Skip to main content Accessibility help
×
  • Cited by 8
Publisher:
Cambridge University Press
Online publication date:
November 2023
Print publication year:
2023
Online ISBN:
9781108993913
Series:
Elements in the Philosophy of Mathematics

Book description

This Element explores the relationship between phenomenology and mathematics. Its focus is the mathematical thought of Edmund Husserl, founder of phenomenology, but other phenomenologists and phenomenologically-oriented mathematicians, including Weyl, Becker, Gödel, and Rota, are also discussed. After outlining the basic notions of Husserl's phenomenology, the author traces Husserl's journey from his early mathematical studies. Phenomenology's core concepts, such as intention and intuition, each contributed to the emergence of a phenomenological approach to mathematics. This Element examines the phenomenological conceptions of natural number, the continuum, geometry, formal systems, and the applicability of mathematics. It also situates the phenomenological approach in relation to other schools in the philosophy of mathematics-logicism, formalism, intuitionism, Platonism, the French epistemological school, and the philosophy of mathematical practice.

References

van Atten, M. (2007). Brouwer Meets Husserl: On the Phenomenology of Choice Sequences. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-5087-9.
van Atten, M. (2010). Construction and Constitution in Mathematics. New Yearbook for Phenomenology and Phenomenological Philosophy, 10: 4390.
van Atten, M., van Dalen, D., and Tieszen, R. (2002). Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum. Philosophia Mathematica, 10: 203–26. https://doi.org/10.1093/philmat/10.2.203.
van Atten, M., and Kennedy, J. (2003). On the Philosophical Development of Kurt Gödel. Bulletin of Symbolic Logic, 9: 425–76.
Bachelard, S. (1968). A Study of Husserl’s Formal and Transcendental Logic. Translated by L. E. Embree. Evanston, IL: Northwestern University Press.
Becker, O. (1923). Beiträge zur Phänomenologischen Begründung der Geometrie und ihrer physikalischen Anwendungen. Jahrbuch für Philosophie und phänomenologische Forschung, 6: 385560.
Becker, O. (1927). Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene. Halle: Max Niemeyer.
Benacerraf, P. (1973). Mathematical Truth. Journal of Philosophy, 70: 661–79.
Brouwer, L. E. J. (1975). Intuitionism and Formalism. Bulletin of the American Mathematical Society, 20: 8196. https://doi.org/10.1090/S0002-9904-1913-02440-6.
Cantor, G. (1915). Contributions to the Founding of the Theory of Transfinite Numbers. Translated by P. Jourdain. New York: Dover.
Carter, J. (2019). Philosophy of Mathematical Practice: Motivations, Themes and Prospects. Philosophia Mathematica, 27: 132.https://doi.org/10.1093/philmat/nkz002.
Cavaillès, J. (2021). On Logic and the Theory of Science. Translated by R. Mackay and K. Peden. Falmouth: Urbanomic Media.
Caveing, M. (2004). Le problème des objets dans la pensée mathématique. Paris: Vrin.
Centrone, S. (2010). Logic and Philosophy of Mathematics in the Early Husserl. Dordrecht: Springer.
Cobb-Stevens, R. (2002). Aristotelian Themes in Husserl’s Logical Investigations. In Zahavi, D. and Stjernfelt, F. (eds.), One Hundred Years of Phenomenology: Husserl’s Logical Investigations Revisited. Dordrecht: Kluwer, 7992.https://doi.org/10.1007/978-94-017-0093-1_6.
Da Silva, J. J. (2000). Husserl’s Two Notions of Completeness: Husserl and Hilbert on Completeness and Imaginary Elements in Mathematics. Synthese, 125: 417–38.
Da Silva, J. J. (2013). How Sets Came to Be: The Concept of Set from a Phenomenological Perspective. New Yearbook for Phenomenology and Phenomenological Philosophy, 13: 84100.
Da Silva, J. J. (2016). Husserl and Hilbert on Completeness, Still. Synthese, 193: 1925–47. https://doi.org/10.1007/s11229-015-0821-2.
Derrida, J. (1989). Edmund Husserl’s Origin of Geometry: An Introduction. Translated by J. P. Leavey Jr. Lincoln, NB: University of Nebraska Press.
Desanti, J.-T. (1968). Les idéalités mathématiques. Paris: Seuil.
Descartes, R. (1985). Rules for the Direction of the Mind. Translated by D. Murdoch. In Cottingham, J., Stoothoff, R., and Murdoch, D. (eds.), The Philosophical Writings of Descartes, vol. 1. Cambridge: Cambridge University Press, 778. https://doi.org/10.1017/CBO9780511805042.004.
Drummond, J. J. (1990). Husserlian Intentionality and Non-Foundational Realism. Dordrecht: Kluwer.
Drummond, J. J. (2009). Phénoménologie et ontologie. Translated by G. Fréchette. Philosophiques, 36: 593607. https://doi.org/10.7202/039488ar.
Fine, K. (1998). Cantorian Abstraction: A Reconstruction and Defense. Journal of Philosophy, 95 (12): 599634.https://doi.org/10.2307/2564641.
Føllesdal, D. (1994). Husserl and Frege: A Contribution to Elucidating the Origins of Phenomenological Philosophy. Translated by C. O. Hill. In Haaparanta, L. (ed.), Mind, Meaning, and Mathematics: Essays on the Philosophical Views of Husserl and Frege. Dordrecht: Kluwer, 347. https://doi.org/10.1007/978-94-015-8334-3_1.
Frege, G. (1972). Review of Husserl’s Philosophy of Arithmetic. Translated by E. W. Kluge. Mind, 81: 321–37.
Frege, G. (1980a). Begriffsschrift, a Formula Language, Modeled upon That of Arithmetic, for Pure Thought. In van Heijenoort, J. (ed.), Frege and Gödel: Two Fundamental Texts in Mathematical Logic. Cambridge, MA: Harvard University Press, 182.
Frege, G. (1980b). The Foundations of Arithmetic: A Logico-Mathematical Inquiry into the Concept of Number. Translated by J. L. Austin. Evanston, IL: Northwestern University Press.
Gödel, K. (1961). The Modern Development of the Foundations of Mathematics in the Light of Philosophy. In Gödel, K., Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Solovay, R. N. (eds.), Collected Works, vol. 3 (1995). Oxford: Oxford University Press, 374–87.
Gödel, K. (1964). What is Cantor’s Continuum Problem? In Gödel, K., Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Solovay, R. N. (eds.), Collected Works, vol. 2 (1990). Oxford: Oxford University Press, 254–70.
Hartimo, M. (2007). Towards Completeness: Husserl on Theories of Manifolds 1890–1901. Synthese, 156: 281310. https://doi.org/10.1007/s11229-006-0008-y.
Hartimo, M. (2018). Husserl on Completeness, Definitely. Synthese, 195: 1509–27. https://doi.org/10.1007/s11229-016-1278-7.
Hartimo, M. (2021). Husserl and Mathematics. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108990905.
Hauser, K. (2006). Gödel’s Program Revisited Part I: The Turn to Phenomenology. Bulletin of Symbolic Logic, 12: 529–90.https://doi.org/10.2178/bsl/1164056807.
Heidegger, M. (1962). Being and Time. Translated by J. Macquarrie and E. Robinson. Oxford: Blackwell.
Hilbert, D. (1964). On the Infinite. In Benacerraf, P. and Putnam, H. (eds.), Philosophy of Mathematics: Selected Readings. Englewood Cliffs, NJ: Prentice-Hall, 134–51.
Hilbert, D. (1996). On the Concept of Number. Translated by W. Ewald. In Ewald, W. (ed.), From Kant to Hilbert, vol. 2. Oxford: Oxford University Press, 1092–5.
Hill, C. O. (2000). Abstraction and Idealization in Georg Cantor and Edmund Husserl Prior to 1895. In Hill, C. O. and Rosado Haddock, G. E. (eds.), Husserl or Frege: Meaning, Objectivity, and Mathematics. Chicago: Open Court, 109–36.
Hill, C. O. (2010). Husserl on Axiomatization and Arithmetic. In Hartimo, M. (ed.), Phenomenology and Mathematics. Dordrecht: Springer, 4771.https://doi.org/10.1007/978-90-481-3729-9_3.
Hintikka, J. (2003). The Notion of Intuition in Husserl. Revue internationale de philosophie, 224: 169–91.
Hopkins, B. C. (2005). Klein and Derrida on the Historicity of Meaning and the Meaning of Historicity in Husserl’s Crisis-Texts. Journal of the British Society for Phenomenology, 36: 179–87. https://doi.org/10.1080/00071773.2005.11006541.
Hopkins, B. C. (2011). The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. Bloomington, IN: Indiana University Press.
Husserl, E. (1956). Erste Philosophie. Erster Teil: Kritische Ideengeschichte. The Hague: Martinus Nijhoff.
Husserl, E. (1975). Introduction to the Logical Investigations: A Draft of a Preface to the Logical Investigations. Edited by Fink, E.. Translated by P. J. Bossert and C. H. Curtis. The Hague: Martinus Nijhoff.
Husserl, E. (1980). Ideas III: Phenomenology and the Foundations of the Sciences. Translated by T. Klein and W. Pohl. The Hague: Martinus Nijhoff.
Husserl, E. (1983). Studien zur Arithmetik und Geometrie. Texte aus dem Nachlass (1886–1901). Edited by Strohmeyer, I.. The Hague: Martinus Nijhoff.
Husserl, E. (1991). On the Phenomenology of the Consciousness of Internal Time (1893–1917). Translated by J. B. Brough. Dordrecht: Kluwer.
Husserl, E. (1994). Early Writings in the Philosophy of Logic and Mathematics. Translated by D. Willard. Dordrecht: Kluwer.
Husserl, E. (1997). Thing and Space: Lectures from 1907. Translated by R. Rojcewicz. Dordrecht: Springer.
Ierna, C. (2017). The Brentanist Philosophy of Mathematics in Edmund Husserl’s Early Works. In Centrone, S. (ed.), Essays on Husserl’s Logic and Philosophy of Mathematics. Dordrecht: Springer, 147–68. https://doi.org/10.1007/978-94-024-1132-4_7.
Ierna, C., and Lohmar, D. (2016). Husserl’s Manuscript A I 35. In Haddock, G. E. Rosado (ed.), Husserl and Analytic Philosophy. Berlin: De Gruyter, 289320. https://doi.org/10.1515/9783110497373-011.
Kant, E. (1998). Critique of Pure Reason. Translated by P. Guyer and A. W. Wood. Cambridge: Cambridge University Press.
Klein, J. (1940). Phenomenology and the History of Science. In Farber, M. (ed.), Philosophical Essays in Memory of Edmund Husserl. Cambridge, MA: Harvard University Press, 143–63. https://doi.org/10.4159/harvard.9780674333512.c8.
Leng, M. (2002). Phenomenology and Mathematical Practice. Philosophia Mathematica, 10: 325.
Linnebo, Ø. (2018). Platonism in the Philosophy of Mathematics. In E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Spring 2018 Edition). https://plato.stanford.edu/archives/spr2018/entries/platonism-mathematics/.
Lohmar, D. (1990). Wo lag der Fehler der kategorialen Repräsentation? Zu Sinn und Reichweite einer Selbstkritik Husserls. Husserl Studies, 7: 179–97. https://doi.org/10.1007/BF00347584.
Lohmar, D. (1993). On the Relation of Mathematical Objects to Time: Are Mathematical Objects Timeless, Overtemporal or Omnitemporal? Journal of the Indian Council of Philosophical Research, 10: 7387.
Lohmar, D. (2000). Edmund Husserls “Formale und transzendentale Logik.” Darmstadt: Wissenschaftliche Buchgesellschaft.
Lohmar, D. (2004). The Transition of the Principle of Excluded Middle from a Principle of Logic to an Axiom: Husserl’s Hesitant Revisionism in Logic. New Yearbook for Phenomenology and Phenomenological Philosophy, 4: 5368.
Maddy, P. (1980). Perception and Mathematical Intuition. Philosophical Review, 89: 163–96. https://doi.org/10.2307/2184647.
Mahnke, D. (1917). Eine Neue Monadologie. Berlin: Reuther & Reichard.
Mahnke, D. (1966). From Hilbert to Husserl: First Introduction to Phenomenology, Especially that of Formal Mathematics. Translated by D. L. Boyer. Studies in History and Philosophy of Science, 8: 7584. https://doi.org/10.1016/0039-3681(77)90020-6.
Majer, U. (1997). Husserl and Hilbert on Completeness: A Neglected Chapter in Early Twentieth Century Foundations of Mathematics. Synthese, 110: 3756.
Mancosu, P. (ed.). (2008). The Philosophy of Mathematical Practice. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199296453.001.0001.
Mancosu, P. (2018). Explanation in Mathematics. In E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Summer 2018 Edition). https://plato.stanford.edu/archives/sum2018/entries/mathematics-explanation/.
Mancosu, P., and Ryckman, T. (2002). Mathematics and Phenomenology: The Correspondence between O. Becker and H. Weyl. Philosophia Mathematica, 10: 130202.
Miller, J. P. (1982). Numbers in Presence and Absence: A Study of Husserl’s Philosophy of Mathematics. The Hague: Martinus Nijhoff. https://doi.org/10.1007/978-94-009-7624-5.
Mohanty, J. N. (1977). Husserl and Frege: A New Look at Their Relationship. In Mohanty, J. N. (ed.), Readings on Edmund Husserl’s Logical Investigations. The Hague: Martinus Nijhoff, 2232. https://doi.org/10.1007/978-94-010-1055-9_3.
Mohanty, J. N. (1991). Husserl’s Formalism. In Seebohm, T. M., Føllesdal, D., and Mohanty, J. N. (eds.), Phenomenology and the Formal Sciences. Dordrecht: Kluwer, 93105. https://doi.org/10.1007/978-94-011-2580-2_7.
Nenon, T. (1997). Two Models of Foundation in the Logical Investigations. In Hopkins, B. C. (ed.), Husserl in Contemporary Context. Dordrecht: Kluwer, 97114. https://doi.org/10.1007/978-94-017-1804-2_6.
Parsons, C. (1980). Mathematical Intuition. Proceedings of the Aristotelian Society, 80: 145–68. https://doi.org/10.1093/aristotelian/80.1.145.
Parsons, C. (2012). Husserl and the Linguistic Turn. In Parsons, C., From Kant to Husserl: Selected Essays. Cambridge, MA: Harvard University Press, 190214. https://doi.org/10.4159/harvard.9780674065420.c13.
Posy, C. J. (2020). Mathematical Intuitionism. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108674485.
Pradelle, D. (2000). L’archéologie du monde. Constitution de l‘espace, idéalisme et intuitionnisme chez Husserl. Dordrecht: Springer. https://doi.org/10.1007/978-94-024-1586-5.
Pradelle, D. (2012). Par-delà la révolution copernicienne. Sujet transcendental et facultés chez Kant et Husserl. Paris: Presses universitaires de France.
Pradelle, D. (2020). Intuition et idéalités. Phénoménologie des objets mathématiques. Paris: Presses universitaires de France.
Putnam, H. (1975). The Meaning of “Meaning.” In Putnam, H. (ed.), Mind, Language and Reality: Philosophical Papers, vol. 2. Cambridge: Cambridge University Press, 215–71. https://doi.org/10.1017/CBO9780511625251.
Reck, E. H. (2013). Frege, Dedekind, and the Origins of Logicism. History and Philosophy of Logic, 34: 242–65. https://doi.org/10.1080/01445340.2013.806397.
Reid, C. (1970). Hilbert. Berlin: Springer. https://doi.org/10.1007/978-3-662-28615-9.
Reinach, A. (1989). Über den Begriff der Zahl. In Schuhmann, K. and Smith, B. (eds.), Sämtliche Werke, vol. 1. Munich: Philosophia Verlag, 515–29.
Rosado Haddock, G. E. (2010). Platonism, Phenomenology, and Interderivability. In Hartimo, M. (ed.), Phenomenology and Mathematics. Dordrecht: Springer, 2346. https://doi.org/10.1007/978-90-481-3729-9_2.
Rota, G.-C. (1989). Fundierung as a Logical Concept. The Monist, 72: 70–7. https://doi.org/10.5840/monist19897218.
Rota, G.-C. (1990). Mathematics and Philosophy: The Story of a Misunderstanding. Review of Metaphysics, 44: 259–71.
Rota, G.-C. (1991). Mathematics and the Task of Phenomenology. In Seebohm, T. M., Føllesdal, D., and Mohanty, J. N. (eds.), Phenomenology and the Formal Sciences. Dordrecht: Kluwer, 133–8. https://doi.org/10.1007/978-94-011-2580-2_9.
Rota, G.-C. (1997a). The Phenomenology of Mathematical Proof. Synthese, 111: 183–96.
Rota, G.-C. (1997b). Indiscrete Thoughts. Edited by Palombi, F.. Boston: Birkhäuser. https://doi.org/10.1007/978-0-8176-4781-0.
Roubach, M. (2008). Being and Number in Heidegger’s Thought. London: Continuum. https://doi.org/10.5040/9781472546166.
Roubach, M. (2021). Numbers as Ideal Species: Husserlian and Contemporary Perspectives. New Yearbook for Phenomenology and Phenomenological Philosophy, 18: 537–45.
Roubach, M. (2022). Mathesis Universalis and Husserl’s Phenomenology. Axiomathes, 32: 627–37. https://doi.org/10.1007/s10516-021-09544-9.
Smith, D. W. (2003). “Pure” Logic, Ontology, and Phenomenology. Revue internationale de philosophie, 57 (224/2): 133–56.
Smith, D. W. (2013). Husserl, 2nd ed. London: Routledge. https://doi.org/10.4324/9780203742952.
Spiegelberg, H. (ed.). (1971). From Husserl to Heidegger: Excerpts from a 1928 Freiburg Diary by W. R. Boyce Gibson. Journal of the British Society for Phenomenology, 2: 5883. https://doi.org/10.1080/00071773.1971.11006166.
Steiner, M. (1978). Mathematical Explanation. Philosophical Studies, 34: 135–51. https://doi.org/10.1007/BF00354494.
Thomasson, A. (2017). Husserl on Essences: A Reconstruction and Rehabilitation. Grazer Philosophische Studien, 94: 436–59. https://doi.org/10.1163/18756735-09403008.
Tieszen, R. (1989). Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer. https://doi.org/10.1007/978-94-009-2293-8.
Tieszen, R. (2005). Free Variation and the Intuition of Geometric Essences: Some Reflections on Phenomenology and Modern Geometry. Philosophy and Phenomenological Research, 70: 153–73. https://doi.org/10.1111/j.1933-1592.2005.tb00509.x.
Tieszen, R. (2010). Mathematical Realism and Transcendental Phenomenological Idealism. In Hartimo, M. (ed.), Phenomenology and Mathematics. Dordrecht: Springer, 122. https://doi.org/10.1007/978-90-481-3729-9_1.
Tieszen, R. (2011). After Gödel: Platonism and Rationalism in Mathematics and Logic. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199606207.001.0001.
Tieszen, R. (2012). Monads and Mathematics: Gödel and Husserl. Axiomathes, 22: 3152. https://doi.org/10.1007/s10516-011-9162-z.
Tragesser, R. S. (1984). Husserl and Realism in Logic and Mathematics. Cambridge: Cambridge University Press.
Tragesser, R. S. (1989). Sense Perceptual Intuition, Mathematical Existence, and Logical Imagination. Philosophia Mathematica, 2: 154–94. https://doi.org/10.1093/philmat/s2-4.2.154.
Webb, J. (2017). Paradox, Crisis, and Harmony in Phenomenology. In Centrone, S. (ed.), Essays on Husserl’s Logic and Philosophy of Mathematics. Dordrecht: Springer, 353408. https://doi.org/10.1007/978-94-024-1132-4_14.
Weyl, H. (1928). Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 6: 86–8. https://doi.org/10.1007/978-3-663-16102-8_2.
Weyl, H. (1949). Philosophy of Mathematics and Natural Science. Translated by O. Helmer. Princeton, NJ: Princeton University Press.
Weyl, H. (1987). The Continuum: A Critical Examination of the Foundation of Analysis. Translated by S. Pollard and T. Bole. Kirksville, MO: Thomas Jefferson University Press.
Weyl, H. (1998). On the New Foundational Crisis of Mathematics. Translated by B. Müller. In Mancosu, P. (ed.), From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. Oxford: Oxford University Press, 86122.
Willard, D. (1980). Husserl on a Logic That Failed. Philosophical Review, 89: 4664. https://doi.org/10.2307/2184863.
Zahavi, D. (2017). Husserl’s Legacy: Phenomenology, Metaphysics, and Transcendental Philosophy. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780199684830.001.0001.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.