Skip to main content
×
Home
Phase Transitions in Materials
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 9
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Du, Chrisy Xiyu van Anders, Greg Newman, Richmond S. and Glotzer, Sharon C. 2017. Shape-driven solid–solid transitions in colloids. Proceedings of the National Academy of Sciences, Vol. 114, Issue. 20, p. E3892.


    Rinzler, Charles C. and Allanore, A. 2017. A thermodynamic basis for the electronic properties of molten semiconductors: the role of electronic entropy. Philosophical Magazine, Vol. 97, Issue. 8, p. 561.


    Tröster, A. Ehsan, S. Belbase, K. Blaha, P. Kreisel, J. and Schranz, W. 2017. Finite-strain Landau theory applied to the high-pressure phase transition of lead titanate. Physical Review B, Vol. 95, Issue. 6,


    Körmann, Fritz Ikeda, Yuji Grabowski, Blazej and Sluiter, Marcel H. F. 2017. Phonon broadening in high entropy alloys. npj Computational Materials, Vol. 3, Issue. 1,


    Rinzler, Charles C. and Allanore, Antoine 2016. Connecting electronic entropy to empirically accessible electronic properties in high temperature systems. Philosophical Magazine, Vol. 96, Issue. 29, p. 3041.


    Shulumba, Nina Hellman, Olle Raza, Zamaan Alling, Björn Barrirero, Jenifer Mücklich, Frank Abrikosov, Igor A. and Odén, Magnus 2016. Lattice Vibrations Change the Solid Solubility of an Alloy at High Temperatures. Physical Review Letters, Vol. 117, Issue. 20,


    Krivovichev, Sergey V. 2016. Structural complexity and configurational entropy of crystals. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 72, Issue. 2, p. 274.


    Yokoyama, Hiroyuki Ueda, Yoshihiro Fujita, Daishi Sato, Sota and Fujita, Makoto 2015. Finely Resolved Threshold for the Sharp M12L24/M24L48Structural Switch in Multi-Component MnL2nPolyhedral Assemblies: X-ray, MS, NMR, and Ultracentrifugation Analyses. Chemistry - An Asian Journal, Vol. 10, Issue. 10, p. 2292.


    Murtagh, R. Whyte, D. Weaire, D. and Hutzler, S. 2015. Adaptation of theZ-cone model to the estimation of the energy of a bcc foam. Philosophical Magazine, Vol. 95, Issue. 35, p. 4023.


    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Phase Transitions in Materials
    • Online ISBN: 9781107589865
    • Book DOI: https://doi.org/10.1017/CBO9781107589865
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Offering a fresh viewpoint on phase changes and the thermodynamics of materials, this textbook covers the thermodynamics and kinetics of the most important phase transitions in materials science, spanning classical metallurgy through to nanoscience and quantum phase transitions. Clear, concise and complete explanations rigorously address transitions from the atomic scale up, providing the quantitative concepts, analytical tools and methods needed to understand modern research in materials science. Topics are grouped according to complexity, ensuring that students have a solid grounding in core topics before they begin to tackle more advanced material, and are accompanied by numerous end-of-chapter problems. With explanations firmly rooted in the context of modern advances in electronic structure and statistical mechanics, and developed from classroom teaching, this book is the ideal companion for graduate students and researchers in materials science, condensed matter physics, solid state science and physical chemistry.

Reviews

'This book is clear and well written. It covers most of the topics in phase transitions, and explains thermal dynamics and kinetics in materials science and condensed-matter physics. Readers will be exposed to many topics ranging from classical metallurgy to quantum phase transitions.'

Wanfeng Li Source: MRS Bulletin

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Page 1 of 2



Page 1 of 2


Further reading
References
J.J. Hoyt, Phase Transformations (McMaster Innovation Press, 2010).
D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys (Boca Raton FL: CRC Press, 2009).
P.G. Shewmon, Transformations in Metals (New York: McGraw-Hill, 1969).
P.G. Shewmon, Diffusion in Solids (Warrendale PA: TMS, 1989).
H. Ibach and H. Lüth, Solid-State Physics (An Introduction to the Principles of Materials Science) Fourth Edn. (Springer, 2009).
C. Kittel and H. Kroemer, Thermal Physics Second Edn. (New York, W.H. Freeman, 1980).
C. Kittel, Introduction to Solid State Physics Eighth Edn. (or earlier) (New York: Wiley, 2004).
J.W. Christian, The Theory of Phase Transformations in Metals and Alloys Second Edn. (Oxford, Pergamon, 1975).
M.E. Fine, Phase Transformations in Condensed Systems (New York: Macmillan, 1964).
J.J. Hoyt, Phase Transformations (McMaster Innovation Press, 2010).
P.G. Shewmon, Transformations in Metals (New York: McGraw-Hill, 1969).
D.C. Wallace, Statistical Physics of Crystals and Liquids (Singapore: World Scientific, 2002).
J.M. Yeomans, Statistical Physics of Phase Transitions (Oxford: Clarendon Press, 2002).
C.R. Barrett, W.D. Nix, and A.S. Tetelman, The Principles of Engineering Materials (New Jersey: Prentice-Hall, 1973), Chapters 1-5.
W.D. Callister, Jr., Fundamentals of Materials Science and Engineering, an Integrated Approach Second Edn. (New York: John Wiley, 2005).
J.F. Shackelford, Introduction to Materials Science and Engineering Sixth Edn (Upper Saddle River, NJ: Pearson Prentice Hall, 2005).
J.C. Slater, Introduction to Chemical Physics (New York: McGraw-Hill, 1939), Chapter 17.
P.G. Shewmon, Diffusion in Solids (Warrendale, PA: TMS, 1989).
K.F. Kelton and A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Oxford: Pergamon Materials Series, 2005).
B. Chalmers, Physical Metallurgy (New York: Wiley, 1959).
A. Cottrell, Introduction to the Modern Theory of Metals (London: Institute of Metals, 1988).
D.G. Pettifor, Bonding and Structure of Molecules and Solids (Oxford: Clarendon Press, 1995).
A.P. Sutton, Electronic Structure of Materials (New York: Oxford University Press, 1993).
D.de Fontaine, “Configurational Thermodynamics of Solid Solutions,” Solid State Physics 34, 73-274(1979).
B. Fultz, “Vibrational Thermodynamics of Materials,”Progress in Materials Science 55, 247-352 (2010).
J.C. Slater, Introduction to Chemical Physics (New York: McGraw-Hill, 1939), Chapter 13.
D.C. Wallace, Statistical Physics of Crystals and Liquids (Singapore: World Scientific, 2002), Chapter 5.
H.I. Aaronson, M. Enomoto, and J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys (Boca Raton FL: CRC Press, 2010).
R.W. Balluffi, S.M. Allen, and W.C. Carter, Kinetics of Materials (Hoboken, NJ: Wiley-Interscience, 2005).
J.B. Hudson, Surface Science (New York: Wiley, 1992), Chapters 1, 17.
A. Zangwill, Physics at Surfaces (Cambridge: Cambridge University Press, 1988), Chapters 1-3, 16.
J.W. Cahn and J.E. Hilliard, “Free energy of a nonuniform system. 1. Interfacial free energy,”Journal of Chemical Physics 28, 258 (1958).
J.W. Cahn, “On spinodal decomposition,”Acta Metallurgica 9, 795 (1961).
N. Provatas and K. Elder, Phase Field Methods in Materials Science and Engineering (Weinheim: Wiley-VCH, 2010).
A.G. Khachaturyan, “Ordering in substitutional and interstitial solid solutions,”Progress in Materials Science 22, 1–150 (1978).
A.G. Khachaturyan, Theory of Structural Transformations in Solids (New York: Wiley-Interscience, 1983).
P.G. Shewmon, Transformations in Metals (New York: McGraw-Hill, 1969), Chapter 8.
C. Kittel, Introduction to Solid State Physics Eighth Edn. (New York: Wiley, 2004) Chapter 18.
H.-E. Schaefer, Nanoscience (Heidelberg: Springer, 2010).
C. Kittel, Introduction to Solid State Physics Eighth Edn. (New York: Wiley, 2004).
D.R. Tilley and J. Tilley, Superfluidity and Superconductivity (London: Institute of Physics Publishing, 1994).
M. Tinkham, Introduction to Superconductivity Second Edn. (Mineola, New York: Dover, 1996).
R. Kikuchi, “The path probability method,”Supplement of Progress of Theoretical Physics 35, 1 (1960).
A.G. Khachaturyan, Theory of Structural Transformations in Solids (New York: Wiley-Interscience, 1983), Chapters 7, 8, 13.
F. Ducastelle, Order and Phase Stability in Alloys (Amsterdam: North-Holland, 1991), Chapter 3.
D. Chandler, Introduction to Modern Statistical Mechanics (New York: Oxford University Press, 1987).
D.L. Goodstein, States of Matter (New York: Dover, 1985), Chapter 6.
H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (New York: Oxford University Press, 1971).
J.M. Yeomans, Statistical Physics of Phase Transitions (Oxford: Clarendon Press, 2002).
G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Mineola, NY: Dover, 1978).
N.W. Ashcroft and N.D. Mermin, Solid State Physics (New York: Holt, Reinhart and Winston, 1976), Chapters 22-27.
M.T. Dove, Introduction to Lattice Dynamics (Cambridge: Cambridge University Press, 1993).
B. Fultz, “Vibrational thermodynamics of materials,” in Progress in Materials Science 55, 247-352 (2010).
G. Grimvall, The Electron–Phonon Interaction in Metals (Amsterdam: North-Holland, 1981).
D.C. Wallace, Thermodynamics of Crystals (Mineola, NY: Dover, 1998).
[1] A. Cerezo, J.M. Hyde, M.K. Miller et al., Phil. Trans. Roy. Soc. London A 341, 313 (1992).
[2] W. Hume-Rothery and G.V. Raynor, The Structure of Metals and Alloys (Institute of Metals, London, 1962).
[3] A. Cottrell, Introduction to the Theory of Metals (Institute of Metals, London, 1988).
[4] L.S. Darken and R.W. Gurry, Physical Chemistry of Metals (McGraw-Hill, New York, 1953), p. 74.
[5] D.G. Pettifor, Bonding and Structure of Molecules and Solids (Clarendon Press, Oxford, 1995).
[6] A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Physica B,C 100, 1 (1980).
[7] C. Kittel, Thermal Physics (John Wiley, New York, 1969), Chapter 2.
[8] J.W. Gibbs, Trans. Conn. Acad. 3, 108 (1876).
[9] H. Okamoto, Desk Handbook Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).
[10] P. Villars, Ed., with H. Okamoto and K. Cenzual, ASM Alloy Phase Diagram Database (ASM International, Materials Park, OH, 2006–2013).
[11] B.E. Warren, X-Ray Diffraction (Dover, Mineola, New York, 1990).
[12] W.L. Bragg and E.J. Williams, Proc. Roy. Soc. London A 145, 699 (1934).
[13] W.L. Bragg and E.J. Williams, Proc. Roy. Soc. London A 151, 540 (1935). Ibid. 152, 231.
[14] H.A. Bethe, Proc. Roy. Soc. London A 150, 552 (1935).
[15] D.R.F. West and N. Saunders, Ternary Phase Diagrams in Materials Science, Third Edn. (Institute of Materials, London, 2002).
[16] N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Volume 1 (Pergamon Materials Series, 1998).
[17] P.E.A. Turchi, A. Gonis, and R.D. Shull, Eds., CALPHAD and Alloy Thermodynamics (TMS Publication, Warrendale, PA, 2002).
[18] P.E.A. Turchi, I.A. Abrikosov, B. Burton et al., CALPHAD 31, 4 (2007).
[19] P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw–Hill, New York, 1953), Chapters 5 and 10.
[20] J.K. Lee and H.I. Aaronson, Acta Metall., 23, 799 (1975).
[21] U. Dahmen, S. Hagège, F. Faudot, T. Radetic, and E. Johnson, Philos. Mag. 84, 2651 (2004).
[22] J.W. Gibbs, Trans. Conn. Acad. 11, 382 (1873).
[23] M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).
[24] Z. Farkas, Z. Phys. Chem. A125, 236 (1927).
[25] R. Becker and W. Döring, Ann. Phys. 24, 1 (1935).
[26] J.B. Zeldovich, Acta Physicochim. 18, 1 (1943).
[27] K.F. Kelton and A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Pergamon Materials Series, Oxford, 2005).
[28] H. Trinkaus and M.H. Yoo, Philos. Mag. A55, 269 (1987).
[29] G. Shi, J.H. Seinfeld, and K. Okuyama, Phys Rev. A41, 2101 (1990).
[30] G.H. Gulliver, J. Inst. Met. 9, 120 (1913).
[31] E. Scheil, Z. Metallk. 34, 70 (1942).
[32] B. Chalmers, Physical Metallurgy (Wiley, New York, 1959).
[33] W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).
[34] W. Klement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960).
[35] R.B. Schwarz and W.L. Johnson, Phys. Rev. Lett. 51,415 (1983).
[36] W.L. Johnson, Prog. Mater. Sci. 30, 81 (1986).
[37] P.J. Desré and A.R. Yavari, Phys. Rev. Lett. 64, 1533 (1990).
[38] U. Gösele and K.N. Tu, J. Appl. Phys. 53, 3252 (1982).
[39] M-A. Nicolet and S.S. Lau, in VLSI Electronics, Volume 6, N.G. Einspruch and G.B. Larrabee, Eds. (Academic, New York, 1983), p. 329.
[40] R. Walser and R. Bené, Appl. Phys. Lett. 28, 624 (1976).
[41] W. Kauzmann, Chem. Rev. 43, 219 (1948).
[42] C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, J. Appl. Phys. 88, 3113 (2000).
[43] P.G. Debenedetti and F.H. Stillinger, Nature 410, 259 (2001).
[44] J.C. Phillips and J.A. Van Vechten, Phys. Rev. B 2, 2147 (1970).
[45] J.C. Phillips and J.A. Van Vechten, Phys. Rev. Lett. 22, 705 (1969).
[46] C. Kittel, Introduction to Solid State Physics Fourth Edn. (Wiley, New York, 1971), p. 143.
[47] The Fermi Surface Database http://www.phys.ufl.edu/fermisurface/
[48] T.S. Choy, J. Naset, J. Chen, S. Hershfield and C. Stanton, Bull. Am. Phys. Soc. 45, 42 (2000).
[49] J.D. Eshelby, J. Appl. Phys. 25, 255 (1954).
[50] J.D. Eshelby, Solid State Phys. 3, 79 (1956).
[51] R.V. Zucker, D. Chatain, U. Dahmen, S. Hagège, and W.C. Carter, J. Mater. Sci. 47, 8290 (2012).
[52] R. Kikuchi, Phys. Rev. 81, 988 (1951).
[53] R. Kikuchi, J. Chem. Phys. 60, 1071 (1974).
[54] D. de Fontaine, in Solid State Physics, Volume 34, H. Ehrenreich, F. Seitz, and D. Turnbull, Eds. (Academic Press, New York, 1979), p. 73.
[55] R.H. Fowler and E.A. Guggenheim, Proc. Roy. Soc. London A 174, 189 (1940).
[56] J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica A 128, 334 (1984).
[57] J.W.D. Connolly and A.R. Williams, Phys. Rev. B 27, 5169 (1983).
[58] R. Kikuchi, Phys. Rev. 81, 988 (1951).
[59] C.M. Van Baal, Physica 64, 571 (1973).
[60] J.M. Sanchez and D. de Fontaine, Phys. Rev. B 21, 216 (1980).
[61] P. Cenedese and R. Kikuchi, Physica A 205, 747 (1994).
[62] L. Onsager, Phys. Rev. 65, 117 (1944).
[63] A.A. Maradudin, E.W. Montroll, G.H. Weiss, and I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971).
[64] M. Born and K. Wang, Dynamical Theory of Crystal Lattices (Oxford Classic Texts, Clarendon Press, Oxford, 1988).
[65] M.T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).
[66] A. van de Walle and G. Ceder, Revs. Mod. Phys. 74, 11 (2002).
[67] G. Moraitis and F. Gautier, J. Phys. F: Metal Phys. 7, 1421 (1977).
[68] J.A.D. Matthew, R.E. Jones, and V.M. Dwyer, J. Phys. F: Metal Phys. 13, 581 (1983).
[69] A.A.H.J. Waegemaekers and H. Bakker, Mater. Res. Soc. Symp. Proc. 21, 343 (1984).
[70] G.D. Garbulsky and G. Ceder, Phys.Rev.B 53, 8993 (1996).
[71] S. Baer, J. Phys. C: Solid State Phys. 16, 4103 (1983).
[72] A. Einstein, Ann. Phys. 22, 180 (1907).
[73] J. Mahanty and M. Sachdev, J. Phys. C 3, 773 (1970).
[74] H. Bakker, Philos. Mag. A 45, 213 (1982).
[75] H. Bakker, Phys. Stat. Solidi B 109, 211 (1982).
[76] O. Delaire, T. Swan-Wood, and B. Fultz, Phys. Rev. Lett. 93, 185704 (2004).
[77] B. Fultz and J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials Fourth Edn. (Springer, Heidelberg, 2013).
[78] M.H.F. Sluiter, M. Weinert, and Y. Kawazoe, Phys. Rev. B 59, 4100 (1999).
[79] A. van de Walle and G. Ceder, Phys. Rev. B 61, 5972 (2000).
[80] E.J. Wu, G. Ceder, and A. van de Walle, Phys. Rev. B 67, 134103 (2003).
[81] J.C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939), Chapter 13.
[82] M.L. Winterrose, M.S. Lucas, A. F. Yue et al., Phys. Rev. Lett. 102, 237202 (2009).
[83] J.R. Manning, Acta Metall. 15, 817 (1967).
[84] R. Kikuchi and H. Sato, J. Chem. Phys. 53, 2702 (1970).
[85] H. Sato and R. Kikuchi, Acta Metall. 24, 797 (1976).
[86] B. Fultz, J. Chem. Phys. 87, 1604 (1987).
[87] H. Bakker, Philos. Mag. 40, 525 (1979).
[88] A.D. Smigelskas and E.O. Kirkendall, Trans. AIME 171, 131 (1947).
[89] G. Martin, Phys. Rev. B 30, 1424 (1984).
[90] G. Martin and P. Bellon, Solid State Physics, Volume 50, H. Ehrenreich and F. Spaepen, Eds. (Academic Press, New York, 1996), p. 189.
[91] G. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
[92] S. Rice, Phys. Rev. 112, 804 (1958).
[93] A.C. Lawson, Philos. Mag. 89, 1757 (2009).
[94] J.H. Rose, J. Ferrante, and J.R. Smith, Phys. Rev. Lett. 47, 675 (1981).
[95] J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).
[96] X. Tang, C.W. Li, and B. Fultz, Phys. Rev. B 82, 184301 (2010).
[97] M.H.G. Jacobs and R. Schmid-Fetzer, Phys. Chem. Minerals 37 721 (2010).
[98] P.J. Spencer and the Scientific Group Thermodata Europe (SGTE), Landolt–Börnstein / New Series Group IV: Physical Chemistry, Volume 19 (Springer, Heidelberg, 1999).
[99] SGTE Scientific Group Thermodata Europe http://www.met.kth.se/sgte/
[100] N. Bock, D. Coffey, and D.C. Wallace, Phys. Rev. B 72, 155120 (2005).
[101] N. Bock, D.C. Wallace, and D. Coffey, Phys. Rev. B 73, 075114 (2006).
[102] M. G. Kresch, M.S. Lucas, O. Delaire, J.Y.Y. Lin, and B. Fultz, Phys. Rev. B 77, 024301 (2008).
[103] F. Körmann, A. Dick, B. Grabowski, et al., Phys. Rev. B 78, 033102 (2008).
[104] F. Körmann, A. Dick, B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Rev. B 85, 125104 (2012).
[105] M. Forsblum and G. Grimvall, Phys. Rev. B 72, 132204 (2005).
[106] D.C. Wallace, Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State (World Scientific, Singapore, 2003).
[107] F.A. Lindemann, Phys. Z. 11, 609 (1910).
[108] J.J. Gilvarry, Phys. Rev. 102, 308 (1956).
[109] M.D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000).
[110] W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, and K. Samwer, MRS Bull. 32, 644 (2007).
[111] K. Gschneidner Jr., Solid State Physics, Volume 16, F. Seitz and D. Tunbull, Eds. (Academic Press, New York, 1965), p. 275.
[112] R. Bohmer, K.L. Ngai, C.A. Angell, and D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).
[113] C.A. Angell, Science 267, 1924 (1995).
[114] J.M. Kosterlitz and D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).
[115] G. Liu, G.J. Zhang, X.D. Ding, J. Sun, and K.H. Chen, Mater. Sci. Eng. A 344, 113, (2003).
[116] R. Banerjee, S. Nag, J. Stechschulte, and H.L. Fraser, Biomaterials 25, 3413 (2004).
[117] J.S. Langer and A.J. Schwartz, Phys. Rev. A21, 948 (1980).
[118] K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976).
[119] D.T. Wu, in Solid State Physics, Volume 50, H. Ehrenreich and F. Spaepen, Eds. (Academic Press, New York, 1997) p. 37.
[120] A.N. Kolmogorov, Akad. Nauk SSSR, Izv., Ser. Matem. 355, 1 (1937).
[121] W.A. Johnson and P.A. Mehl, Trans. AIME 135, 416 (1939).
[122] M. Avrami, J. Chem. Phys. 7, 1103 (1939).
[123] M. Avrami, J. Chem. Phys. 8, 212 (1940).
[124] M. Avrami, J. Chem. Phys. 9, 177 (1941).
[125] J.J. Hoyt, Phase Transformations (McMaster Innovation Press, Hamilton, ON, 2010).
[126] J.W. Cahn, Acta Metall. 4, 449 (1956).
[127] I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).
[128] C. Wagner, Z. Electrochem. 65, 581 (1961).
[129] C.E. Krill and L.Q. Chen, Acta Mater. 50, 3057 (2002).
[130] J.W. Cahn, Acta Metall. 9, 795 (1961).
[131] J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[132] J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).
[133] J.W. Cahn, Acta Metall. 10, 179 (1962).
[134] A.G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley-Interscience, New York, 1983).
[135] Wei Xiong, P. Hedström, M. Selleby et al., CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 35, 355 (2011).
[136] J.S. Langer, Rev. Mod. Phys. 52, 1 (1980).
[137] A. Karma and W.J. Rappel, Phys. Rev. E 57, 4323 (1998).
[138] W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Ann. Rev. Mater. Res. 32, 163 (2002).
[139] J.A. Warren and W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995).
[140] J.J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng. Reports 41, 121 (2003).
[141] P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)
[142] T. Mohri, in Alloy Physics, W. Pfeiler, Ed. (Wiley-VCH, Weinheim, 2007), Chapter 10.
[143] S.M. Allen and J.W. Cahn, Acta Metall. 27, 1085 (1979).
[144] D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985).
[145] A.G. Khachaturyan, Phys. Met. Metallog. 13, 493 (1962).
[146] A.G. Khachaturyan, Sov. Phys. Solid State 5, 16 (1963).
[147] A.G. Khachaturyan, Sov. Phys. Solid State 5, 548 (1963).
[148] A.G. Khachaturyan, Prog. Mater. Sci. 22, 1-150 (1978).
[149] L.D. LandauZh. Eksp. Teor. Fiz. 7, 19 (1937). Ibid 7, 627 (1937). Translated and reprinted in L.D. Landau, Collected Papers, Volume 1 (Nauka, Moscow, 1969) pp. 234-252.
[150] L.D. Landau and E.M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, Massachusettts, 1969), Chapters 13, 14.
[151] E.Z. Kaminsky and G.V. Kurdjumov, Zh. Tekh. Fiz. 6, 984 (1936).
[152] G.V. Kurdjumov, V.I. Miretzskii, and T.I. Stelletskaya, Zh. Tekh. Fiz. 2, 1956 (1939).
[153] P.G. Shewmon, Transformations in Metals (McGraw-Hill, New York, 1969).
[154] G.V. Kurdjumov and G. Sachs, Z. Phys. 64, 325 (1930).
[155] Z. Nishiyama, Sci. Rep. Tohoku Univ. 23, 637 (1934).
[156] D.S. Lieberman, M.S. Weschler, and T.A. Read, J. Appl. Phys. 26, 473 (1955).
[157] G.V. Kurdjumov and G. Khandros, Dokl. Nauk. SSSR 66, 211 (1949).
[158] H.C. Tong and C.M. Wayman, Acta Metall. 23, 209 (1975).
[159] Z. Nishiyama, Martensitic Transformation (Academic Press, New York, 1978).
[160] A.J. Bogers and W.G. Burgers, Acta Metall. 12, 255 (1964).
[161] G.B. Olson and M. Cohen, J. Less-Common Metals 28, 107 (1972).
[162] L. Bracke, L. Kestens, and J. Penning, Scripta Metall. 57, 385 (2007).
[163] M.S. WechslerD.S. Lieberman, and T.A. Read, Trans. AIME 197, 1503 (1953).
[164] J.S. Bowles and J.K. Mackenzie, Acta Metall. 2, 129 (1954).
[165] J.K. Mackenzie and J.S. Bowles, Acta Metall. 2, 138 (1954).
[166] J.K. Mackenzie and J.S. Bowles, Acta Metall. 5, 137 (1957).
[167] J.W. Christian, J. Inst. Metals 84, 385 (1956).
[168] M. Born, Proc. Cambridge Philos. Soc. 36, 160 (1940).
[169] C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).
[170] E.S. Scheil, Anorg. Allg. Chem. 207, 21 (1932).
[171] P.C. ClappPhys. Stat. Sol. B 57, 561 (1973).
[172] J. Trampenau, W. Petry, and C. Herzig, Phys. Rev. B 47, 3132 (1993).
[173] W. Petry, Phase Trans. 31, 119 (1991).
[174] W. Petry, A. Heiming, J. Trampenau et al., Phys. Rev. B 43, 10933 (1991).
[175] W. Petry, J. Phys. IV 5 C2, 15 (1995).
[176] J. Friedel, J. Phys. Lett. (Paris) 35, 59 (1974).
[177] J.W. Cahn, Prog. Mater. Sci. 36, 149 (1992).
[178] L. Mañosa, A. Planes, J. Ortín, and B. Martínez, Phys. Rev. B 45, 7633 (1992).
[179] L. Mañosa, A. Planes, J. Ortín, and B. Martínez, Phys. Rev. B 48, 3611 (1993).
[180] E. Obradó, L. Mañsa, and A. Planes, Phys.Rev. B 56, 20 (1997).
[181] P. Bogdanoff and B. Fultz, Philos. Mag. B 81, 299 (2001).
[182] A. Tschöpe and R. Birringer, Acta Metall. Mater. 41, 2791 (1993).
[183] L.B. Hong and B. Fultz, J. Appl. Phys. 79, 3946 (1996).
[184] H.E. Schaefer, Nanoscience (Springer, Heidelberg, 2010).
[185] W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).
[186] H. Van Swygenhoven, D. Farkas, and A. Caro, Phys. Rev. B 62, 831 (2000).
[187] M. Yuasa, T. Nakazawa, and M. Mabuchi, J. Phys.: Condens. Matter 24, 265703 (2012).
[188] D. Olmsted, S.M. Foiles, and E.A. Holm, Acta Mater. 57, 3694 (2009).
[189] W. Setyawan and R.J. Kurtz, Scripta Mater. 66, 558 (2012).
[190] B. Fultz, H. Kuwano, and H. Ouyang, J. Appl. Phys. 77, 3458 (1995).
[191] D. Udler and D.N. Seidman, Phys. Rev. B 54, R 11133 (1996).
[192] S.M. Foiles, Scripta Mater 62, 231 (2010).
[193] P. Keblinski, S.R. Phillpot, D. Wolf, and H. Gleiter, Phys. Rev. Lett. 77, 2965 (1996).
[194] K. Yamada and C.C. KochJ. Mater. Res. 8, 1317 (1993).
[195] K. Suzuki and K. Sumiyama, Mater. Trans. JIM 36, 188 (1995).
[196] J. Trampenau, K. Bauszuz, W. Petry, and U. Herr, Nanostruct. Mater. 6, 551 (1995).
[197] B. Fultz, J.L. Robertson, T.A. Stephens, L.J. Nagel, and S. Spooner, J. Appl. Phys. 79, 8318 (1996).
[198] H.N. Frase, L.J. Nagel, J.L. Robertson, and B. Fultz, Philos. Mag. B 75, 335 (1997).
[199] H.N. Frase, B. Fultz, and J.L. Robertson, Phys. Rev. B 57, 898 (1998).
[200] A.B. Papandrew, A.F. Yue, B. Fultz et al., Phys. Rev. B 69, 144301 (2004).
[201] B. Fultz, C.C. Ahn, E.E. Alp, W. Sturhahn, and T.S. Toellner, Phys. Rev. Lett. 79, 937 (1997).
[202] E. Bonetti, L. Pasquini, E. Sampaolesi, A. Deriu, and G. Cicognani, J. Appl. Phys. 88, 4571 (2000).
[203] H.N. Frase, L.J. Nagel, J.L. Robertson, and B. Fultz, in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, E. Ma, B. Fultz, R. Shull, J. Morral, and P. Nash, Eds. (TMS, Warrendale, PA, 1997), p. 125.
[204] B.R. Cuenya, A. Naitabdi, J. Croy et al., Phys. Rev. B 76, 195422 (2007).
[205] B.R. Cuenya, W. Keune, R. Peters et al., Phys. Rev. B 77, 165410 (2008).
[206] A. Tamura, H. Higeta, and T. Ichinokawa, J. Phys. C 15, 4975 (1982).
[207] A. Tamura and T. Ichinokawa, J. Phys. C 16, 4779 (1983).
[208] A. Tamura, H. Higeta, and T. Ichinokawa, J. Phys. C 16, 1585 (1983).
[209] J. Purewal, unpublished Ph.D. thesis in materials science, California Institute of Technology (2010).
[210] M.F. Hansen, C.B. Koch, and S. Mørup, Phys. Rev. B 62, 1124 (2000).
[211] S. Bedanta, SubhankarW. Kleemann, J. Phys. D Appl. Phys. 42, 013001 (2009).
[212] S. Mørup, M.F. Hansen, and C. Frandsen, Beilstein J. Nanotechnol. 1, 182 (2010).
[213] L.J. Nagel, B. Fultz, J.L. Robertson, and S. Spooner, Phys. Rev. B 55, 2903 (1997).
[214] M.E. Manley, B. Fultz, and L.J. Nagel, Philos. Mag. B 80, 1167 (2000).
[215] L.J. Nagel, unpublished Ph.D. thesis in materials science, California Institute of Technology (1996).
[216] J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963). Ibid 281, 401 (1964).
[217] U. Rössler, Solid State Theory (Springer, Berlin, 2004), Chapter 7.
[218] K. Yosida, Theory of Magnetism (Springer, Berlin, 1998).
[219] T. Holstein, Ann. Phys. 8, 325 (1959). Ibid 8, 342 (1959).
[220] D. Emin and T. Holstein, Ann. Phys. 53, 439 (1969).
[221] I.G. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).
[222] J.B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958).
[223] J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
[224] P.W. Anderson, Solid State Physics, Volume 14, F. Seitz and D. Turnbull, Eds. (Academic Press, New York 1963), p. 99.
[225] J.B. Goodenough, Scholarpedia 3, 7382 (2008).
[226] M.A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[227] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[228] K. Yosida, Phys. Rev. 106, 893 (1957).
[229] I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
[230] T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
[231] T. Moriya, Phys. Rev. 120, 91 (1960).
[232] M. Woloszyn, D. Stauffer, and K. Kulakowski, Eur. Phys. J. B 57, 331 (2007).
[233] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science 269, 198 (1995).
[234] The Nobel Prize in Physics 2001 http://www.nobelprize.org/nobel_prizes/physics/laureates/
[235] B.D. Josephson, Phys. Lett. 1, 251 (1962).
[236] B.D. Josephson, Adv. Phys. 14, 419 (1965).
[237] D.R. Tilley and J. Tilley, Superfluidity and Superconductivity (Institute of Physics Publishing, London, 1994).
[238] M. Tinkham, Introduction to Superconductivity, Second Edn. (Dover, Mineola, 1996).
[239] H. Kamerlingh Onnes, Leiden Comm. 120b, 122b, 124c (1911).
[240] L.N. Cooper, Phys. Rev. 104, 1189 (1956).
[241] J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[242] W.L. McMillan, Phys. Rev. 167, 331 (1968).
[243] P.B. Allen and R. Dynes, Phys. Rev. B 12, 905 (1975).
[244] A.A. Abrikosov, Zh. Eksperim. Teor. Fiz. 32, 1442 (1957).
[245] V.L. Ginzburg and L.D. Landau, Zh. Eksperim. Teor. Fiz. 20, 1064 (1950).
[246] G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).
[247] A. Tonomura, J. Electron Microsc. 52, 11 (2003).
[248] I.I. Mazin, Nature 464, 183 (2010).
[249] J.A. Hertz, Phys. Rev. B 14, 1165 (1976).
[250] S. Sachdev, Science 288, 5465 (2000).
[251] S. Sachdev and B. Keimer, Phys. Today 64, 29 (2011).
[252] I.S. Lyubutin, V.V. Struzhkin, A.A. Mironovich et al., Proc. Natl Acad. Sci. USA 110, 7142 (2013).
[253] M.J. Richards and J.W. Cahn, Acta Metall. 19, 1263 (1971).
[254] S.M. Allen and J.W. Cahn, Acta Metall. 20, 423 (1972).
[255] J. Kanamori, Prog. Theor. Phys. 35, 16 (1966).
[256] M. Kaburagi and J. Kanamori, Prog. Theor. Phys. 54, 30 (1975).
[257] G. Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda, Phys. Rev. B 49, 1 (1994).
[258] M. Sluiter, P. Turchi, Z. Fu, and D. de Fontaine, Physica A 148, 61 (1988).
[259] L.B. Hong and B. Fultz, Phys. Rev. B 52, 6230 (1995).
[260] M.R. Collins and H.C. Teh, Phys. Rev. Lett. 30, 781 (1973).
[261] M. Suzuki, M. Katori, and X. Hu, J. Phys. Soc. Jpn. 56, 3092 (1987).
[262] D.L. Goodstein, States of Matter (Dover, New York, 1985), Chapter 6.
[263] H.J. Maris and L. Kadanoff, Am. J. Phys. 46, 652 (1978).
[264] D. Chandler, Introduction to Modern Statistical Mechanics (Oxford Univ. Press, Oxford/New York, 1987), Chapter 5.
[265] L-Q. Chen and A.G. Khachaturyan, Acta Met. Mater. 39, 2533 (1991).
[266] Y. Wang, L-Q. Chen, and A.G. Khachaturyan, Acta Met. Mater. 41, 279 (1993).
[267] Y. Wang and A.G. Khachaturyan, Acta Mater. 45, 759 (1997).
[268] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Second Edn. (Elsevier, Amsterdam, 2004).
[269] B. Fultz, Acta Metall. 37, 823 (1989). Ibid. 37, 2841 (1989).
[270] B. Fultz, J. Mater. Res. 5, 1419 (1990).
[271] K. Gschwend, H. Sato, and R. Kikuchi, J. Chem. Phys. 69, 5006 (1978).
[272] K. Gschwend, H. Sato, R. Kikuchi, H. Iwasaki, and H. Maniwa, J. Chem. Phys. 71, 2844 (1979).
[273] B. Fultz, J. Less-Common Metals 168, 145 (1991).
[274] B. Fultz, J. Mater. Res. 7, 946 (1992).
[275] Z-Q. Gao and B. Fultz, Philos. Mag. 67, 787 (1993).
[276] M. Becker and W. Schweika, Scripta Mater. 35, 1259 (1996).
[277] L. Anthony and B. Fultz, J. Mater. Res. 9, 348 (1994).
[278] B. Fultz, Philos. Mag. B 67, 253 (1993).
[279] S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Volume 1 (Clarendon, Oxford, 1984).
[280] G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering(Cambridge Univ. Press, Cambridge, 1978), reprinted by Dover, Mineola, NY, 1996.
[281] L. Van Hove, Phys. Rev. 95, 249 (1954).
[282] G.A. Samara and P.S. Peercy, Phys. Rev. B 7, 1131 (1973).
[283] N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), Appendix L.
[284] C.W. Li, M.M. McKerns, and B. Fultz, J. Am. Ceramic Soc. 94, 125 (2011).
[285] C.W. Li, M.M. McKerns, and B. Fultz, Phys. Rev. B 80, 054304 (2009).
[286] A.M. Zagoskin, Quantum Theory of Many-Body Systems (Springer, New York, 1998).
[287] A.A. Maradudin and A.E. Fein, Phys. Rev. 128, 2589 (1962).
[288] D.C. Wallace, Thermodynamics of Crystals (Dover, Mineola, New York, 1998).
[289] R.C. Shukla and E.R. Cowley, Phys. Rev. B 3, 4055 (1971). Ibid. 58, 2596 (1998). Ibid. 62, 3232 (2000).
[290] P.D. Bogdanoff, B. Fultz, J.L. Robertson, and L. Crow, Phys. Rev. B 65, 014303 (2002).
[291] M.E. Manley, R.J. McQueeney, B. Fultz et al., Phys. Rev. B 65, 144111 (2002).
[292] O. Delaire, M.S. Lucas, J.A. Muñoz, M. Kresch, and B. Fultz, Phys. Rev. Lett. 101, 105504 (2008).
[293] J.A. Muñoz, M.S. Lucas, O. Delaire et al., Phys. Rev. Lett. 107, 115501 (2011).
[294] T. Lan, X. Tang, and B. Fultz, Phys. Rev. B 85, 094305 (2012).
[295] T. Lan, C-W. Li, and B. Fultz, Phys. Rev. B 86, 134302 (2012).
[296] C.W. Li, X. Tang, J.A. Muñoz et al., Phys. Rev. Lett. 107, 195504 (2011).
[297] M.S. Lucas, J.A. Muñoz, O. Delaire et al., Phys. Rev. B 82, 144306 (2010).
[298] J.M. Wills and W.A. Harrison, Phys. Rev. B 28, 4363 (1983).
[299] J.A. Muñoz, M.S. Lucas, L. Mauger et al., Phys. Rev. B 87, 014301 (2013).
[300] O. Delaire, M. Kresch, J.A. Muñoz et al., Phys. Rev. B 77, 214112 (2008).
[301] O. Delaire, K. Marty, M.B. Stone et al., Proc. Natl Acad. Sci. USA 108,4725 (2011).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2812 *
Loading metrics...

Book summary page views

Total views: 2404 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 14th December 2017. This data will be updated every 24 hours.