Skip to main content Accessibility help
×
  • Cited by 15
  • Laura C. Soul, The Natural History Museum, London and National Museum of Natural History, Smithsonian Institution, David F. Wright, American Museum of Natural History and National Museum of Natural History, Smithsonian Institution
Publisher:
Cambridge University Press
Online publication date:
April 2021
Print publication year:
2021
Online ISBN:
9781108894142

Book description

Recent advances in statistical approaches called phylogenetic comparative methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. This Element presents guides to the theory behind and the application of PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, example analyses are presented to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution and macroevolutionary models of morphological change. The authors emphasize the importance of accounting for sources of uncertainty and discuss how to evaluate model fit and adequacy. Finally, the authors discuss several promising methods for modeling heterogeneous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective on understanding key patterns in the history of life.

References

Ackerly, D. 2009. Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. 106: 1969919706.
Adams, D. C. 2014. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Syst. Biol. 63: 166177.
Anderson, P. S. L., Friedman, M., Ruta, M. 2013. Late to the table: Diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality. Integr. Comp. Biol. 53: 197208.
Ausich, W. I., Wright, D. F., Cole, S. R., Sevastopulo, G. D. 2020. Homology of posterior interray plates in crinoids: A review and new perspectives from phylogenetics, the fossil record and development. Palaeontology. 63: 525545.
Bapst, D. W. 2012. Paleotree: An R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3: 803807.
Bapst, D. W. 2013a. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4: 724733.
Bapst, D. W. 2013b. When can clades be potentially resolved with morphology? PLoS One. 8: e62312.
Bapst, D. W. 2014a. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology. 40: 331351.
Bapst, D. W. 2014b. Preparing palaeontological datasets for phylogenetic comparative methods. In: Garamszegi, L. Z., editor. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin, Heidelberg: Springer-Verlag. pp. 515544.
Bapst, D. W., Hopkins, M. J. 2017. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology. 43: 4967.
Barido-Sottani, J., Pett, W., O’Reilly, J. E., Warnock, R. C. M. 2019. FossilSim: An R package for simulating fossil occurrence data under mechanistic models of preservation and recovery. Methods Ecol. Evol. 10: 835840.
Barido-Sottani, J., Saupe, E., Smiley, T. M., Soul, L. C., Wright, A. M., Warnock, R. C. M. 2020. Seven rules for simulations in paleobiology. Paleobiology. 46(4): 435444.
Barido-Sottani, J., Tiel, N. van, Hopkins, M. J., Wright, D. F., Stadler, T., Warnock, R. C. M. 2020. Ignoring fossil age uncertainty leads to inaccurate topology and divergence times in time calibrated tree inference. Frontiers in Ecology and Evolution, 8: 183
Baum, D. A., Smith, S. D. 2013. Tree thinking: An introduction to phylogenetic biology. Greenwood Village, CO: Roberts.
Benson, R. B. J., Choiniere, J. N. 2013. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B Biol. Sci. 280: 20131780.
Blomberg, S. P., Garland, T., Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 57: 717745.
Blomberg, S. P., Rathnayake, S. I., Moreau, C. M. 2020. Beyond Brownian motion and the Ornstein-Uhlenbeck process: Stochastic diffusion models for the evolution of quantitative characters. Am. Nat. 195: 145165.
Blomberg, S. P., Lefevre, J. G., Wells, J. A., Waterhouse, M. 2012. Independent contrasts and PGLS regression estimators are equivalent. Syst. Biol. 61: 382391.
Boettiger, C., Coop, G., Ralph, P. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution. 66: 22402251.
Boucher, F. C., Démery, V., Conti, E., Harmon, L. J., Uyeda, J. 2018. A general model for estimating macroevolutionary landscapes. Syst. Biol. 67: 304319.
Brocklehurst, N., Brink, K. S. 2017. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. Facets. 2: 6884.
Butler, M. A., King, A. A. 2004. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164: 683695.
Button, D. J., Barrett, P. M., Rayfield, E. J. 2017. Craniodental functional evolution in sauropodomorph dinosaurs. Paleobiology. 43: 435462.
Clarke, J. T., Lloyd, G. T., Friedman, M. 2016. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc. Natl. Acad. Sci. 113: 1153111536.
Close, R. A., Friedman, M., Lloyd, G. T., Benson, R. B. J. 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Curr. Biol. 25: 21372142.
Cole, S. R., Wright, D. F., Ausich, W. I. 2019. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeogr. Palaeoclimatol. Palaeoecol. 521: 8298.
Cooper, N., Thomas, G. H., FitzJohn, R. G. 2016. Shedding light on the “dark side” of phylogenetic comparative methods. Methods Ecol. Evol. 7: 693699.
Darwin, C. R. 1859. On the origin of species by means of natural selection. London: John Murray.
Diniz-Filho, J. A. F., Alves, D. M. C. C., Villalobos, F., Sakamoto, M., Brusatte, S. L., Bini, L. M. 2015. Phylogenetic eigenvectors and nonstationarity in the evolution of theropod dinosaur skulls. J. Evol. Biol. 28: 14101416.
Drury, J., Clavel, J., Manceau, M., Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Syst. Biol. 65: 700710.
Eastman, J. M., Alfaro, M. E., Joyce, P., Hipp, A. L., Harmon, L. J. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution. 65: 35783589.
Erwin, D. H. 2007. Disparity: Morphological pattern and developmental context. Palaeontology. 50: 5773.
Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 115.
Finarelli, J. A., Flynn, J. J. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Syst. Biol. 55: 301313.
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology. 22: 141151.
Freckleton, R. P. 2009. The seven deadly sins of comparative analysis. J. Evol. Biol. 22: 13671375.
Garamszegi, L. Z. 2014. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin, Heidelberg: Springer-Verlag.
Garland, T., Ives, A. R. 2000. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346364.
Gascuel, O., Steel, M. 2014. Predicting the ancestral character changes in a tree is typically easier than predicting the root state. Syst. Biol. 63: 421435.
Gavryushkina, A., Welch, D., Stadler, T., Drummond, A. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10: e1003919.
Gavryushkina, A., Heath, T. A., Ksepka, D. T., Stadler, T., Welch, D., Drummond, A. J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66: 5773.
Gearty, W., Payne, J. L. 2020. Physiological constraints on body size distributions in Crocodyliformes. Evolution. 74: 245255.
Halliday, T. J. D., Goswami, A. 2016. The impact of phylogenetic dating method on interpreting trait evolution: A case study of Cretaceous-Palaeogene eutherian body-size evolution. Biol. Lett. 12: 612.
Hansen, T. F. 1997. Stabilising selection and the comparative analysis of adaptation. Evolution. 51: 13421351.
Hansen, T. F., Martins, E. P. 1996. Translating between microevolutionary process and macroevolutionary patterns: The correlation structure of interspecific data. Evolution. 50: 14041417.
Harmon, Luke. 2019. “Phylogenetic Comparative Methods: Learning from Trees.” EcoEvoRxiv. May 20. doi:10.32942/osf.io/e3xnr.
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., Challenger, W. 2008. GEIGER: Investigating evolutionary radiations. Bioinformatics. 24: 129131.
Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, B. W., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, II J. A., Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., Mooers, A. Ø. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution. 64: 23852396.
Harrison, L. B., Larsson, H. C. E. 2015. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst. Biol. 64: 307324.
Harvey, P. H., Read, A. F., Nee, S. 1995. Further remarks on the role of phylogeny in comparative ecology. J. Ecol. 83: 733.
Heath, T. A., Huelsenbeck, J. P., Stadler, T. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl. Acad. Sci. 111: E2957E2966.
Hedman, M. M. 2010. Constraints on clade ages from fossil outgroups. Paleobiology. 36: 1631.
Ho, L. S. T., Ané, C. 2014a. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63: 397408.
Ho, L. S. T., Ané, C. 2014b. Intrinsic inference difficulties for trait evolution with Ornstein-Uhlenbeck models. Methods Ecol. Evol. 5: 11331146.
Hopkins, M. J., Smith, A. B. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc. Natl. Acad. Sci. U.S.A. 112: 37583763.
Hunt, G. 2012. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology. 38: 351373.
Hunt, G. 2013. Testing the link between phenotypic evolution and speciation: An integrated palaeontological and phylogenetic analysis. Methods Ecol. Evol. 4: 714723.
Hunt, G., Carrano, M. T. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Paleontol. Soc. Pap. 16: 245269.
Hunt, G., Slater, G. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annu. Rev. Ecol. Evol. Syst. 47: 189213.
Beaulieu, Jeremy M. and O’Meara, Brian (2020). OUwie: Analysis of Evolutionary Rates in an OU Framework. R package version 2.5. https://CRAN.R-project.org/package=OUwie.
Kammer, T. W. 2008. Paedomorphosis as an adaptive response in pinnulate cladid crinoids from the Burlington limestone (Mississippian, Oseadean) of the Mississippi Valley. In: Webster, G. D., Maples, C. D., editors. Echinoderm paleobiology. Bloomington, IN: University of Indiana Press. pp. 177195.
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30: 314.
Landis, M. J. 2017. Biogeographic dating of speciation times using paleogeographically informed processes. Syst. Biol. 64: 307324.
Landis, M., Schraiber, J. G. 2017. Pulsed evolution shaped modern vertebrate diversity. Proc. Natl. Acad. Sci. U.S.A. 114: 1322413229.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913925.
Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: Implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118: 131151.
Lloyd, G. T., Wang, S. C., Brusatte, S. L. 2012. Identifying heterogeneity in rates of morphological evolution: Discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution. 66: 330348.
Maddison, D. R., Maddison, W. P. 2020. MacClade 4. http://macclade.org/macclade.html.
Manceau, M., Lambert, A., Morlon, H. 2017. A unifying comparative phylogenetic framework including traits coevolving across interacting lineages. Syst. Biol. 66: 551568.
Matzke, N. J., Wright, A. 2016. Inferring node dates from tip dates in fossil Canidae: The importance of tree priors. Biol. Lett. 12: 14.
Mitov, V., Bartoszek, K., Stadler, T. 2019. Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models. Proc. Natl. Acad. Sci. 116: 1692116926.
Morlon, H., Lewitus, E., Condamine, F. L., Manceau, M., Clavel, J., Drury, J. 2016. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7: 589597.
Nielsen, R. 2002. Mapping mutations on phylogenies. Syst. Biol. 51: 729739.
Nunn, C. L. 2011. The comparative approach in evolutionary anthropology and biology. Chicago: University of Chicago Press.
Nunn, C. L., Barton, R. A. 2001. Comparative methods for studying primate adaptation and allometry. Evol. Anthropol. 10: 8198.
O’Meara, B. C., Ané, C., Sanderson, M. J., Wainwright, P. C. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution. 60: 922933.
O’Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D., Donoghue, P. C. J. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12: 20160081.
Paradis, E., Claude, J., Strimmer, K. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 20: 289290.
Parins-Fukuchi, C. 2020. Detecting mosaic patterns in macroevolutionary disparity. Am. Nat. 195: 129144.
Pennell, M. W., Fitzjohn, R. G., Cornwell, W. K., Harmon, L. J. 2015. Model adequacy and the macroevolution of angiosperm functional traits. Am. Nat. 186: E33E50.
Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E., Harmon, L. J. 2014. Geiger V2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 30: 22162218.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. 2019. nlme: Linear and nonlinear mixed effects models. R package version 3: 1140.
Polly, P. D. 2019. Spatial processes and evolutionary models: A critical review. Palaeontology. 62: 175195.
Price, S. A. 2019. State-dependent diversification of traits. http://treethinkers.org/tutorials/state-dependent-diversification-of-traits.
Price, S. A., Friedman, S. T., Wainwright, P. C. 2015. How predation shaped fish: The impact of fin spines on body form evolution across teleosts. Proc. R. Soc. B Biol. Sci. 282. https://doi.org/10.1098/rspb.2015.1428.
Puttick, M. N. 2016. Partially incorrect fossil data augment analyses of discrete trait evolution in living species. Biol. Lett. 12: 20160392.
Puttick, M. N., Ingram, T., Clarke, M., Thomas, G. H. 2020. MOTMOT: Models of trait macroevolution on trees (an update). Methods Ecol. Evol. 11: 464471.
Puttick, M. N., O’Reilly, J. E., Pisani, D., Donoghue, P. C. J. 2019. Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic model. Palaeontology. 62: 117.
Revell, L.J. (2010), Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1: 319–329.
Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3: 217223.
Revell, L. J. 2013. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4: 754759.
Revell, L. J. 2014. Ancestral character estimation under the threshold model from quantitative genetics. Evolution. 68: 743759.
Revell, L. J., Schliep, K., Valderrama, E., Richardson, J. E. 2018. Graphs in phylogenetic comparative analysis: Anscombe’s quartet revisited. Methods Ecol. Evol. 9: 21452154.
Rohlf, F. J. 2006. A comment on phylogenetic correction. Evolution. 60: 1509.
Ruta, M., Krieger, J., Angielczyk, K. D., Wills, M. A. 2019. The evolution of the tetrapod humerus: Morphometrics, disparity, and evolutionary rates. Earth Environ. Sci. Trans. R. Soc. Edinburgh. 109: 351369.
Sallan, L., Friedman, M., Sansom, R. S., Bird, C. M., Sansom, I. J. 2018. The nearshore cradle of early vertebrate diversification. Science. 464: 460464.
Silvestro, D., Kostikova, A., Litsios, G., Pearman, P. B., Salamin, N. 2015. Measurement errors should always be incorporated in phylogenetic comparative analysis. Methods Ecol. Evol. 6: 340346.
Simpson, G. G. 1944. Tempo and mode in evolution. New York: Columbia University Press.
Slater, G. J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4: 734744.
Slater, G. J. 2014. Correction to “Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary,” and a note on fitting macroevolutionary models to comparative paleontological data sets. Methods Ecol. Evol. 5: 714718.
Slater, G. J., Pennell, M. W. 2014. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Syst. Biol. 63: 293308.
Slater, G. J., Harmon, L. J., Alfaro, M. E. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution. 66: 39313944.
Soul, L. C., Benson, R. B. J. 2017. Developmental mechanisms of macroevolutionary change in the tetrapod axis: A case study of Sauropterygia. Evolution. 71: 11641177.
Soul, L. C., Friedman, M. 2015. Taxonomy and phylogeny can yield comparable results in comparative palaeontological analyses. Syst. Biol. 64: 608620.
Soul, L. C., Friedman, M. 2017. Bias in phylogenetic measurements of extinction and a case study of end-Permian tetrapods. Palaeontology. 60: 169185.
Speed, M. P., Arbuckle, K. 2017. Quantification provides a conceptual basis for convergent evolution. Biol. Rev. 92: 815829.
Stadler, T. 2010. Sampling-through-time in birth-death trees. J. Theor. Biol. 267: 396404.
Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J., Heath, T. A. 2018. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447: 4155.
Stayton, C. T. 2015. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution. 69: 21402153.
Thomas, G. H., Freckleton, R. P. 2012. MOTMOT: Models of trait macroevolution on trees. Methods Ecol. Evol. 3: 145151.
Uyeda, J. C., Zenil-Ferguson, R., Pennell, M. W. 2018. Rethinking phylogenetic comparative methods. Syst. Biol. 67: 10911109.
Voje, K. L., Starrfelt, J., Liow, L. H. 2018. Model adequacy and microevolutionary explanations for stasis in the fossil record. Am. Nat. 191: 509523.
Wagner, P. J. 2012. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol. Lett. 8: 143146.
Wagner, P. J., Marcot, J. D. 2010. Probabilistic phylogenetic inference in the fossil record: current and future applications. Paleontol. Soc. Pap. 16: 189211.
Wagner, P.J. and Marcot, J.D., 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution, 4(8), pp.703713.
Warnock, R. C. M., Wright, A. M. 2020. Understanding the tripartite approach to Bayesian divergence time estimation. EcoEvoRxiv. https://doi.org/10.32942/osf.io/4vazh.
Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology. 31: 3555.
Westoby, M., Leishman, M., Lord, J. 2016. Further remarks on phylogenetic correction. J. Ecol. 83: 727729.
Wiley, E. O., Lieberman, B. S. 2011. Phylogenetics: Theory and practice of phylogenetic systematics. New York: John Wiley & Sons.
Wright, A. M. 2019. A systematist’s guide to estimating Bayesian phylogenies from morphological data. Insect Syst. Divers. 3: 2.
Wright, A. M., Hillis, D. M. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One. 9: e109210.
Wright, A. M., Lloyd, G. T., Hillis, D. M. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65: 602611.
Wright, A. M., Wagner, P. J., Wright, D. F. 2020. Testing character evolution models in phylogenetic paleobiology: A case study with Cambrian echinoderms. EcoEvoRxiv. https://doi.org/10.32942/osf.io/ykzg5.
Wright, D. F. 2015. Fossils, homology, and phylogenetic paleo-ontogeny: A reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology. Paleobiology. 41: 570591.
Wright, D. F. 2017a. Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). J. Paleontol. 91: 799814.
Wright, D. F. 2017b. Phenotypic innovation and adaptive constraints in the evolutionary radiation of palaeozoic crinoids. Sci. Rep. 7: 110.
Wright, D. F., Toom, U. 2017. New crinoids from the Baltic region (Estonia): Fossil tip‐dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology. 60: 893910.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.