Skip to main content Accessibility help
×
  • This Element is free online from 6th October - 20th October
  • Cited by 12
Publisher:
Cambridge University Press
Online publication date:
August 2021
Print publication year:
2021
Online ISBN:
9781009104975

Book description

This Element has three main aims. First, it aims to help the reader understand the concept of computation that Turing developed, his corresponding results, and what those results indicate about the limits of computational possibility. Second, it aims to bring the reader up to speed on analyses of computation in physical systems which provide the most general characterizations of what it takes for a physical system to be a computational system. Third, it aims to introduce the reader to some different kinds of quantum computers, describe quantum speedup, and present some explanation sketches of quantum speedup. If successful, this Element will equip the reader with a basic knowledge necessary for pursuing these topics in more detail.

References

Aaronson, S. (2010). BQP and the polynomial hierarchy. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing (pp. 141150). New York: Association for Computing Machinery.
Aaronson, S. (2011). The equivalence of sampling and searching. In Kulikov, A. & Vershchagin, N. (eds.), Lecture notes in computer science (vol. 6651, pp. 114). Berlin, Heidelberg: Springer.
Aaronson, S. , & Ambainis, A. (2014). The need for structure in quantum speedups. Theory of Computing, 6, 133166.
Aharonov, D., van Dam, W., Kempe, J. et al. (2007). Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Journal on Computing, 37(1), 166194.
Albash, T. , & Lidar, D. A. (2018, Jan). Adiabatic quantum computation. Rev. Mod. Phys., 90, 015002.
Ambainis, A. (2019). Understanding quantum algorithms via query complexity. In Sirakov, B., de Souza, P. N., & Viana, M. (eds.), Proceedings of the International Congress of Mathematicians (ICM2018) (pp. 32653285). World Scientific.
Anderson, N. G. (2019). Information processing artifacts. Minds and Machines, 29, 193225.
Andréka, H., Madarász, J. X., Németi, I., Németi, P., & Székely, G. (2018). Relativistic computation. In Cuffaro, M. E. & Fletcher, S. C. (eds.), Physical perspectives on computation, computational perspectives on physics (pp. 195216). Cambridge University Press.
Annovi, F. (2015). Exploring quantum speed-up through cluster-state computers (unpublished doctoral dissertation). University of Bologna.
Beals, R., Buhrman, H., Cleve, R., Mosca, M., & de Wolf, R. (2001, July). Quantum lower bounds by polynomials. Journal of the ACM, 48(4), 778797.
Bennett, C. H., Bernstein, E., Brassard, G., & Vazirani, U. (1997). Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26(5), 15101523.
Bennett, C. H., & DiVincenzo, D. P. (2000). Quantum information and computation. Nature, 404(6775), 247255.
Bernstein, E. , & Vazirani, U. (1997). Quantum complexity theory. SIAM Journal on Computing, 26(5), 14111473.
Braun, D. , & Georgeot, B. (2006, Feb). Quantitative measure of interference. Physical Review A, 73, 022314.
Braun, D. , & Georgeot, B. (2008, Feb). Interference versus success probability in quantum algorithms with imperfections. Physical Review A, 77, 022318.
Bub, J. (2010). Quantum computation: Where does the speed-up come from. In Bokulich, A. & Jaegger, G. (eds.), Philosophy of quantum information and entanglement (p. 231246). Cambridge: Cambridge University Press.
Chalmers, D. J. (1996). Does a rock implement every finite-state automoton. Synthese, 108, 309333.
Church, A. (1936). An unsolvable problem in elementary number theory. American Journal of Mathematics, 58(2), 345363.
Church, A. (1937). Review of “A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.Journal of Symbolic Logic, 2(1), 4243.
Cleve, R., Ekert, A., Macchiavello, C., & Mosca, M. (1998). Quantum algorithms revisited. Proceedings of the Royal Society of London A, 454, 339354.
Copeland, B. (1996). What is computation? Synthese, 108(3), 335359.
Copeland, B. (2002). Hypercomputation. Minds and Machines, 12(4), 461502.
Copeland, B. (2004). Computable numbers: A guide. In Copeland, B. (ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life. Oxford: Oxford University Press.
Copeland, B. (2019). The Church-Turing thesis. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Spring 2019 ed.). Metaphysics Research Lab, Stanford University. http://https://plato.stanford.edu/archives/spr2019/entries/church-turing/.
Copeland, B., & Shagrir, O. (2007). Physical computation: How general are Gandy’s principles for mechanisms? Minds and Machines, 17, 217231.
Copeland, B., Shagrir, O., & Sprevak, M. (2018). Zeus’s thesis, Gandy’s thesis, and Penrose’s thesis. In Cuffaro, M. E. & Fletcher, S. (eds.), Physical perspectives on computation, computational perspectives on physics. Cambridge: Cambridge University Press.
Cuffaro, M. E. (2012). Many worlds, the cluster-state quantum computer, and the problem of the preferred basis. Studies in History and Philosophy of Modern Physics, 43, 3542.
Cuffaro, M. E. (2013). On the physical explanation for quantum speedup (unpublished doctoral dissertation). The University of Western Ontario, London, Ontario.
Cuffaro, M. E. (2015). How-possibly explanations in (quantum) computer science. Philosophy of Science, 82(5), 737748.
Cuffaro, M. E. (2017). On the significance of the Gottesman–Knill theorem. The British Journal for the Philosophy of Science, 68(1), 91121.
Cuffaro, M. E. (2018). Universality, invariance, and the foundations of computational complexity in the light of the quantum computer. In Hansson, S. (ed.), Technology and mathematics: Philosophical and historical investigations (pp. 253282). Springer.
Cuffaro, M. E. (in press). The philosophy of quantum computing. In Miranda, E. R. (ed.), Quantum computing in the arts and humanities. Cham: Springer Nature.
Datta, A., Flammia, S. T., & Caves, C. M. (2005, Oct). Entanglement and the power of one qubit. Physical Review A, 72, 042316.
Davies, M. (2013). Three proofs of the undecidability of the Entscheidungsproblem. In Cooper, S. B. & Leeuwen, J. v. (eds.), Alan Turing: His work and impact (p. 4952). San Diego: Elsevier Science.
Dean, W. (2016). Computational complexity theory. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Winter 2016 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2016/entries/computational-complexity/.
Del Mol, L. (2019). Turing machines. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Winter 2019 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2019/entries/turing-machine/
Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A, 400, 97117.
Deutsch, D. , & Jozsa, R. (1992). Rapid solutions of problems by quantum computation. Proceedings of the Royal Society of London A, 439, 553558.
Dewhurst, J. (2018). Computing mechanisms without proper functions. Minds and Machines, 28, 569588.
Duwell, A. (2007). The many-worlds interpretation and quantum computation. Philosophy of Science, 74(5), 10071018.
Duwell, A. (2017). Exploring the frontiers of computation: Measurement based quantum computers and the mechanistic view of computation. In Bokulich, A. & Floyd, J. (eds.), Turing 100: Philosophical explorations of the legacy of Alan Turing (vol. 324, pp. 219232). Cham: Springer.
Duwell, A. (2018). How to make orthogonal positions parallel: Revisiting the quantum parallelism thesis. In Cuffaro, M. E. & Fletcher, S. (eds.), Physical perspectives on computation, computational perspectives on physics. Cambridge: Cambridge University Press.
Earman, J. (1986). A primer on determinism. D. Reidel Pub. Co.
Earman, J., & Norton, J. (1993, March). Forever is a day – supertasks in Pitowski and Malament-Hogarth spacetimes. Philosophy of Science, 60(1), 2242.
Ekert, A., & Jozsa, R. (1998). Quantum algorithms: entanglement-enhanced information processing. Philosophical Transactions of the Royal Society of London A, 356, 17691782.
Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467488.
Feynman, R. P. (1985, Feb). Quantum mechanical computers. Optics News, 11(2), 1120.
Fletcher, S. C. (2018). Computers in abstraction/representation theory. Minds and Machines, 28(3), 445463.
Fortnow, L. (2003). One complexity theorist’s view of quantum computing. Theoretical Computer Science, 292, 597610.
Freedman, M. H. , Kitaev, A. , & Larson, M. J. (2003). Topological quantum computation. Bulletin of the American Mathematical Society, 40, 3138.
Fresco, N. (2013). Physical computation and cognitive science. New York: Springer.
Frigg, R., & Nguyen, J. (2020). Scientific representation. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Spring 2020 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2020/entries/scientific-representation/.
Gandy, R. (1980). Church’s thesis and principles for mechanisms. In Barwise, J., Keisler, H. J., & Kunen, K. (eds.), The Kleene symposium (vol. 101, pp. 123148). Elsevier.
Godfrey-Smith, P. (2009, Aug 01). Triviality arguments against functionalism. Philosophical Studies, 145(2), 273295.
Gross, D., Flammia, S. T., & Eisert, J. (2009, May). Most quantum states are too entangled to be useful as computational resources. Physical Review Letters, 102, 190501.
Grzegorczyk, A. (1957). On the definitions of computable real continuous functions. Fundamenta Mathematicae, 44(1), 6171.
Hagar, A., & Cuffaro, M. (2019). Quantum computing. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Winter 2019 ed. ). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2019/entries/qt-quantcomp/.
Harris, R. , Lanting, T. , Berkley, A. et al. (2009, Aug). Compound Josephson-junction coupler for flux qubits with minimal crosstalk. Physical Review B, 80, 052506.
Hewitt-Horsman, C. (2009). An introduction to many worlds in quantum computation. Foundations of Physics, 39(8), 869902.
Hilbert, D., & Ackermann, W. (1928). Grundzüge der theoretischen Logik. Berlin: Springer.
Hillery, M. (2016, Jan). Coherence as a resource in decision problems: The Deutsch–Jozsa algorithm and a variation. Physical Review A, 93, 012111.
Hogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters, 5(2), 173181. doi: https://doi.org/10.1007/BF00682813
Horsman, C. , Kendon, V. , & Stepney, S. (2017). The natural science of computing. Communications of the ACM, 60(8), 3134.
Horsman, C. , Kendon, V. , Stepney, S. , & Young, J. P. W. (2017). Abstraction and representation in living organisms: When does a biological system compute? In Dodig-Crnkovic, G. & Giovangnoli, R. (eds.), Representation and reality in humans, other living organisms, and intelligent machines (pp. 91116). Cham: Springer International Publishing.
Horsman, C. , Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? Proceedings of the Royal Society of London A, 470, 20140182.
Horsman, D. (2017). The representation of computation in physical systems. In Massimi, M., Romeijn, J. W., & Schurz, G. (eds.), EPSA15 selected papers (pp. 191204). Chamml: Springer.
Horsman, D. , Kendon, B. , & Stepney, S. (2018). Abstraction/representation theory and the natural science of computation. In Cuffaro, M. E. & Fletcher, S. C. (eds.), Physical perspectives on computation (pp. 127149). Cambridge: Cambridge University Press.
Horsman, D. C. (2015). Abstraction/representation theory for heterotic physical computing. Philosophical Transactions of the Royal Society of London A, 373, 20140224.
Johansson, N., & Larsson, J.. (2017). Efficient classical simulation of the Deutsch–Jozsa and Simon’s algorithms. Quantum Information Processing, 16(9), 233.
Johansson, N., & Larsson, J.. (2019). Quantum simulation logic, oracles, and the quantum advantage. Entropy, 21, 800.
Josza, R., & Linden, N. (2003). On the role of entanglement on quantum-computational speed-up. Proceedings of the Royal Society of London A, 459, 20112032.
Kalai, G. (2020). The argument against quantum computers. In Hemmo, M. & Shenker, O. (eds.), Quantum, probability, logic: The work and influence of Itamar Pitowsky (pp. 399422). Chamml: Springer International Publishing.
Kato, T. (1950). On the adiabatic theorem of quantum mechanics. Journal of the Physical Society of Japan, 5(6), 435439.
Kendon, V., Sebald, A., & Stepney, S. (2015). Heterotic computing: past, present, and future. Philosophical Transactions of the Royal Society of London A, 373, 20140225.
Kleene, S. (1953). Introduction to metamathematics. Amsterdamml: North Holland.
Kleene, S. (1967). Mathematical logic. New York: Wiley.
Kripke, S. A. (2013). The Church-Turing “thesis” as a special corollary of Gödel’s completeness theorem. In Copeland, B., Posy, C., & Shagrir, O. (eds.), Computability: Turing, Gödel, Church, and beyond (p. 77104). Cambridge, MA: Massachusetts Institute of Technology Press.
Ladyman, J. (2009). What does it mean to say that a physical system implements a computation? Theoretical Computer Science, 410, 376383.
Lahtinen, V., & Pachos, J. K. (2017). A short introduction to topological quantum computation. SciPost Phys., 3, 021.
Lloyd, S. (1999, Dec). Quantum search without entanglement. Physical Review B, 61, 010301.
Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.
Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 125.
Maroney, O. (2009). Information processing and thermodynamic entropy. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Fall 2009 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2009/entries/information-entropy/.
Maroney, O. J. E., & Timpson, C. G. (2018). How is there a physics of information? On characterizing physical evolution as information processing. In Cuffaro, M. E. & Fletcher, S. C. (eds.), Physical perspectives on computation, computational perspectives on physics (pp. 103126). Cambridge University Press.
Marr, D. (1982). Vision. San Francisco: W. H. Freeman.
Meyer, D. A. (2000, Aug). Sophisticated quantum search without entanglement. Physical Review Letters, 85, 20142017.
Milkowski, M. (2013). Explaining the computational mind. Cambridge, MA: Massachusetts Institute of Technology Press.
Neilsen, M., & Chuang, I. (2000). Quantum computation and quantum infomation. Cambridge: Cambridge University Press.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501526.
Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137(2), 205241.
Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.
Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453488.
Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun, 39, 8199.
Pitowsky, I. (2002). Quantum speed-up of computations. Philosophy of Science, 69(3), S168S177.
Pitowsky, I. (2007). From logic to physics: How the meaning of computation changed over time. In Cooper, S. B., Löwe, B., & Sorbi, A. (eds.), Computation and logic in the real world (pp. 621631). Berlin, Heidelberg: Springer Berlin Heidelberg.
Pour-El, M. B., & Richards, I. (1981). The wave equation with computable initial data such that its unique solution is not computable. Advances in Mathematics, 39(3), 215239.
Putnam, H. (1988). Representation and reality. Cambridge, MA: Massachusetts Institute of Technology Press.
Raussendorf, R., & Briegel, H. (2001). A one-way quantum computer. Physical Review Letters, 86(5188).
Raz, R., & Tal, A. (2019). Oracle separation of BQP and PH. In Proceedings of the 51st annual ACM SIGACT symposium on theory of computing (pp. 1323). New York: Association for Computing Machinery.
Rescorla, M. (2014). A theory of computational implementation. Synthese, 191, 12771307.
Roland, J., & Cerf, N. J. (2002, Mar). Quantum search by local adiabatic evolution. Physical Review A, 65, 042308.
Scheutz, M. (1999). When physical systems realize functions Mind and Machines, 9, 161196.
Schweizer, P. (2019). Computation in physical systems: A normative mapping account. In Berkich, D. & d’Alfonso, M. (eds.), On the cognitive, ethical, and scientific dimensions of artificial intelligence (vol. 134, pp. 2747). Chamml: Springer.
Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: Massachusetts Institute of Technology Press.
Shagrir, O. (2001). Content, computation, and externalism. Mind, 110(438), 369400.
Shinbrot, T., Grebogi, C., Wisdom, J., & Yorke, J. A. (1992). Chaos in a double pendulum. American Journal of Physics, 60(6), 491499.
Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124134).
Sieg, W. (1994). Mechanical procedures and mathematical experience. In George, A. (ed.), Mathematics and mind (pp. 71–117). Oxford University Press.
Sieg, W. (2002a). Calculations by man and machine: conceptual analysis. In Sieg, W., Sommer, R., & Tallcot, C. (eds.), Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman (pp. 390409). CRC Press.
Sieg, W. (2002b). Calculations by man and machine: mathematical presentation. In Gärdenfors, P., Woleñski, J., & Kajania-Placek, K. (eds.), In the scope of logic, methodology, and philosophy of science (vol. 1, pp. 247262). Netherlands: Kluwer Academic Publishers.
Spekkens, R. W. (2007). Evidence for the epistemic view of states. Physical Review A, 75, 032110.
Sprevak, M. (2018). Triviality arguments about computational implementation. In Sprevak, M. & Colombo, M. (eds.), Routledge handbook of the computational mind (pp. 175191). London: Routledge.
Stahlke, D. (2014, Aug). Quantum interference as a resource for quantum speedup. Physical Review A, 90, 022302.
Steane, A. (2003). A quantum computer needs only one universe. Studies in History and Philosophy of Modern Physics, 34, 469478.
Timpson, C. G. (2013). Quantum information theory and the foundations of quantum mechanics. Oxford: Oxford University Press.
Timpson, C. G., & Brown, H. R. (2005). Proper and improper separability. International Journal of Quantum Information, 3(4), 679690.
Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42(1), 230265.
Turing, A. (1937). Computability and λ-definability. The Journal of Symbolic Logic, 2(4), 153163.
van Fraassen, B. C. (2006). Representation: The problem for structuralism. Philosophy of Science, 73(5), 536547.
Vollmer, H. (1999). Introduction to Circuit Complexity: A Uniform Approach. Italy: Springer-Verlag.
Wallace, D. (2012). The emergent multiverse: Quantum theory according to the Everett interpretation. Oxford: Oxford University Press.
Yoran, N., & Short, A. J. (2007, Oct). Efficient classical simulation of the approximate quantum Fourier transform. Physical Review A, 76, 042321.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.