Skip to main content Accessibility help
×
  • Cited by 217
Publisher:
Cambridge University Press
Online publication date:
March 2017
Print publication year:
2017
Online ISBN:
9781316219317

Book description

The unique features of the quantum world are explained in this book through the language of diagrams, setting out an innovative visual method for presenting complex theories. Requiring only basic mathematical literacy, this book employs a unique formalism that builds an intuitive understanding of quantum features while eliminating the need for complex calculations. This entirely diagrammatic presentation of quantum theory represents the culmination of ten years of research, uniting classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundations. Written in an entertaining and user-friendly style and including more than one hundred exercises, this book is an ideal first course in quantum theory, foundations, and computation for students from undergraduate to PhD level, as well as an opportunity for researchers from a broad range of fields, from physics to biology, linguistics, and cognitive science, to discover a new set of tools for studying processes and interaction.

Reviews

'Picturing Quantum Processes is a lively and refreshing romp through the authors diagrammatic and categorical approach to quantum processes. I recommend this book with no lower age limit required!'

Louis Kauffman - University of Illinois

'This book develops from scratch the category theoretic, and diagrammatic, language for quantum theory, especially quantum processes. It is a remarkable achievement: vigorous, crystal-clear, complete - and a delight to read.'

Jeremy Butterfield - University of Cambridge

'The book employs a unique formalism developed by the authors, which allows a more intuitive understanding of quantum features and eliminates complex calculations. As a result, knowledge of advanced mathematics is not required. … An informal and entertaining style is adopted, which makes this book easily approachable by students at their first encounter with quantum theory. That said, it will probably appeal more to Ph.D. students and researchers who are already familiar with the subject and are interested in looking at different treatment of this matter. The text is also accompanied by a rich set of exercises.'

Source: CERN Courier

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abramsky, S. 2010. No-cloning in categorical quantum mechanics. Pages 1–28 of: Gay, S., and Mackie, I. (eds), Semantic Techniques in Quantum Computation. Cambridge University Press. Arxiv preprint arXiv:0910.2401.
Abramsky, S., and Coecke, B. 2004. A categorical semantics of quantum protocols. Pages 415–425 of: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS). arXiv:quant-ph/0402130.
Abramsky, S., and Coecke, B. 2005. Abstract physical traces. Theory and Applications of Categories, 14(6), 111–124. arXiv:0910.3144.
Abramsky, S., and Heunen, C. 2012. Operational theories and categorical quantum mechanics. In: Logic and Algebraic Structures in Quantum Computing. Cambridge University Press. arXiv:1206.0921.
Abramsky, S., and Jagadeesan, R. 1994. New foundations for the geometry of interaction. Information and Computation, 111, 53–119.
Abramsky, S., and Tzevelekos, N. 2011. Introduction to categories and categorical logic. Pages 3–94 of: Coecke, B. (ed), New Structures for Physics. Lecture Notes in Physics. Springer-Verlag.
Alberti, P. M., and Uhlmann, A. 1982. Stochasticity and Partial Order. Mathematics and Its Applications, vol. 9. Reidel.
Ambainis, A. 2010. New developments in quantum algorithms. arXiv:1006.4014.
Aspect, A., Grangier, P., and Roger, G. 1981. Experimental tests of realistic local theories via Bell's theorem. Physical Review Letters, 47(7), 460.
Aspect, A., Dalibard, J., and Roger, G. 1982. Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804.
Awodey, S. 2010. Category Theory. Oxford University Press.
Backens, M. 2014. The ZX-calculus is complete for the single-qubit Clifford+T group. Pages 293–303 of: Coecke, B., Hasuo, I. and Panangaden, P. (eds), Proceedings of the 11th Workshop on Quantum Physics and Logic. Electronic Proceedings in Theoretical Computer Science, vol. 172. Open Publishing Association.
Backens, M. 2014. The ZX-calculus is complete for the single-qubit Clifford+T group. arXiv:1412.8553.
Backens, M., and Nabi Duman, A. 2015. A complete graphical calculus for Spekkens' toy bit theory. Foundations of Physics. arXiv:1411.1618.
Backens, M., Perdrix, S., and Wang, Q. 2016. A simplified stabilizer ZX-calculus. In: Proceedings of the 13th International Conference on Quantum Physics and Logic. arXiv:1602.04744.
Baez, J. C. 1993–2010. This week's finds in mathematical physics. math.ucr.edu/home/ baez/TWF.html.
Baez, J. C. 2006. Quantum quandaries: a category-theoretic perspective. Pages 240–266 of: Rickles, D., French, S., and Saatsi, J.T. (eds), The Structural Foundations of Quantum Gravity. Oxford University Press. arXiv:quant-ph/0404040.
Baez, J. C., and Dolan, J. 1995. Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics, 36, 6073. arXiv:q-alg/9503002.
Baez, J. C., and Erbele, J. Categories in control. arXiv:1405.6881.
Baez, J. C., and Fong, B. 2015. A compositional framework for passive linear networks. arXiv:1504.05625.
Baez, J. C., and Lauda, A. 2011. A prehistory of n-categorical physics. Pages 13–128 of: Halvorson, H. (ed), Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press.
Baez, J. C., and Stay, M. 2011. Physics, topology, logic and computation: a Rosetta Stone. Pages 95–172 of: Coecke, B. (ed), New Structures for Physics. Lecture Notes in Physics. Springer.
Balkir, E., Sadrzadeh, M., and Coecke, B. 2016. Distributional Sentence Entailment Using Density Matrices. Cham: Springer International Publishing. Pages 1–22.
Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A., and Lucas, D. M. 2016. High- Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Physical Review Letters, 117(6), 060504.
Baltag, A., and Smets, S. 2005. Complete axiomatizations for quantum actions. International Journal of Theoretical Physics, 44, 2267–2282.
Bankova, D., Coecke, B., Lewis, M., and Marsden, D. 2016. Graded entailment for compositional distributional semantics. In: Proceedings of the 13th International Conference on Quantum Physics and Logic. arXiv:1601.04908.
Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P. W., Sleator, T., Smolin, J. A., and Weinfurter, H. 1995. Elementary gates for quantum computation. Physical Review A, 52, 3457–3467.
Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa, R., and Schumacher, B. 1996. Noncommuting mixed states cannot be broadcast. Physical Review Letters, 76, 2818.
Barnum, H., Barrett, J., Leifer, M., and Wilce, A. 2007. A generalized no-broadcasting theorem. Physical Review Letters, 99(24), 240501.
Barr, M., and Wells, C. 1990. Category Theory for Computing Science. New York: Prentice Hall.
Barrett, J. 2007. Information processing in generalized probabilistic theories. Physical Review A, 75, 032304.
Belinfante, F. J. 1973. Survey of Hidden-Variables Theories. Pergamon Press.
Bell, J. S. 1964. On the Einstein–Podolsky–Rosen paradox. Physics, 1(3), 195–200.
Benabou, J. 1963. Categories avec multiplication. Comptes Rendus des Séances de l'Académie des Sciences. Paris, 256, 1887–1890.
Benioff, P. 1980. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22, 563–591.
Bennett, C. H., and Brassard, G. 1984. Quantum cryptography: public key distribution and coin tossing. Pages 175–179 of: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. IEEE.
Bennett, C. H., and Wiesner, S. 1992. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Physical Review Letters, 69, 2881–2884.
Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., and Wootters, W. K. 1993. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Physical Review Letters, 70(13), 1895–1899.
Birkhoff, G., and von Neumann, J. 1936. The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.
Bloch, F. 1946. Nuclear induction. Physical Review, 70, 460–474.
Blute, R. F., Ivanov, I. T., and Panangaden, P. 2003. Discrete quantum causal dynamics. International Journal of Theoretical Physics, 42(9), 2025–2041.
Bohm, D. 1952. A suggested interpretation of the quantum theory in terms of hidden” variables. I. Physical Review, 85(2), 166.
Bohm, D. 1952. A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Physical Review, 85(2), 180.
Bohm, D. 1986. Time, the implicate order and pre-space. Pages 172–208 of: Griffin, D. R. (ed), Physics and the Ultimate Significance of Time. SUNY Press.
Bohm, D., and Peat, F. D. 1987. Science, Order, and Creativity. Routledge.
Bohr, N. 1931. Atomtheorie und Naturbeschreibung. Springer.
Bohr, N. 1935. Quantum mechanics and physical reality. Nature, 136, 65.
Bohr, N. 1961. Atomic Physics and Human Knowledge. Science Editions.
Boixo, S., and Heunen, C. 2012. Entangled and sequential quantum protocols with dephasing. Physical Review Letters, 108, 120402. arXiv:1108.3569.
Bonchi, F., Sobocinski, P., and Zanasi, F. 2014. A categorical semantics of signal flow graphs. Pages 435–450 of: CONCUR'14: Concurrency Theory. Lecture Notes in Computer Science, vol. 8704. Springer.
Bonchi, F., Sobocinski, P., and Zanasi, F. 2014. Interacting bialgebras are Frobenius. Pages 351–365 of: 17th International Conference on Foundations of Software Science and Computation Structures (FOSSACS).
Borceux, F. 1994. Handbook of Categorical Algebra: Basic Category Theory. Cambridge University Press.
Borceux, F. 1994. Handbook of Categorical Algebra: Categories and Structures. Cambridge University Press.
Born, M. 1926. Quantenmechanik der stoßvorgänge. Zeitschrift für Physik, 38(11–12), 803–827.
Born, M., and Jordan, P. 1925. Zur Quantenmechanik. Zeitschrift für Physik, 34, 858–888.
Bourbaki, N. 1959.ndash;2004. Éléments de mathématique. CCLS & Editions Masson.
Bourbaki, N. 1981. Espaces vectoriels topologiques. Springer.
Bourbaki, N. 1987. Topological Vector Spaces. Springer.
Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A. 1997. Experimental quantum teleportation. Nature, 390(6660), 575–579.
Brandão, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M., and Spekkens, R. W. 2013. The resource theory of quantum states out of thermal equilibrium. Physical Review Letters, 111, 250404.
Brauer, R., and Nesbitt, C. 1937. On the regular representations of algebras. Proceedings of the National Academy of Sciences of the United States of America, 23(4), 236.
Bub, J. 1999. Interpreting the Quantum World. Cambridge University Press.
Buchsbaum, D. 1955. Exact categories and duality. Transactions of the American Mathematical Society, 80, 1–34.
Bundy, A., Cavallo, F., Dixon, L., Johansson, M., and McCasland, R. N.d. 2015. The theory behind TheoryMine. IEEE Intelligent Systems, 30(4), 64–69.
Carboni, A., and Walters, R. F. C. 1987. Cartesian bicategories I. Journal of Pure and Applied Algebra, 49, 11–32.
Carroll, L. 1942. Alice in Wonderland. Pelangi Publishing Group Bhd.
Chiribella, G. 2014. Distinguishability and copiability of programs in general process theories. arXiv:1411.3035.
Chiribella, G., and Scandolo, C. M. 2015. Entanglement and thermodynamics in general probabilistic theories. New Journal of Physics, 17, 103027.
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2010. Probabilistic theories with purification. Physical Review A, 81(6), 062348.
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2011. Informational derivation of quantum theory. Physical Review A, 84(1), 012311.
Choi, M.-D. 1975. Completely positive linear maps on complex matrices. Linear Algebra and Its Applications, 10, 285–290.
Clark, S., Coecke, B., Grefenstette, E., Pulman, S., and Sadrzadeh, M. 2014. A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure. Malaysian Journal of Mathematical Sciences, 8, 15–25. arXiv:1305.0556.
Clifton, R., Bub, J., and Halvorson, H. 2003. Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Physics, 33, 1561–1591.
Coecke, B. 2000. Structural characterization of compoundness. International Journal of Theoretical Physics, 39, 585–594.
Coecke, B. 2003. The logic of entanglement. An invitation. Tech. rept. RR-03-12. Department of Computer Science, Oxford University.
Coecke, B. 2005. Kindergarten quantum mechanics. Pages 81–98 of: Khrennikov, A. (ed), Quantum Theory: Reconsiderations of the Foundations III. AIP Press. arXiv:quantph/ 0510032.
Coecke, B. 2007. De-linearizing linearity: projective quantum axiomatics from strong compact closure. Electronic Notes in Theoretical Computer Science, 170, 49–72. arXiv:quant-ph/0506134.
Coecke, B. 2008. Axiomatic description of mixed states from Selinger's CPM-construction. Electronic Notes in Theoretical Computer Science, 210, 3–13.
Coecke, B. 2009. Quantum picturalism. Contemporary Physics, 51, 59–83. arXiv:0908.1787.
Coecke, B. 2011. A universe of processes and some of its guises. Pages 129–186 of: Halvorson, H. (ed), Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press. arXiv:1009.3786.
Coecke, B. 2013. An alternative Gospel of structure: order, composition, processes. Pages 1–22 of: Heunen, C., Sadrzadeh, M., and Grefenstette, E. (eds), Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press. arXiv:1307.4038.
Coecke, B. 2014. The Logic of Entanglement. Cham: Springer International Publishing. Pages 250–267.
Coecke, B. 2014. Terminality implies non-signalling. arXiv:1405.3681.
Coecke, B. 2016. The logic of quantum mechanics –take II. Pages 174–198 of: Chubb, J., Eskandarian, A., and Harizanov, V. (eds), Logic and Algebraic Structures in Quantum Computing. Cambridge University Press. arXiv:1204.3458.
Coecke, B., and Duncan, R. 2008. Interacting quantum observables. In: Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science.
Coecke, B., and Duncan, R. 2011. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics, 13, 043016. arXiv:quant-ph/09064725.
Coecke, B., and Edwards, B. 2010. Three qubit entanglement within graphical Z/Xcalculus. Electronic Proceedings in Theoretical Computer Science, 52, 22–33.
Coecke, B., and Edwards, B. 2011. Toy quantum categories. Electronic Notes in Theoretical Computer Science, 270(1), 29–40. arXiv:0808.1037.
Coecke, B., and Edwards, B. 2012. Spekkens's toy theory as a category of processes. In: Abramsky, S., and Mislove, M. (eds), Mathematical Foundations of Information Flow. Proceedings of symposia in applied mathematics. American Mathematical Society. arXiv:1108.1978.
Coecke, B., and Heunen, C. 2011. Pictures of complete positivity in arbitrary dimension. Quantum Phsyics and Logic, Electronic Proceedings in Theoretical Computer Science, 95, 27–35. arXiv:1210.0298.
Coecke, B., and Kissinger, A. 2010. The compositional structure of multipartite quantum entanglement. Pages 297–308 of: Automata, Languages and Programming. Lecture Notes in Computer Science. Springer. arXiv:1002.2540.
Coecke, B., and Lal, R. 2013. Causal categories: relativistically interacting processes. Foundations of Physics, 43, 458–501. arXiv:1107.6019.
Coecke, B., and Paquette, E. O.2008. POVMs and Naimark's theorem without sums. Electronic Notes in Theoretical Computer Science, 210, 15–31. arXiv:quantph/ 0608072.
Coecke, B., and Paquette, E. O. 2011. Categories for the practicing physicist. Pages 167–271 of: Coecke, B. (ed), New Structures for Physics. Lecture Notes in Physics. Springer. arXiv:0905.3010.
Coecke, B., and Pavlovic, D. 2007. Quantum measurements without sums. Pages 567–604 of: Chen, G., Kauffman, L., and Lamonaco, S. (eds), Mathematics of Quantum Computing and Technology. Taylor and Francis. arXiv:quant-ph/0608035.
Coecke, B., and Perdrix, S. 2010. Environment and classical channels in categorical quantum mechanics. Pages 230–244 of: Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL). Lecture Notes in Computer Science, vol. 6247. Extended version: arXiv:1004.1598.
Coecke, B., and Smets, S. 2004. The Sasaki hook is not a [static] implicative connective but induces a backward [in time] dynamic one that assigns causes. International Journal of Theoretical Physics, 43, 1705–1736.
Coecke, B., and Spekkens, R.W. 2012. Picturing classical and quantum Bayesian inference. Synthese, 186, 651–696. arXiv:1102.2368.
Coecke, B., Moore, D. J., and Wilce, A. 2000. Operational quantum logic: an overview. Pages 1–36 of: Coecke, B., Moore, D. J., and Wilce, A. (eds), Current Research in Operational Quantum Logic: Algebras, Categories and Languages. Fundamental Theories of Physics, vol. 111. Springer-Verlag. arXiv:quant-ph/0008019.
Coecke, B., Moore, D. J., and Stubbe, I. 2001. Quantaloids describing causation and propagation of physical properties. Foundations of Physics Letters, 14, 133–146. arXiv:quant-ph/0009100.
Coecke, B., Paquette, E.O., and Perdrix, S. 2008. Bases in diagrammatic quantum protocols. Electronic Notes in Theoretical Computer Science, 218, 131–152. arXiv:0808.1029.
Coecke, B., Paquette, E.O., and Pavlović, D. 2008. Classical and quantum structures. Tech. rept. RR-08-02. Department of Computer Science, Oxford University.
Coecke, B., Paquette, E.O., and Pavlović, D. 2010. Classical and quantum structuralism. Pages 29–69 of: Gay, S., and Mackie, I. (eds), Semantic Techniques in Quantum Computation. Cambridge University Press. arXiv:0904.1997.
Coecke, B., Kissinger, A., Merry, A., and Roy, S. 2010. The GHZ/W-calculus contains rational arithmetic. Electronic Proceedings in Theoretical Computer Science, 52, 34–48.
Coecke, B., Sadrzadeh, M., and Clark, S. 2010. Mathematical foundations for a compositional distributional model of meaning. Pages 345–384 of: van Benthem, J., Moortgat, M., and Buszkowski, W. (eds), A Festschrift for Jim Lambek. Linguistic Analysis, vol. 36. arxiv:1003.4394.
Coecke, B., Wang, Q., Wang, B., Wang, Y., and Zhang, Q. 2011. Graphical calculus for quantum key distribution (extended abstract). Electronic Notes in Theoretical Computer Science, 270(2), 231–249.
Coecke, B., Edwards, B., and Spekkens, R. W. 2011b. Phase groups and the origin of nonlocality for qubits. Electronic Notes in Theoretical Computer Science, 270(2), 15–36. arXiv:1003.5005.
Coecke, B., Duncan, R., Kissinger, A., and Wang, Q. 2012. Strong complementarity and non-locality in categorical quantum mechanics. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS). arXiv:1203.4988.
Coecke, B., Heunen, C., and Kissinger, A. 2013. Categories of quantum and classical channels. arXiv:1305.3821.
Coecke, B., Heunen, C., and Kissinger, A. 2013. Compositional quantum logic. Pages 21–36 of: Computation, Logic, Games, and Quantum Foundations: The Many Facets of Samson Abramsky. Springer.
Coecke, B., Pavlović, D., and Vicary, J. 2013. A new description of orthogonal bases. Mathematical Structures in Computer Science, 23, 555–567. arXiv:quant-ph/ 0810.1037.
Coecke, B., Fritz, T., and Spekkens, R. W. 2016. A mathematical theory of resources. Information and Computation.
Coecke, B., Duncan, R., Kissinger, A., and Wang, Q. 2016. Generalised compositional theories and diagrammatic reasoning. In: Chiribella, G., and Spekkens, R. W. (eds), Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics. Springer. arXiv:1203.4988.
Coqand, T., Heut, G., et al. 1984. Coq theorem prover. https://coq.inria.fr/.
Cunningham, O., and Heunen, C. 2015. Axiomatizing complete positivity. Pages 148–157 of: Heunen, C., Selinger, P., and Vicary, J. (eds), Proceedings of the 12th International Workshop on Quantum Physics and Logic. Electronic Proceedings in Theoretical Computer Science, vol. 195. Open Publishing Association.
Davies, E. B. 1976. Quantum Theory of Open Systems. Academic Press.
Davies, E. B., and Lewis, J. T. 1970. An operational approach to quantum probability. Communications in Mathematical Physics, 17, 239–260.
Deutsch, D. 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818), 97–117.
Deutsch, D. 1989. Quantum computational networks. Proceedings of the Royal Society of London, 425.
Deutsch, D. 1991. Quantum mechanics near closed timelike lines. Physical Review D, 44, 3197.
Deutsch, D., and Jozsa, R. 1992. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907), 553–558.
Dieks, D. G. B. J. 1982. Communication by EPR devices. Physics Letters A, 92(6), 271–272.
Dijkstra, E. W. 1968. A constructive approach to the problem of program correctness. BIT Numerical Mathematics, 8, 174–186.
Dirac, P. A. M. 1926. On the theory of quantum mechanics. Proceedings of the Royal Society A, 112, 661–677.
Dirac, P. A. M. 1939. A new notation for quantum mechanics. Pages 416–418 of: Proceedings of the Cambridge Philosophical Society, vol. 35. Cambridge University Press.
Dixon, L., and Duncan, R. 2009. Graphical reasoning in compact closed categories for quantum computation. Annals of Mathematics and Artificial Intelligence, 56(1), 23–42.
Dixon, L., and Duncan, R. 2010. Extending graphical representations for compact closed categories with applications to symbolic quantum computation. Intelligent Computer Mathematics, 77–92.
Dixon, L., and Kissinger, A. 2013. Open-graphs and monoidal theories. Mathematical Structures in Computer Science, 23(2), 308–359.
Dixon, L., Duncan, R., and Kissinger, A. 2010. Open graphs and computational reasoning. Pages 169–180 of: Cooper, S. B., Panangaden, P. and Kashefi, E. (eds), Proceedings of the Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics. Electronic Proceedings in Theoretical Computer Science, vol. 26. Open Publishing Association.
Dixon, L., Duncan, R., Merry, A., Kissinger, A., Soloviev, M., and Zamzhiev, V. 2011. quantomatic. http://quantomatic.github.io.
Duncan, R. 2006. Types for quantum computation. DPhil Thesis, Oxford University.
Duncan, R. 2012. A graphical approach to measurement-based quantum computing. arXiv:1203.6242.
Duncan, R., and Lucas, M. 2013. Verifying the Steane code with Quantomatic. In: Proceedings of the 10th International Workshop on Quantum Physics and Logic. arXiv:1306.4532.
Duncan, R., and Perdrix, S. 2009. Graph states and the necessity of Euler decomposition. Mathematical Theory and Computational Practice, 167–177.
Duncan, R., and Perdrix, S. 2010. Rewriting measurement-based quantum computations with generalised flow. Pages 285–296 of: Proceedings of ICALP. Lecture Notes in Computer Science. Springer.
Duncan, R., and Perdrix, S. 2013. Pivoting makes the ZX-calculus complete for real stabilizers. In: Proceedings of the 10th International Workshop on Quantum Physics and Logic. arXiv:1307.7048.
Dür, W., Vidal, G., and Cirac, J. I. 2000. Three qubits can be entangled in two inequivalent ways. Physical Review A, 62(062314).
Durt, T., Englert, B.-G., Bengtsson, I., and Zyczkowski, K. 2010. On mutually unbiased bases. International Journal of Quantum Information, 8, 535–640.
Eckmann, B., and Hilton, P. J. 1962. Group-like structures in general categories. I. Multiplications and comultiplications. Mathematische Annalen, 145(3).
Edwards, B. 2009. Non-locality in categorical quantum mechanics. PhD thesis, University of Oxford.
Eilenberg, S., and Mac Lane, S. 1945. General theory of natural equivalences. Transactions of the American Mathematical Society, 58(2), 231.
Einstein, A. 1936. Physics and reality. Journal of the Franklin Institute, 221(3), 349–382.
Einstein, A., Podolsky, B., and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777.
Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Physical Review Letters, 67(6), 661–663.
Evans, J., Duncan, R., Lang, A., and Panangaden, P. 2009. Classifying all mutually unbiased bases in Rel. arXiv:0909.4453.
Everett, H. III.1957. “Relative state” formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454.
Faure, C.-A., Moore, D. J., and Piron, C. 1995. Deterministic evolutions and Schrödinger flows. Helvetica Physica Acta, 68(2), 150–157.
Fauser, B. 2013. Some graphical aspects of Frobenius structures. Pages 23–48 of: Heunen, C., Sadrzadeh, M., and Grefenstette, E. (eds), Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press. arXiv:1202.6380.
Feynman, R. P. 1982. Simulating physics with computers. International Journal of Theoretical Physics, 21, 467–488.
Fong, B., and Nava-Kopp, H. 2015. Additive monotones for resource theories of parallel-combinable processes with discarding. Electronic Proceedings in Theoretical Computer Science, 195, 170–178. arXiv:1505.02651.
Fort, C. 1931. Lo! Cosimo Books.
Foulis, D. J., and Randall, C. H. 1972. Operational statistics. I. Basic concepts. Journal of Mathematical Physics, 13(11), 1667–1675.
Freyd, P. 1964. Abelian Categories. New York: Harper and Row.
Freyd, P., and Yetter, D. 1989. Braided compact closed categories with applications to lowdimensional topology. Advances in Mathematics, 77, 156–182.
Fritz, T. 2014. Beyond Bell's theorem II: scenarios with arbitrary causal structure. arXiv:1404.4812.
Fritz, T. 2015. Resource convertibility and ordered commutative monoids. Mathematical Structures in Computer Science, 10, 1–89.
Fuchs, C. A. 2002. Quantum mechanics as quantum information (and only a little more). arXiv: quant-ph/0205039.
Fuchs, C. A., Mermin, N. D., and Schack, R. 2014. An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82, 749–754. arXiv:1311.5253.
Ghirardi, G.-C., Rimini, A., and Weber, T. 1980. A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere Al Nuovo Cimento, 27(10), 293–298.
Gilbreth, F. B., and Gilbreth, L. M. 1922. Process charts and their place in management. Mechanical engineering, 70, 38–41.
Girard, J.-Y. 1989. Towards a geometry of interaction. Contemporary Mathematics, 92, 69–108.
Gleason, A. M. 1957. Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, 6, 885–893.
Gogioso, S. 2015. A bestiary of sets and relations. arXiv:1506.05025.
Gogioso, S. 2015. Categorical semantics for Schrödinger's equation. arXiv:1501.06489.
Gogioso, S. 2015. Monadic dynamics. arXiv:1501.04921.
Gogioso, S., and Genovese, F. 2016. Infinite-dimensional categorical quantum mechanics. In: Proceedings of QPL. arXiv:1605.04305.
Gogioso, S., and Kissinger, A. 2016. Fully graphical treatment of the Hidden Subgroup Problem. Unpublished.
Gogioso, S., and Zeng, W. 2015. Mermin non-locality in abstract process theories. arXiv:1506.02675.
Gonthier, G. 2008. The Four Colour Theorem: Engineering of a Formal Proof. Berlin and Heildelberg: Springer. Page 333.
Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux, S., Mahboubi, A., O'Connor, R., Biha, S. O., et al. 2013. A machine-checked proof of the odd order theorem. Pages 163–179 of: Interactive Theorem Proving. Springer.
Gordon, M. 2000. From LCF to HOL: a short history. Pages 169–186 of: Proof, Language, and Interaction.
Gordon, M. J., Milner, A. J., and Wadsworth, C. P. 1979. Lecture Notes in Computer Science. Vol. 78. Berlin: Springer-Verlag.
Gottesman, D., and Chuang, I. L. 1999. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402(6760), 390–393.
Gour, G., and Spekkens, R. W. 2008. The resource theory of quantum reference frames: manipulations and monotones. New Journal of Physics, 10, 033023.
Gour, G., Müller, M. P., Narasimhachar, V., Spekkens, R. W., and Yunger Halpern, N. 2013. The resource theory of informational nonequilibrium in thermodynamics. arXiv:1309.6586.
Greenberger, D. M., Horne, M. A., Shimony, A., and Zeilinger, A. 1990. Bell's theorem without inequalities. American Journal of Physics, 58, 1131–1143.
Grefenstette, E., and Sadrzadeh, M. 2011. Experimental support for a categorical compositional distributional model of meaning. Pages 1394–1404 of: The 2014 Conference on Empirical Methods on Natural Language Processing. arXiv:1106.4058.
Gröblacher, S., Paterek, T., Kaltenbaek, R. R., Brukner, C., Zukowski, M., Aspelmeyer, M., and Zeilinger, A. 2007. An experimental test of non-local realism. Nature, 446, 871–875.
Grothendieck, A. 1957. Sur quelques points d'algèbre homologique. Tohoku Math J., 119–221.
Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. Pages 212–219 of: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing. STOC '96. New York: ACM.
Hadzihasanovic, A. 2015. A diagrammatic axiomatisation for qubit entanglement. In: Proceedings of the 30th Annual IEEE Symposium on Logic in Computer Science (LICS). arXiv:1501.07082.
Hales, T., Adams, M., Bauer, G., Dang, D. T., Harrison, J., Hoang, T. L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T. T., et al. 2015. A formal proof of the Kepler conjecture. arXiv preprint arXiv:1501.02155.
Harding, J. 2009. A link between quantum logic and categorical quantum mechanics. International Journal of Theoretical Physics, 48(3), 769–802.
Hardy, L. N.d. Disentangling nonlocality and teleportation. arXiv:quant-ph/9906123.
Hardy, L. 2001. Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012.
Hardy, L. 2011. Foliable operational structures for general probabilistic theories. Pages 409–442 of: Halvorson, H. (ed), Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press. arXiv:0912.4740.
Hardy, L. 2012. The operator tensor formulation of quantum theory. arXiv:1201.4390.
Hardy, L. 2013. A formalism-local framework for general probabilistic theories, including quantum theory. Mathematical Structures in Computer Science, 23(2), 339–440.
Hardy, L. 2013. On the theory of composition in physics. Pages 83–106 of: Computation, Logic, Games, and Quantum Foundations: The Many Facets of Samson Abramsky. Springer. arXiv:1303.1537.
Hardy, L., and Spekkens, R.W. 2010. Why physics needs quantum foundations. Physics in Canada, 66, 73–76.
Harrigan, N., and Spekkens, R. W. 2010. Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics, 40, 125–157.
Hasegawa, M., Hofmann, M., and Plotkin, G. D. 2008. Finite dimensional vector spaces are complete for traced symmetric monoidal categories. Pages 367–385 of: Avron, A., Dershowitz, N., and Rabinovich, A. (eds), Pillars of Computer Science. Lecture Notes in Computer Science, vol. 4800. Springer.
Hedges, J., Shprits, E., Winschel, V., and Zahn, P. 2016. Compositionality and string diagrams for game theory. arXiv:1604.06061.
Hein, M., Eisert, J., and Briegel, H. J. 2004. Multiparty entanglement in graph states. Physical Review A, 69, 062311.
Heisenberg, W. 1925. Ü ber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Heisenberg (1925), 33, 879–893.
Heisenberg, W. 1930. Die physikalischen Prinzipien der Quantentheorie. Leipzig: S. Hirzel.
Hensen, B., Bernien, H., Dreau, A. E., Reiserer, A., Kalb, N., Blok, M. S., Ruitenberg, J., Vermeulen, R. F. L., Schouten, R. N., Abellan, C., Amaya, W., Pruneri, V., Mitchell, M. W., Markham, M., Twitchen, D. J., Elkouss, D., Wehner, S., Taminiau, T. H., and Hanson, R. 2015. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(10), 682–686.
Henson, J., Lal, R., and Pusey, M. F. 2014. Theory-independent limits on correlations from generalised Bayesian networks. arXiv:1405.2572.
Herrmann, M. 2010. Models of multipartite entanglement. MSc Thesis, Oxford University.
Heunen, C., and Jacobs, B. 2010. Quantum logic in dagger kernel categories. Order, 27(2), 177–212.
Heunen, C., and Kissinger, A. 2016. Can quantum theory be characterized in informationtheoretic terms? arXiv:1604.05948.
Heunen, C., Contreras, I., and Cattaneo, A.o S. 2012b. Relative Frobenius algebras are groupoids. Journal of Pure and Applied Algebra, 217, 114–124.
Heunen, C., Sadrzadeh, M., and Grefenstette, E. (eds). 2012a. Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press.
Hinze, R., and Marsden, D. 2016. Equational reasoning with lollipops, forks, cups, caps, snakes, and speedometers. Journal of Logical and Algebraic Methods in Programming.
Hoare, C. A. R., and He, J. 1987. The weakest prespecification. Information Processing Letters, 24, 127–132.
Honda, K. 2012. Graphical classification of entangled qutrits. Electronic Proceedings in Theoretical Computer Science, 95, 123–141.
Horodecki, M., Oppenheim, J., and Horodecki, R. 2002. Are the laws of entanglement theory thermodynamical? Physical Review Letters, 89, 240403.
Horodecki, M., Horodecki, P., and Oppenheim, J. 2003. Reversible transformations from pure to mixed states and the unique measure of information. Physical Review A, 67, 062104.
Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. 2009. Quantum entanglement. Reviews of Modern Physics, 81, 865–942. arXiv:quant-ph/0702225.
Horsman, C. 2011. Quantum picturalism for topological cluster-state computing. New Journal of Physics, 13, 095011. arXiv:1101.4722.
Jacobs, B. 2010. Orthomodular lattices, Foulis semigroups and Dagger kernel categories. Logical Methods in Computer Science, 6(2), 1.
Jamiołkowski, A. 1972. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics, 3, 275–278.
Jammer, M. 1974. The Philosophy of Quantum Mechanics. John Wiley & Sons.
Jauch, J. M. 1968. Mathematical Foundations of Quantum Mechanics. Addison-Wesley.
Jauch, J. M., and Piron, C. 1963. Can hidden variables be excluded in quantum mechanics? Helvetica Physics Acta, 36, 827–837.
Johansson, M., Dixon, L., and Bundy, A. 2011. Conjecture synthesis for inductive theories. Journal of Automated Reasoning, 47, 251–289.
Jones, J. A., Mosca, M., and Hansen, R. H. 1998. Implementation of a quantum search algorithm on a quantum computer. Nature, 393(6683), 344–346.
Jones, V. F. R. 1985. A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical Society, 12, 103–111.
Joyal, A., and Street, R. 1991. The geometry of tensor calculus I. Advances in Mathematics, 88, 55–112.
Joyal, A., Street, R., and Verity, D. 1996. Traced monoidal categories. Pages 447–468 of: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 119. Cambridge University Press.
Jozsa, R. 1997. Quantum algorithms and the Fourier transform. In: Proceedings of the Santa Barbarba Conference on Coherence and Decoherence. Proceedings of the Royal Society of London.
Kartsaklis, D., and Sadrzadeh, M. 2013. Prior disambiguation of word tensors for constructing sentence vectors. Pages 1590–1601 of: The 2013 Conference on Empirical Methods on Natural Language Processing. ACL.
Kassel, C. 1995. Quantum Groups. Vol. 155. Springer.
Kauffman, L. H. 1987. State models and the Jones polynomial. Topology, 26, 395–407.
Kauffman, L. H. 1991. Knots and Physics. World Scientific.
Kauffman, L. H. 2005. Teleportation topology. Optics and Spectroscopy, 99, 227–232.
Kelly, G. M. 1972. Many-variable functorial calculus I. Pages 66–105 of: Kelly, G. M., Laplaza, M., Lewis, G., and Mac Lane, S. (eds), Coherence in Categories. Lecture Notes in Mathematics, vol. 281. Springer-Verlag.
Kelly, G. M., and Laplaza, M. L. 1980. Coherence for compact closed categories. Journal of Pure and Applied Algebra, 19, 193–213.
Kissinger, A. 2012. Pictures of processes: automated graph rewriting for monoidal categories and applications to quantum computing. PhD thesis, University of Oxford.
Kissinger, A. 2012. Synthesising graphical theories. arXiv:1202.6079.
Kissinger, A. 2014. Abstract tensor systems as monoidal categories. In: Casadio, C., Coecke, B., Moortgat, M., and Scott, P. (eds), Categories and Types in Logic, Language, and Physics: Festschrift on the Occasion of Jim Lambek's 90th Birthday. Lecture Notes in Computer Science, vol. 8222. Springer. arXiv:1308.3586.
Kissinger, A. 2014. Finite matrices are complete for (dagger-)hypergraph categories. arXiv:1406.5942 [math.CT].
Kissinger, A., and Zamdzhiev, V. 2015. Quantomatic: a proof assistant for diagrammatic reasoning. arXiv:1503.01034.
Kissinger, A., Merry, A., and Soloviev, M. 2014. Pattern graph rewrite systems. Pages 54–66 of: Löwe, B., and Winskel, G. (eds), Proceedings 8th International Workshop on Developments in Computational Models. Electronic Proceedings in Theoretical Computer Science, vol. 143. Open Publishing Association.
Kochen, S., and Specker, E. P. 1967. The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87.
Kock, J. 2004. Frobenius Algebras and 2D Topological Quantum Field Theories. Vol. 59. Cambridge University Press.
Kraus, K. 1983. States, Effects and Operations. Springer.
Lack, S. 2004. Composing PROPs. Theory and Applications of Categories, 13, 147–163.
Laforest, M., Baugh, J., and Laflamme, R. 2006. Time-reversal formalism applied to maximal bipartite entanglement: theoretical and experimental exploration. Physical Review A, 73(3), 032323.
Lamata, L., Léon, J., Salgado, D., and Solano, E. 2007. Inductive entanglement classification of four qubits under stochastic local operations and classical communication. Physical Review A, 75, 022318.
Lambek, J., and Scott, P. J. 1988. Introduction to Higher-Order Categorical Logic. Cambridge University Press.
Leinster, T. 2004. Higher Operads, Higher Categories. Cambridge University Press.
Lemmens, P. W. H., and Seidel, J. J. 1973. Equiangular lines. Journal of Algebra, 24(3), 494–512.
Lloyd, S., Maccone, L., Garcia-Patron, R., Giovannetti, V., Shikano, Y., Pirandola, S., Rozema, L. A., Darabi, A., Soudagar, Y., Shalm, L. K., and Steinberg, A. M. 2011. Closed timelike curves via postselection: theory and experimental test of consistency. Physical Review Letters, 106(4), 040403.
Lo, H.-K., and Popescu, S. 2001. Concentrating entanglement by local actions: beyond mean values. Physical Review A, 63, 022301.
Ludwig, G. 1985. An Axiomatic Basis of Quantum Mechanics, volume 1: Derivation of Hilbert Space. Springer-Verlag.
MacLane, S. 1950. Duality for groups. Bull. Am. Math. Soc., 56, 485–516.
MacLane, S. 1963. Natural associativity and commutativity. The Rice University Studies, 49(4), 28–46.
MacLane, S. 1998. Categories for the Working Mathematician. Springer-Verlag.
Mackey, G. W. 1963. The Mathematical Foundations of Quantum Mechanics. New York: W. A. Benjamin.
Macrakis, K. 1993. Surviving the Swastika: Scientific Research in Nazi Germany. Oxford University Press.
Majid, S. 2000. Foundations of Quantum Group Theory. Cambridge University Press.
Manin, Y. I. 1980. Vychislimoe i Nevychislimoe. Sovetskoye Radio.
Markopoulou, F. 2000. Quantum causal histories. Classical and Quantum Gravity, 17(10), 2059.
Marvian, I., and Spekkens, R. W. 2013. The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New Journal of Physics, 15(3), 033001.
Mehra, J. 1994. The Beat of a Different Drum: The Life and Science of Richard Feynman. Clarendon Press.
Mellies, P.-A.2012. Game semantics in string diagrams. Pages 481–490 of: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society.
Mermin, N. D. 1990. Quantum mysteries revisited. American Journal of Physics, 58(Aug.), 731–734.
Mermin, N. D. April1989. What's wrong with this pillow? Physics Today.
Mermin, N. D. May2004. Could Feynman have said this? Physics Today.
Milner, R. 1972. Logic for computable functions; description of a machine implementation. Tech. rept. STAN-CS-72-288. Stanford University.
Montanaro, A. 2015. Quantum algorithms: an overview. arXiv:1511.04206.
Moore, D. J. 1995. Categories of representations of physical systems. Helvetica Physica Acta, 68, 658–678.
Moore, D. J. 1999. On state spaces and property lattices. Studies in History and Philosophy of Modern Physics, 30(1), 61–83.
Muirhead, R. F. 1903. Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Society, 21, 144–157.
Neumark, M. A. 1943. On spectral functions of a symmetric operator. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 7(6), 285–296.
Nielsen, M. A. 1999. Conditions for a class of entanglement transformations. Physical Review Letters, 83(2), 436–439.
Nielsen, M. A., and Chuang, I. L. 2010. Quantum Computation and Quantum Information. Cambridge University Press.
Ozawa, M. 1984. Quantum measuring processes of continuous observables. Journal of Mathematical Physics, 25(1), 79–87.
Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H., and Zeilinger, A. 2000. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature, 403, 515–519.
Panangaden, P., and Paquette, E.O. 2011. A categorical presentation of quantum computation with anyons. Pages 983–1025 of: Coecke, B. (ed), New Structures for Physics. Lecture Notes in Physics. Springer.
Paquette, E.O. 2008. Categorical quantum computation. PhD thesis, University of Montreal.
Paulsen, V. 2002. Completely Bounded Maps and Operator Algebras. Cambridge University Press.
Paulson, L., et al. 1986. Isabelle theorem prover. https://isabelle.in.tum.de/.
Pavlovic, D. 2009. Quantum and classical structures in nondeterminstic computation. Pages 143–157 of: Proceedings of the 3rd International Symposium on Quantum Interaction. QI '09. Berlin and Heidelberg: Springer-Verlag.
Pavlovic, D. 2013. Monoidal computer I: basic computability by string diagrams. Information and Computation, 226, 94–116.
Pearl, J. 2000. Causality: Models, Reasoning and Inference. Cambridge University Press.
Penrose, R. 1971. Applications of negative dimensional tensors. Pages 221–244 of: Combinatorial Mathematics and Its Applications. Academic Press.
Penrose, R. 1984. Spinors and Spacetime, vol. 1. Cambridge University Press.
Penrose, R. 2004. The Road to Reality: A Complete Guide to the Physical Universe. Jonathan Cape.
Perdrix, S. 2005. State transfer instead of teleportation in measurement-based quantum computation. International Journal of Quantum Information, 3(1), 219–223.
Perdrix, S., and Wang, Q. 2015. The ZX calculus is incomplete for Clifford+T quantum mechanics. arXiv:1506.03055.
Piedeleu, R., Kartsaklis, D., Coecke, B., and Sadrzadeh, M. 2015. Open system categorical quantum semantics in natural language processing. In: CALCO 2015. arXiv:1502.00831.
Pierce, B. C. 1991. Basic Category Theory for Computer Scientists. MIT Press.
Piron, C. 1976. Foundations of Quantum Physics. W. A. Benjamin.
Piron, Constantin.1964. Axiomatique quantique. Helvetia Physica Acta, 37, 439–468.
Planck, M. 1900. Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237–245.
Poincaré, H. 1902. La science et l'hypothèse. Flammarion.
Pusey, M. F., Barrett, J., and Rudolph, T. 2012. On the reality of the quantum state. Nature Physics, 8(6), 475–478.
Ranchin, A., and Coecke, B. 2014. Complete set of circuit equations for stabilizer quantum mechanics. Physical Review A, 90, 012109.
Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., and Bonse, U. 1975. Verification of coherent spinor rotation of fermions. Physics Letters A, 54, 425–427.
Raussendorf, R., and Briegel, H. J. 2001. A one-way quantum computer. Physical Review Letters, 86, 5188.
Raussendorf, R., Browne, D. E., and Briegel, H. J. 2003. Measurement-based quantum computation on cluster states. Physical Review A, 68(2), 22312.
Raussendorf, R., Harrington, J., and Goyal, K. 2007. Topological fault-tolerance in cluster state quantum computation. New Journal of Physics, 9, 199.
Redei, M. 1996. Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Studies in History and Philosophy of Modern Physics, 27(4), 493–510.
Redhead, Michael.1987. Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. Clarendon Press.
Rickles, D. 2007. Symmetry, Structure, and Spacetime. Elsevier.
Roddenberry, G. 1966. Star Trek (television series). NBC.
Rowe, M. A., Kielpinski, D., Meyer, V., Sackett, C. A., Itano, W. M., Monroe, C., and Wineland, D. J. 2001. Experimental violation of a Bell's inequality with efficient detection. Nature, 409, 791–794.
Sadrzadeh, M., Clark, S., and Coecke, B. 2013. The Frobenius anatomy of word meanings I: subject and object relative pronouns. Journal of Logic and Computation, 23, 1293–1317. arXiv:1404.5278.
Sadrzadeh, M., Clark, S., and Coecke, B. 2014. The Frobenius anatomy of word meanings II: possessive relative pronouns. Journal of Logic and Computation, exu027.
Schröder de Witt, C., and Zamdzhiev, V. 2014. The ZX calculus is incomplete for quantum mechanics. arXiv:1404.3633.
Schrödinger, E. 1926. An undulatory theory of the mechanics of atoms and molecules. Physical Review Letters, 28(6), 1049–1070.
Schrödinger, E. 1935. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23, 823–828.
Schrödinger, E. 1935. Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555–563.
Schumacher, B. 1995. Quantum coding. Physical Review A, 51, 2738.
Schwinger, J. 1960. Unitary operator bases. Proceedings of the National Academy of Sciences of the U.S.A., 46, 570–579.
Scott, D. S. 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science, 121(1), 411–440.
Selinger, P. 2007. Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science, 170, 139–163.
Selinger, P. 2011. Finite dimensional Hilbert spaces are complete for dagger compact closed categories (extended abstract). Electronic Notes in Theoretical Computer Science, 270(1), 113–119.
Selinger, P. 2011. A survey of graphical languages for monoidal categories. Pages 275–337 of: Coecke, B. (ed), New Structures for Physics. Lecture Notes in Physics. Springer-Verlag. arXiv:0908.3347.
Selinger, P. 2015. Generators and relations for n-qubit Clifford operators. Logical Methods in Computer Science, 11.
Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.
Shende, V. V., Bullock, S. S., and Markov, I. L. 2006. Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6), 1000–1010.
Shor, P. W. 1994. Algorithms for quantum computation: discrete logarithms and factoring. Pages 124–134 of: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. IEEE.
Shor, P. W. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–1509.
Shulman, M., et al. 2013. Homotopy type theory: univalent foundations of mathematics. https://homotopytypetheory.org/book/.
Simon, D. R. 1997. On the power of quantum computation. SIAM Journal on Computing, 26(5), 1474–1483.
Sobocinski, P. 2015. Graphical linear algebra. http://graphicallinearalgebra.net.
Spekkens, R. W. 2007. Evidence for the epistemic view of quantum states: a toy theory. Physical Review A, 75(3), 032110.
Stay, M., and Vicary, J. 2013. Bicategorical semantics for nondeterministic computation. Electronic Notes in Theoretical Computer Science, 298, 367–382. arXiv:1301.3393.
Stinespring, W. F. 1955. Positive functions on C*-algebras. Proceedings of the American Mathematical Society, 6(2), 211–216.
Street, R. 2007. Quantum Groups: A Path to Current Algebra. Cambridge University Press.
Stubbe, I., and van Steirteghem, B. 2007. Propositional systems, Hilbert lattices and generalized Hilbert spaces. Pages 477–524 of: Gabbay, D., Lehmann, D., and Engesser, K. (eds), Handbook Quantum Logic. Elsevier Publ.
Sudarshan, E. C. G., Mathews, P. M., and Rau, J. 1961. Stochastic dynamics of quantummechanical systems. Physical Review, 121(3), 920.
Svetlichny, G. 2009. Effective quantum time travel. arXiv:0902.4898.
Tull, S. 2016. Operational theories of physics as categories. arXiv:1602.06284.
Turing, A. M. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.
Van den Nest, M., Dehaene, J., and De Moor, B. 2004. Graphical description of the action of local Clifford transformations on graph states. Physical Review A, 69(2), 9422.
Verstraete, F., Dehaene, J., De Moor, B., and Verschelde, H. 2002. Four qubits can be entangled in nine different ways. Physical Review A, 65(052112). arXiv:quant-ph/0109033.
Vicary, J. 2011. Categorical formulation of finite-dimensional quantum algebras. Communications in Mathematical Physics, 304(3), 765–796.
Vicary, J. 2013. The topology of quantum algorithms. Pages 93–102 of: Proceedings of the 28th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society.
Von Neumann, J. 1927. Thermodynamik quantenmechanischer Gesamtheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch- Physikalische Klasse, 1, 273–291.
Von Neumann, J. 1927. Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch- Physikalische Klasse, 1, 245–272.
Von Neumann, J. 1932. Mathematische Grundlagen der quantenmechanik. Springer- Verlag. Translation, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.
Walther, P., Resch, K. J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., and Zeilinger, A. 2005. Experimental one-way quantum computing. Nature, 434, 169–176.
Wedderburn, J. H. M. 1906. On a theorem in hypercomplex numbers. Proceedings of the Royal Society of Edinburgh, 26, 48–50.
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., and Zeilinger, A.n. 1998. Violation of Bell's inequality under strict Einstein locality conditions. Physical Review Letters, 81, 5039.
Werner, R. F. 2001. All teleportation and dense coding schemes. Journal of Physics A: Mathematical and General, 34(35), 7081.
Whitehead, A. N. 1957. Process and Reality. Harper & Row.
Wigner, E. P. 1931. Gruppentheorie und ihre Anwendung auf die Quanten mechanik der Atomspektren. Friedrich Vieweg und Sohn.
Wigner, E. P. 1995a. Remarks on the Mind-Body Question. Springer. Pages 247–260.
Wigner, E. P. 1995b. The unreasonable effectiveness of mathematics in the natural sciences. Pages 534–549 of: Philosophical Reflections and Syntheses. Springer.
Wilce, A. 2000. Test spaces and orthoalgebras. Pages 81–114 of: Coecke, B., Moore, D. J., and Wilce, A. (eds), Current Research in Operational Quantum Logic: Algebras, Categories and Languages. Fundamental Theories of Physics, vol. 111. Springer.
Wittgenstein, L. 1953. Philosophical Investigations. Basil & Blackwell.
Wood, C. J., and Spekkens, R. W. 2012. The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require finetuning. arXiv:1208.4119.
Wootters, W., and Zurek, W. 1982. A single quantum cannot be cloned. Nature, 299, 802–803.
Zeilinger, A. 1999. Experiment and the foundations of quantum physics. Reviews of Modern Physics, 71, S288.
Zeng, W. 2015. The abstract structure of quantum algorithms. PhD thesis, University of Oxford. arXiv:1512.08062.
Zeng, W., and Vicary, J. 2014. Abstract structure of unitary oracles for quantum algorithms. arXiv:1406.1278.
Zukowski, M., Zeilinger, A., Horne, M. A., and Ekert, A. K. 1993. “Event-ready-detectors” Bell experiment via entanglement swapping. Physical Review Letters, 71, 4287–4290.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.