). Possible origin of efficient navigation in small worlds. Physical Review Letters, 106(10), 108701.
Huang, W., et al. (2014). Navigation in spatial networks: a survey. Physica A: Statistical Mechanics and Its Applications, 393, 132154.
Jeong, H., et al. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651654.
Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574.
Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406(6798), 845.
Kovács, I. A., et al. (2019). Network-based prediction of protein interactions. Nature Communications, 10(1), 18.
Lambiotte, R., et al. (2008). Geographical dispersal of mobile communication networks. Physica A: Statistical Mechanics and Its Applications, 387(21), 53175325.
Latora, V., & Marchiori, M. (2005). Vulnerability and protection of infrastructure networks. Physical Review E, 71(1), 015103.
Li, D., et al. (2011). Percolation of spatially constraint networks. EPL (Europhysics Letters), 93(6), 68004.
Li, D., et al. (2015). Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112(3), 669672. Retrieved from www.pnas.org/content/112/3/669.abstract doi: https://doi.org/10.1073/pnas.1419185112.
Li, Z., et al. (2017). The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nature Communications, 8(1), 114.
Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. Proceedings of the National Academy of Sciences, 102(33), 1162311628.
Liu, Y., et al. (2021). Efficient network immunization under limited knowledge. National Science Review, 8(1), nwaa229.
Ludescher, J., et al. (2014). Very early warning of next El Ni no. Proceedings of the National Academy of Sciences, 111(6), 20642066.
Markov, N. T., et al. (2014). A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex, 24(1), 1736.
Menck, P. J., Heitzig, J., Kurths, J., & Schellnhuber, H. J. (2014). How dead ends undermine power grid stability. Nature Communications, 5(1), 18.
Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 6067.
Milo, R., et al. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824827.
Moretti, P., & Mu noz, M. A. (2013). Griffiths phases and the stretching of criticality in brain networks. Nature Communications, 4, 2521.
Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167256.
Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001, July). Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64, 026118.
Nienhuis, B. (1982). Analytical calculation of two leading exponents of the dilute Potts model. Journal of Physics A: Mathematical and General, 15(1), 199.
Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 6575.
Parshani, R., etal. (2010). Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Physical Review Letters, 105(4), 048701.
Pastor-Satorras, R., et al. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925.
Pocock, M. J., et al. (2012). The robustness and restoration of a network of ecological networks. Science, 555(6071), 973977.
Polis, G. A., & Strong, D. R. (1996). Food web complexity and community dynamics. The American Naturalist, 147(5), 813846.
Reis, S. D., et al. (2014). Avoiding catastrophic failure in correlated networks of networks. Nature Physics, 10(10), 762767.
Reynolds, P., Stanley, H., & Klein, W. (1977). Ghost fields, pair connectedness, and scaling: exact results in one-dimensional percolation. Journal of Physics A: Mathematical and General, 10(11), L203.
Rozenfeld, A. F., et al. (2002). Scale-free networks on lattices. Physical Review Letters, 89(21), 218701.
Schmeltzer, C., Soriano, J., Sokolov, I. M., & Rudiger, S. (2014). Percolation of spatially constrained Erdős-Rényi networks with degree correlations. Physical Review E, 89(1), 012116.
Shai, S., et al. (2015). Critical tipping point distinguishing two types of transitions in modular network structures. Physical Review E, 92(6), 062805.
Shao, S., et al. (2015). Percolation of localized attack on complex networks. New Journal of Physics, 17(2), 023049.
Shekhtman, L. M., et al. (2014). Robustness of a network formed of spatially embedded networks. Physical Review E, 90(1), 012809.
Smillie, C. S., et al. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241244.
Sporns, O. (2010). Networks of the brain. Massachusetts Institute of Technology Press.
Stanley, H. (1971). Introduction to phase transitions and critical phenomena. Oxford University Press.
Stauffer, D., & Aharony, A. (2018). Introduction to percolation theory. CRC Press.
Stauffer, D., & Sornette, D. (1999). Self-organized percolation model for stock market fluctuations. Physica A: Statistical Mechanics and Its Applications, 271(3–4), 496506.
Stippinger, M., & Kertész, J. (2014). Enhancing resilience of interdependent networks by healing. Physica A: Statistical Mechanics and Its Applications, 416, 481487.
Stork, D., & Richards, W. D. (1992). Nonrespondents in communication network studies: problems and possibilities. Group & Organization Management, 17(2), 193209.
Suki, B., Bates, J. H., & Frey, U. (2011). Complexity and emergent phenomena. Comprehensive Physiology, 1(2), 9951029.
Sykes, M. F., & Essam, J. W. (1964). Exact critical percolation probabilities for site and bond problems in two dimensions. Journal of Mathematical Physics, 5(8), 11171127.
Vaknin, D., et al. (2017). Spreading of localized attacks in spatial multiplex networks. New Journal of Physics, 19(7), 073037.
Vaknin, D., et al. (2020). Spreading of localized attacks on spatial multiplex networks with a community structure. Physical Review Research, 2(4), 043005.
Viswanathan, G. M., et al. (1999). Optimizing the success of random searches. Nature, 401(6756), 911914.
Wang, W., et al. (2017). Unification of theoretical approaches for epidemic spreading on complex networks. Reports on Progress in Physics, 80(3), 036603.
Waxman, B. M. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9), 16171622.
Wei, L., et al. (2012). Cascading failures in interdependent lattice networks: the critical role of the length of dependency links. Physical Review Letters, 108(22), 228702.
Wei, L., et al. (2014). Ranking the economic importance of countries and industries. Journal of Network Theory in Finance, 3(3), 117.
Yang, Y., Nishikawa, T., & Motter, A. E. (2017). Small vulnerable sets determine large network cascades in power grids. Science, American Association for the Advancement of Science 358(6365), eaan3184.
Yuan, X., Shao, S., Stanley, H. E., & Havlin, S. (2015). How breadth of degree distribution influences network robustness: comparing localized and random attacks. Physical Review E, 92(3), 032122.
Zhou, D., et al. (2014). Simultaneous first- and second-order percolation transitions in interdependent networks. Physical Review E, 90(1), 012803.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.