References
van Atten, M. (2010). Construction and Constitution in Mathematics. New Yearbook for Phenomenology and Phenomenological Philosophy, 10: 43–90.
van Atten, M., van Dalen, D., and Tieszen, R. (2002). Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum. Philosophia Mathematica, 10: 203–26. https://doi.org/10.1093/philmat/10.2.203. van Atten, M., and Kennedy, J. (2003). On the Philosophical Development of Kurt Gödel. Bulletin of Symbolic Logic, 9: 425–76.
Bachelard, S. (1968). A Study of Husserl’s Formal and Transcendental Logic. Translated by L. E. Embree. Evanston, IL: Northwestern University Press.
Becker, O. (1923). Beiträge zur Phänomenologischen Begründung der Geometrie und ihrer physikalischen Anwendungen. Jahrbuch für Philosophie und phänomenologische Forschung, 6: 385–560.
Becker, O. (1927). Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene. Halle: Max Niemeyer.
Benacerraf, P. (1973). Mathematical Truth. Journal of Philosophy, 70: 661–79.
Cantor, G. (1915). Contributions to the Founding of the Theory of Transfinite Numbers. Translated by P. Jourdain. New York: Dover.
Cavaillès, J. (2021). On Logic and the Theory of Science. Translated by R. Mackay and K. Peden. Falmouth: Urbanomic Media.
Caveing, M. (2004). Le problème des objets dans la pensée mathématique. Paris: Vrin.
Centrone, S. (2010). Logic and Philosophy of Mathematics in the Early Husserl. Dordrecht: Springer.
Cobb-Stevens, R. (2002). Aristotelian Themes in Husserl’s Logical Investigations. In Zahavi, D. and Stjernfelt, F. (eds.), One Hundred Years of Phenomenology: Husserl’s Logical Investigations Revisited. Dordrecht: Kluwer, 79–92.https://doi.org/10.1007/978-94-017-0093-1_6. Da Silva, J. J. (2000). Husserl’s Two Notions of Completeness: Husserl and Hilbert on Completeness and Imaginary Elements in Mathematics. Synthese, 125: 417–38.
Da Silva, J. J. (2013). How Sets Came to Be: The Concept of Set from a Phenomenological Perspective. New Yearbook for Phenomenology and Phenomenological Philosophy, 13: 84–100.
Derrida, J. (1989). Edmund Husserl’s Origin of Geometry: An Introduction. Translated by J. P. Leavey Jr. Lincoln, NB: University of Nebraska Press.
Desanti, J.-T. (1968). Les idéalités mathématiques. Paris: Seuil.
Descartes, R. (1985). Rules for the Direction of the Mind. Translated by D. Murdoch. In Cottingham, J., Stoothoff, R., and Murdoch, D. (eds.), The Philosophical Writings of Descartes, vol. 1. Cambridge: Cambridge University Press, 7–78. https://doi.org/10.1017/CBO9780511805042.004. Drummond, J. J. (1990). Husserlian Intentionality and Non-Foundational Realism. Dordrecht: Kluwer.
Føllesdal, D. (1994). Husserl and Frege: A Contribution to Elucidating the Origins of Phenomenological Philosophy. Translated by C. O. Hill. In Haaparanta, L. (ed.), Mind, Meaning, and Mathematics: Essays on the Philosophical Views of Husserl and Frege. Dordrecht: Kluwer, 3–47. https://doi.org/10.1007/978-94-015-8334-3_1. Frege, G. (1972). Review of Husserl’s Philosophy of Arithmetic. Translated by E. W. Kluge. Mind, 81: 321–37.
Frege, G. (1980a). Begriffsschrift, a Formula Language, Modeled upon That of Arithmetic, for Pure Thought. In van Heijenoort, J. (ed.), Frege and Gödel: Two Fundamental Texts in Mathematical Logic. Cambridge, MA: Harvard University Press, 1–82.
Frege, G. (1980b). The Foundations of Arithmetic: A Logico-Mathematical Inquiry into the Concept of Number. Translated by J. L. Austin. Evanston, IL: Northwestern University Press.
Gödel, K. (1961). The Modern Development of the Foundations of Mathematics in the Light of Philosophy. In Gödel, K., Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Solovay, R. N. (eds.), Collected Works, vol. 3 (1995). Oxford: Oxford University Press, 374–87.
Gödel, K. (1964). What is Cantor’s Continuum Problem? In Gödel, K., Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Solovay, R. N. (eds.), Collected Works, vol. 2 (1990). Oxford: Oxford University Press, 254–70.
Heidegger, M. (1962). Being and Time. Translated by J. Macquarrie and E. Robinson. Oxford: Blackwell.
Hilbert, D. (1964). On the Infinite. In Benacerraf, P. and Putnam, H. (eds.), Philosophy of Mathematics: Selected Readings. Englewood Cliffs, NJ: Prentice-Hall, 134–51.
Hilbert, D. (1996). On the Concept of Number. Translated by W. Ewald. In Ewald, W. (ed.), From Kant to Hilbert, vol. 2. Oxford: Oxford University Press, 1092–5.
Hill, C. O. (2000). Abstraction and Idealization in Georg Cantor and Edmund Husserl Prior to 1895. In Hill, C. O. and Rosado Haddock, G. E. (eds.), Husserl or Frege: Meaning, Objectivity, and Mathematics. Chicago: Open Court, 109–36.
Hintikka, J. (2003). The Notion of Intuition in Husserl. Revue internationale de philosophie, 224: 169–91.
Hopkins, B. C. (2005). Klein and Derrida on the Historicity of Meaning and the Meaning of Historicity in Husserl’s Crisis-Texts. Journal of the British Society for Phenomenology, 36: 179–87. https://doi.org/10.1080/00071773.2005.11006541. Hopkins, B. C. (2011). The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. Bloomington, IN: Indiana University Press.
Husserl, E. (1956). Erste Philosophie. Erster Teil: Kritische Ideengeschichte. The Hague: Martinus Nijhoff.
Husserl, E. (1975). Introduction to the Logical Investigations: A Draft of a Preface to the Logical Investigations. Edited by Fink, E.. Translated by P. J. Bossert and C. H. Curtis. The Hague: Martinus Nijhoff.
Husserl, E. (1980). Ideas III: Phenomenology and the Foundations of the Sciences. Translated by T. Klein and W. Pohl. The Hague: Martinus Nijhoff.
Husserl, E. (1983). Studien zur Arithmetik und Geometrie. Texte aus dem Nachlass (1886–1901). Edited by Strohmeyer, I.. The Hague: Martinus Nijhoff.
Husserl, E. (1991). On the Phenomenology of the Consciousness of Internal Time (1893–1917). Translated by J. B. Brough. Dordrecht: Kluwer.
Husserl, E. (1994). Early Writings in the Philosophy of Logic and Mathematics. Translated by D. Willard. Dordrecht: Kluwer.
Husserl, E. (1997). Thing and Space: Lectures from 1907. Translated by R. Rojcewicz. Dordrecht: Springer.
Ierna, C. (2017). The Brentanist Philosophy of Mathematics in Edmund Husserl’s Early Works. In Centrone, S. (ed.), Essays on Husserl’s Logic and Philosophy of Mathematics. Dordrecht: Springer, 147–68. https://doi.org/10.1007/978-94-024-1132-4_7. Kant, E. (1998). Critique of Pure Reason. Translated by P. Guyer and A. W. Wood. Cambridge: Cambridge University Press.
Leng, M. (2002). Phenomenology and Mathematical Practice. Philosophia Mathematica, 10: 3–25.
Lohmar, D. (1990). Wo lag der Fehler der kategorialen Repräsentation? Zu Sinn und Reichweite einer Selbstkritik Husserls. Husserl Studies, 7: 179–97. https://doi.org/10.1007/BF00347584. Lohmar, D. (1993). On the Relation of Mathematical Objects to Time: Are Mathematical Objects Timeless, Overtemporal or Omnitemporal? Journal of the Indian Council of Philosophical Research, 10: 73–87.
Lohmar, D. (2000). Edmund Husserls “Formale und transzendentale Logik.” Darmstadt: Wissenschaftliche Buchgesellschaft.
Lohmar, D. (2004). The Transition of the Principle of Excluded Middle from a Principle of Logic to an Axiom: Husserl’s Hesitant Revisionism in Logic. New Yearbook for Phenomenology and Phenomenological Philosophy, 4: 53–68.
Mahnke, D. (1917). Eine Neue Monadologie. Berlin: Reuther & Reichard.
Mahnke, D. (1966). From Hilbert to Husserl: First Introduction to Phenomenology, Especially that of Formal Mathematics. Translated by D. L. Boyer. Studies in History and Philosophy of Science, 8: 75–84. https://doi.org/10.1016/0039-3681(77)90020-6. Majer, U. (1997). Husserl and Hilbert on Completeness: A Neglected Chapter in Early Twentieth Century Foundations of Mathematics. Synthese, 110: 37–56.
Mancosu, P., and Ryckman, T. (2002). Mathematics and Phenomenology: The Correspondence between O. Becker and H. Weyl. Philosophia Mathematica, 10: 130–202.
Mohanty, J. N. (1977). Husserl and Frege: A New Look at Their Relationship. In Mohanty, J. N. (ed.), Readings on Edmund Husserl’s Logical Investigations. The Hague: Martinus Nijhoff, 22–32. https://doi.org/10.1007/978-94-010-1055-9_3. Mohanty, J. N. (1991). Husserl’s Formalism. In Seebohm, T. M., Føllesdal, D., and Mohanty, J. N. (eds.), Phenomenology and the Formal Sciences. Dordrecht: Kluwer, 93–105. https://doi.org/10.1007/978-94-011-2580-2_7. Pradelle, D. (2012). Par-delà la révolution copernicienne. Sujet transcendental et facultés chez Kant et Husserl. Paris: Presses universitaires de France.
Pradelle, D. (2020). Intuition et idéalités. Phénoménologie des objets mathématiques. Paris: Presses universitaires de France.
Putnam, H. (1975). The Meaning of “Meaning.” In Putnam, H. (ed.), Mind, Language and Reality: Philosophical Papers, vol. 2. Cambridge: Cambridge University Press, 215–71. https://doi.org/10.1017/CBO9780511625251. Reinach, A. (1989). Über den Begriff der Zahl. In Schuhmann, K. and Smith, B. (eds.), Sämtliche Werke, vol. 1. Munich: Philosophia Verlag, 515–29.
Rota, G.-C. (1990). Mathematics and Philosophy: The Story of a Misunderstanding. Review of Metaphysics, 44: 259–71.
Rota, G.-C. (1991). Mathematics and the Task of Phenomenology. In Seebohm, T. M., Føllesdal, D., and Mohanty, J. N. (eds.), Phenomenology and the Formal Sciences. Dordrecht: Kluwer, 133–8. https://doi.org/10.1007/978-94-011-2580-2_9. Rota, G.-C. (1997a). The Phenomenology of Mathematical Proof. Synthese, 111: 183–96.
Roubach, M. (2021). Numbers as Ideal Species: Husserlian and Contemporary Perspectives. New Yearbook for Phenomenology and Phenomenological Philosophy, 18: 537–45.
Smith, D. W. (2003). “Pure” Logic, Ontology, and Phenomenology. Revue internationale de philosophie, 57 (224/2): 133–56.
Tragesser, R. S. (1984). Husserl and Realism in Logic and Mathematics. Cambridge: Cambridge University Press.
Weyl, H. (1928). Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 6: 86–8. https://doi.org/10.1007/978-3-663-16102-8_2. Weyl, H. (1949). Philosophy of Mathematics and Natural Science. Translated by O. Helmer. Princeton, NJ: Princeton University Press.
Weyl, H. (1987). The Continuum: A Critical Examination of the Foundation of Analysis. Translated by S. Pollard and T. Bole. Kirksville, MO: Thomas Jefferson University Press.
Weyl, H. (1998). On the New Foundational Crisis of Mathematics. Translated by B. Müller. In Mancosu, P. (ed.), From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. Oxford: Oxford University Press, 86–122.