References
Abadie, A., and Cattaneo, M. D. (2018): “Econometric Methods for Program Evaluation,” Annual Review of Economics, 10, 465–503.
Andrews, I., Stock, J. H., and Sun, L. (2019): “Weak Instruments in Instrumental Variables Regression: Theory and Practice,” Annual Review of Economics, 11, 727–753.
Arai, Y., Hsu, Y., Kitagawa, T., Mourifié, I., and Wan, Y. (2022): “Testing Identifying Assumptions in Fuzzy Regression Discontinuity Designs,” Quantitative Economics, 13(1), 1–28.
Banerjee, S. (2005): “On Geodetic Distance Computations in Spatial Modeling,” Biometrics, 61(2), 617–625.
Barreca, A. I., Lindo, J. M., and Waddell, G. R. (2016): “Heaping-Induced Bias in Regression-Discontinuity Designs,” Economic Inquiry, 54(1), 268–293.
Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2018): “On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference,” Journal of the American Statistical Association, 113(522), 767–779.
Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2020): “Optimal Bandwidth Choice for Robust Bias Corrected Inference in Regression Discontinuity Designs,” Econometrics Journal, 23(2), 192–210.
Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2022): “Coverage Error Optimal Confidence Intervals for Local Polynomial Regression,” Bernoulli, 28(4), 2998–3022.
Calonico, S., Cattaneo, M. D., Farrell, M. H., and Titiunik, R. (2017): “rdrobust: Software for Regression Discontinuity Designs,” Stata Journal, 17(2), 372–404.
Calonico, S., Cattaneo, M. D., Farrell, M. H., and Titiunik, R. (2019): “Regression Discontinuity Designs Using Covariates,” Review of Economics and Statistics, 101(3), 442–451.
Calonico, S., Cattaneo, M. D., and Titiunik, R. (2014a): “Robust Data-Driven Inference in the Regression-Discontinuity Design,” Stata Journal, 14(4), 909–946.
Calonico, S., Cattaneo, M. D., and Titiunik, R. (2014b): “Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs,” Econometrica, 82(6), 2295–2326.
Calonico, S., Cattaneo, M. D., and Titiunik, R. (2015a): “Optimal Data-Driven Regression Discontinuity Plots,” Journal of the American Statistical Association, 110(512), 1753–1769.
Calonico, S., Cattaneo, M. D., and Titiunik, R. (2015b): “rdrobust: An R Package for Robust Nonparametric Inference in Regression-Discontinuity Designs,” R Journal, 7(1), 38–51.
Cattaneo, M. D., Frandsen, B., and Titiunik, R. (2015): “Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate,” Journal of Causal Inference, 3(1), 1–24.
Cattaneo, M. D., Idrobo, N., and Titiunik, R. (2020): A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge Elements: Quantitative and Computational Methods for Social Science, Cambridge, UK: Cambridge University Press.
Cattaneo, M. D., Jansson, M., and Ma, X. (2018): “Manipulation Testing Based on Density Discontinuity,” Stata Journal, 18(1), 234–261.
Cattaneo, M. D., Jansson, M., and Ma, X. (2020): “Simple Local Polynomial Density Estimators,” Journal of the American Statistical Association, 115(531), 1449–1455.
Cattaneo, M. D., Keele, L., and Titiunik, R. (2023a): “Covariate Adjustment in Regression Discontinuity Designs,” in Handbook of Matching and Weighting in Causal Inference, ed. by Zubizarreta, D. S. S. J. R., Stuart, E. A., and Rosenbaum, P. R., chap. 8, pp. 153–168. Chapman & Hall, Boca Raton, FL.
Cattaneo, M. D., Keele, L., and Titiunik, R. (2023b): “A Guide to Regression Discontinuity Designs in Medical Applications,” Statistics in Medicine, 42(24): 4484–4513.
Cattaneo, M. D., Keele, L., Titiunik, R., and Vazquez-Bare, G. (2016): “Interpreting Regression Discontinuity Designs with Multiple Cutoffs,” Journal of Politics, 78(4), 1229–1248.
Cattaneo, M. D., Keele, L., Titiunik, R., and Vazquez-Bare, G. (2021): “Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs,” Journal of the American Statistical Association, 116(536), 1941–1952.
Cattaneo, M. D., and Titiunik, R. (2022): “Regression Discontinuity Designs,” Annual Review of Economics, 14, 821–851.
Cattaneo, M. D., Titiunik, R., and Vazquez-Bare, G. (2016): “Inference in Regression Discontinuity Designs under Local Randomization,” Stata Journal, 16(2), 331–367.
Cattaneo, M. D., Titiunik, R., and Vazquez-Bare, G. (2017): “Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality,” Journal of Policy Analysis and Management, 36(3), 643–681.
Cattaneo, M. D., Titiunik, R., and Vazquez-Bare, G. (2019): “Power Calculations for Regression Discontinuity Designs,” Stata Journal, 19(1), 210–245.
Cattaneo, M. D., Titiunik, R., and Vazquez-Bare, G. (2020a): “Analysis of Regression Discontinuity Designs with Multiple Cutoffs or Multiple Scores,” Stata Journal, 20(4), 866–891.
Cattaneo, M. D., Titiunik, R., and Vazquez-Bare, G. (2020b): “The Regression Discontinuity Design,” in Handbook of Research Methods in Political Science and International Relations, ed. by Curini, L., and Franzese, R. J., chap. 44, pp. 835–857. Sage, London.
Cattaneo, M. D., Titiunik, R., and Yu, R. (2024): “Estimation and Inference in Boundary Discontinuity Designs,” Working Paper.
Dong, Y. (2015): “Regression Discontinuity Applications with Rounding Errors in the Running Variable,” Journal of Applied Econometrics, 30(3), 422–446.
Dong, Y. (2018): “Alternative Assumptions to Identify LATE in Fuzzy Regression Discontinuity Designs,” Oxford Bulletin of Economics and Statistics, 80(5), 1020–1027.
Ernst, M. D. (2004): “Permutation Methods: A Basis for Exact Inference,” Statistical Science, 19(4), 676–685.
Feir, D., Lemieux, T., and Marmer, V. (2016): “Weak Identification in Fuzzy Regression Discontinuity Designs,” Journal of Business & Economic Statistics, 34(2), 185–196.
Hahn, J., Todd, P., and van der Klaauw, W. (2001): “Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design,” Econometrica, 69(1), 201–209.
Hyytinen, A., Meriläinen, J., Saarimaa, T., Toivanen, O., and Tukiainen, J. (2018): “When Does Regression Discontinuity Design Work? Evidence from Random Election Outcomes,” Quantitative Economics, 9(2), 1019–1051.
Imbens, G., and Rubin, D. B. (2015): Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge, UK: Cambridge University Press.
Keele, L., and Titiunik, R. (2018): “Geographic Natural Experiments with Interference: The Effect of All-Mail Voting on Turnout in Colorado,” CESifo Economic Studies, 64(2), 127–149.
Keele, L. J., and Titiunik, R. (2015): “Geographic Boundaries as Regression Discontinuities,” Political Analysis, 23(1), 127–155.
Lee, D. S. (2008): “Randomized Experiments from Non-random Selection in U.S. House Elections,” Journal of Econometrics, 142(2), 675–697.
Lee, D. S., and Card, D. (2008): “Regression Discontinuity Inference with Specification Error,” Journal of Econometrics, 142(2), 655–674.
Lindo, J. M., Sanders, N. J., and Oreopoulos, P. (2010): “Ability, Gender, and Performance Standards: Evidence from Academic Probation,” American Economic Journal: Applied Economics, 2(2), 95–117.
Londoño-Vélez, J., Rodríguez, C., and Sánchez, F. (2020): “Upstream and Downstream Impacts of College Merit-based Financial Aid for Low-Income Students: Ser Pilo Paga in Colombia,” American Economic Journal: Economic Policy, 12(2), 193–227.
McCrary, J. (2008): “Manipulation of the Running Variable in the Regression Discontinuity Design: A Density Test,” Journal of Econometrics, 142(2), 698–714.
Papay, J. P., Willett, J. B., and Murnane, R. J. (2011): “Extending the Regression-Discontinuity Approach to Multiple Assignment Variables,” Journal of Econometrics, 161(2), 203–207.
Reardon, S. F., and Robinson, J. P. (2012): “Regression Discontinuity Designs with Multiple Rating-Score Variables,” Journal of Research on Educational Effectiveness, 5(1), 83–104.
Rosenbaum, P. R. (2010): Design of Observational Studies. Springer, New York.
Sekhon, J. S., and Titiunik, R. (2016): “Understanding Regression Discontinuity Designs as Observational Studies,” Observational Studies, 2, 174–182.
Sekhon, J. S., and Titiunik, R. (2017): “On Interpreting the Regression Discontinuity Design as a Local Experiment,” in Regression Discontinuity Designs: Theory and Applications. Advances in Econometrics, volume 38. Bingley, UK: Emerald; distributed by Turpin Distribution, Ashland, OH., ed. by Cattaneo, M. D., and Escanciano, J. C., pp. 1–28. Emerald Group.
Thistlethwaite, D. L., and Campbell, D. T. (1960): “Regression-Discontinuity Analysis: An Alternative to the Ex-Post Facto Experiment,” Journal of Educational Psychology, 51(6), 309–317.
Titiunik, R. (2021): “Natural Experiments,” in Advances in Experimental Political Science, ed. by Druckman, J. N., and Gree, D. P., chap. 6, pp. 103–129. Cambridge, UK: Cambridge University Press.
Wong, V. C., Steiner, P. M., and Cook, T. D. (2013): “Analyzing Regression-Discontinuity Designs with Multiple Assignment Variables A Comparative Study of Four Estimation Methods,” Journal of Educational and Behavioral Statistics, 38(2), 107–141.