Skip to main content
×
Home
Predictive Modeling Applications in Actuarial Science
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Christiansen, Marcus C. and Schinzinger, Edo 2016. A CREDIBILITY APPROACH FOR COMBINING LIKELIHOODS OF GENERALIZED LINEAR MODELS. ASTIN Bulletin, p. 1.


    Duncan, I. Loginov, M. and Ludkovski, M. 2016. Testing Alternative Regression Frameworks for Predictive Modeling of Health Care Costs. North American Actuarial Journal, Vol. 20, Issue. 1, p. 65.


    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Predictive Modeling Applications in Actuarial Science
    • Online ISBN: 9781139342674
    • Book DOI: https://doi.org/10.1017/CBO9781139342674
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Predictive modeling involves the use of data to forecast future events. It relies on capturing relationships between explanatory variables and the predicted variables from past occurrences and exploiting this to predict future outcomes. Forecasting future financial events is a core actuarial skill - actuaries routinely apply predictive-modeling techniques in insurance and other risk-management applications. This book is for actuaries and other financial analysts who are developing their expertise in statistics and wish to become familiar with concrete examples of predictive modeling. The book also addresses the needs of more seasoned practising analysts who would like an overview of advanced statistical topics that are particularly relevant in actuarial practice. Predictive Modeling Applications in Actuarial Science emphasizes lifelong learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used by analysts to gain a competitive advantage in situations with complex data.

Reviews

'With contributions coming from a wide variety of researchers, professors, and actuaries - including several CAS Fellows - it’s clear that this book will be valuable for any P and C actuary whose main concern is using predictive modeling in his or her own work.'

David Zornek Source: Actuarial Review

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.


P. MacCullagh and Nelder J. A. (1989). Generalized Linear Models (2nd ed.). Chapman and Hall/CRC Press.

H. Akaike (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723.

N. R. Draper and Smith H. S. (1998). Applied Regression Analysis. Wiley, New York.

D. A. Freedman (2005). Statistical Models: Theory and Practice. Cambridge University Press, New York.

T. Hastie , Tibshirani R. , and Friedman J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction (2nd edition). Springer-Verlag, New York.

D. Rubin (1976). Inference and missing data. Biometrika 63(3), 581–592.

A. C. Cameron and Trivedi P. K. (2005). Microeconometrics: Methods and Applications. Cambridge University Press, New York.

D. W. Hosmer and Lemeshow S. (2000). Applied Logistic Regression (2nd ed.). John Wiley & Sons, New York.

J.-P. Boucher , Denuit M. , and Guillén M. (2009). Number of accidents or number of claims? An approach with zero-inflated Poisson models for panel data. Journal of Risk and Insurance 76(4), 821–846.

A. C Cameron . and Trivedi P. (1998). Regression Analysis of Count Data. Cambridge University Press, New York.

J. Lemaire (1995). Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publishers, Boston.

J. Pinquet (2000). Experience rating through heterogeneous models. In G. Dionne (Ed.), Handbook of Insurance, pp. 459–500. Kluwer Academic Publishers, Boston.

S. A. Klugman , Panger H. H. , and Willmot G. E. (2008). Loss Models: From Data to Decisions (Third ed.). Wiley.

G. K. Smyth and Jørgensen B. (2002, May). Fitting Tweedie's compound Poisson model to insurance claims data: Dispersion modelling. ASTIN Bulletin 32(2), 143'157.

M. J. Brockman and Wright T. S. (1992). Statistical motor rating: making effective use of your data. Journal of the Institute of Actuaries 119, 457–543.

S. M. Coutts (1984). Motor insurance rating, an actuarial approach. Journal of the Institute of Actuaries 111, 87–148.

J. G. Cragg (1971). Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 39(5), 829–844.

J. Ferreira and Minikel E. (2012). Measuring per mile risk for pay-as-you-drive automobile insurance. Transportation Research Record: Journal of the Transportation Research Board 2297, 97–103.

N. E. Frangos and Vrontos S. D. (2001). Design of optimal bonus-malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bulletin 31(1), 1–22.

E. Frees , Jin X. , and Lin X. (2013). Actuarial applications of multivariate two-part regression models. Annals of Actuarial Science 7(2), 258–287.

Y. Kahane and Levy H. (1975). Regulation in the insurance industry: Determination of premiums in automobile insurance. Journal of Risk and Insurance 42, 117–132.

J. Mullahy (1998). Much ado about two: Reconsidering retransformation and the two-part model in health econometrics. Journal of Health Economics 17, 247–281.

J. Pinquet (1997). Allowance for cost of claims in bonus-malus systems. ASTIN Bulletin 27(1), 33–57.

J. Pinquet (1998). Designing optimal bonus-malus systems from different types of claims. ASTIN Bulletin 28(2), 205–229.

A. E. Renshaw (1994). Modeling the claims process in the presence of covariates. ASTIN Bulletin 24(2), 265–285.

H. I. Weisberg and Tomberlin T. J. (1982). A statistical perspective on actuarial methods for estimating pure premiums from cross-classified data. Journal of Risk and Insurance 49, 539–563.

P. F. Lazarsfeld and Fiske M. (1938). The panel as a new tool for measuring opinion. Public Opinion Quarterly 2, 596–612.

K. Antonio and Beirlant J. (2008). Issues in claims reserving and credibility: A semiparametric approach with mixed models. Journal of Risk and Insurance 75(3), 643–676.

K. Antonio , Frees E. , and Valdez E. (2010). A multilevel analysis of intercompany claim counts. ASTIN Bulletin 40(1), 151–177.

K. Antonio and Valdez E. (2012). Statistical aspects of apriori and a posteriori risk classification in insurance. Advances in Statistical Analysis 96(2), 187–224.

A. Gelman (2006). Multilevel (hierarchical) modeling: What it can and cannot do. Technometrics 48(3), 432–135.

N. Laird and Ware J. (1982). Random-effects models for longitudinal data. Biometrics 38(4), 963–974.

U. Makov , Smith A. , and Liu Y. (1996). Bayesian methods in actuarial science. The Statistician 45(4), 503–515.

G. Robinson (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science 6, 15–51.

D. Ruppert , Wand M. , and Carroll R. (2003). Semiparametric Regression. Cambridge University Press, Cambridge.

Y. Zhang , Dukic V. , and Guszcza J. (2012). A Bayesian nonlinear model for forecasting insurance loss payments. Journal of the Royal Statistical Society, Series A 175, 637–656.

H. Belhadj, , Goulet V. , and Ouellet T. (2009). On parameter estimation in hierarchical credibility. ASTIN Bulletin 39(2), 495–514.

H. Bühlmann, (1967). Experience rating and credibility. ASTIN Bulletin 4, 199–207.

H. Bühlmann and Gisler A. (1997). Credibility in the regression case revisited. ASTIN Bulletin 27, 83–98.

H. Dornheim and Brazauskas V. (2007). Robust-efficient methods for credibility when claims are approximately gamma-distributed. North American Actuarial Journal 11(3), 138–158.

H Dornheim and Brazauskas V. (2011b). Robust-efficient fitting of mixed linear models: Methodology and theory. Journal of Statistical Planning and Inference 141(4), 1422–1435.

E.W Frees . (2004). Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. Cambridge University Press, Cambridge.

E. W. Frees , Young V.R. , and Luo Y. (2001). Case studies using panel data models. North American Actuarial Journal 5(4), 24–42. Supplemental material is available at: http://research3.bus.wisc.edu/course/view.php?id=129.

R. Kaas , Dannenburg D. , and Goovaerts M. (1997). Exact credibility for weighted observations. ASTIN Bulletin 27, 287–295.

R. A. Maronna , Martin D. R. , and Yohai V. J. (2006). Robust Statistics: Theory and Methods. Wiley, New York.

R. Norberg (1980). Empirical Bayes credibility. Scandinavian Actuarial Journal 1980, 177–194.

R. Norberg (1986). Hierarchical credibility: Analysis of a random effect linear model with nested classification. Scandinavian Actuarial Journal 1986, 204–222.

B. Sundt (1979). A hierarchical regression credibility model. Scandinavian Actuarial Journal 1979, 107–114.

B. Sundt (1980). A multi-level hierarchical credibility regression model. Scandinavian Actuarial Journal 1980, 25–32.

M. Bartlett (1947). The use of transformations. Biometrics 3(1), 39–52.

G. Bassett , Jr. and Koenker R. (1978). Asymptotic theory of least absolute error regression. Journal of the American Statistical Association 73(363), 618–622.

P. Bickel and Doksum K. (1981). An analysis of transformations revisited. Journal of the American Statistical Association 76(374), 296–311.

J. Burbidge , Magee L. , and Robb A. (1988). Alternative transformations to handle extreme values of the dependent variable. Journal of the American Statistical Association 83(401), 123–127.

E. Frees , Gao J. , and Rosenberg M. (2011). Predicting the frequency and amount of health care expenditures. North American Actuarial Journal 15(3), 377–392.

E. Frees , Shi P. , and Valdez E. (2009). Actuarial applications of a hierarchical claims model. ASTIN Bulletin 39(1), 165–197.

E. Frees and Valdez E. (2008). Hierarchical insurance claims modeling. Journal of the American Statistical Association 103(484), 1457–1469.

E. Frees and Wang P. (2005). Credibility using copulas. North American Actuarial Journal 9(2), 31–48.

J. John and Draper N. (1980). An alternative family of transformations. Applied Statistics 29(2), 190–197.

R. Koenker (2005). Quantile Regression. Cambridge University Press, Cambridge.

R. Koenker and Bassett G. Jr (1978). Regression quantiles. Econometrica 46(1), 33–50.

W. Manning , Basu A. , and Mullahy J. (2005). Generalized modeling approaches to risk adjustment of skewed outcomes data. Journal of Health Economics 24(3), 465–488.

J. McDonald (1984). Some generalized functions for the size distribution of income. Econometrica 52(3), 647–63.

J. McDonald and Butler R. (1990). Regression models for positive random variables. Journal of Econometrics 43(1–2), 227–251.

J. Sun , Frees E. , and Rosenberg M. (2008). Heavy-tailed longitudinal data modeling using copulas. Insurance Mathematics and Economics 42(2), 817–830.

I. Yeo and Johnson R. (2000). A new family of power transformations to improve normality or symmetry. Biometrika 87(4), 954–959.

K. Yu and Moyeed R. (2001). Bayesian quantile regression. Statistics & Probability Letters 54(4), 437–447.

S. Banerjee , Carlin B. P. , and Gelfand A. E. (2003). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall, London.

J. Besag , York J. , and Mollié A. (1991). Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43(1), 1–59.

N. A. C. Cressie (1993). Statistics for Spatial Data. Wiley, New York.

C. Czado and Prokopenko S. (2008). Modelling transport mode decisions using hierarchical logistic regression models with spatial and cluster effects. Statistical Modelling 8(4), 315–345.

L. Fahrmeir , Kneib T. , Lang S. , and Marx B. (2013). Regression: Models, Methods and Applications. Springer, Berlin.

A. E. Gelfand , Diggle P. J. , Fuentes M. , and Guttorp P. (2010). Handbook of Spatial Statistics. CRC Press, Boca Raton.

T. Gneiting and Raftery A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102, 359–378.

S. Gschlößl and Czado C. (2008). Modelling count data with overdispersion and spatial effects. Statistical Papers 49(3), 531–552.

A. N. Pettitt , Weir I. S. , and Hart A. G. (2002). A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Statistics and Computing 12, 353–367.

H. Rue and Held L. (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman … Hall, London.

D. Sun , Tsutakawa R. K. , and Speckman P. L. (1999). Posterior distribution of hierarchical models using CAR(1) distributions. Biometrika 86, 341–350.

M. M. Wall (2004). A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical Planning and Inference 121, 311–324.

M. S. Aldenderfer and Blashfield R. K. (1984). Cluster Analysis. Sage Publications.

P. L. Brockett , Derrig R. A. , Golden L. L. , Levine A. , and Alpert M. (2002). Fraud classification using principal component analysis of RIDITs. Journal of Risk and Insurance 69(3), 341–371.

B. Everitt , Landan S. , Leese M. , and Stahl D. (2011). Cluster Analysis. Wiley, New York.

L. Kaufman and Rousseeuw P. J. (1990). Finding Groups in Data. Wiley, New York.

J.-O. Kim and Mueller C. W. (1978). Factor Analysis: Statistical Methods and Practical Issues, Volume 14. Sage Publications, Thousand Oaks, CA.

W. N. Venables , Ripley B. D. , and Venables W. (1999). Modern Applied Statistics with S-PLUS. Springer, New York.

P. Zhang , Wang X. , and Song P. X.-K. (2006). Clustering categorical data based on distance vectors. Journal of the American Statistical Association 101(473), 355–367.

P. Adams and Adams J. (1960). Confidence in the recognition and reproduction of words difficult to spell. American Journal of Psychology 73(4), 544–552.

J. Albert (2009). Bayesian Computation with R. Springer, New York.

M. Alpert and Raiffa H. (1982). A progress report on the training of probability assessors. In A. T. Daniel Kahneman and Paul Slovic (ed.), Judgment under Uncertainty: Heuristics and Biases, pp. 294–305. Cambridge University Press, Cambridge.

C. Andrieu , De Freitas N. , Doucet A. , and Jordan M. (2003). An introduction to MCMC for machine learning. Machine Learning 50(1), 5–43.

J. Berger (1985). Statistical Decision Theory and Bayesian Analysis. Springer, New York.

M. Clyde (2000). Model uncertainty and health effect studies for particulate matter. Environmetrics 11(6), 745–763.

P. Congdon (2003). Applied Bayesian Modelling, Volume 394. Wiley, New York.

M. Daniels and Pourahmadi M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 89(3), 553–566.

E. De Alba (2006). Claims reserving when there are negative values in the runoff triangle: Bayesian analysis using the three-parameter log-normal distribution. North American Actuarial Journal 10(3), 45.

P. De Jong and Heller G. (2008). Generalized Linear Models for Insurance Data. Cambridge University Press, Cambridge.

L. Eberly , Carlin B. , et al. (2000). Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Statistics in Medicine 19(1718), 2279–2294.

N. Friedman , Linial M. , Nachman I. , and Pe&er D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology 7(3–4), 601–620.

A. E. Gelfand and Smith A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85(410), 398–409.

A. Gelman and Rubin D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7(4), 457–472.

A. Genkin , Lewis D. , and Madigan D. (2007). Large-scale Bayesian logistic regression for text categorization. Technometrics 49(3), 291–304.

W. K. Hastings (1970, April). Monte Carlo methods using Markov chains and their applications. Biometrika 57(1), 97–109.

H. Huang , Chin H. , and Haque M. (2008). Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis. Accident Analysis & Prevention 40(1), 45–54.

E. Jacquier , Polson N. , and Rossi P. (2004). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Journal of Econometrics 122(1), 185–212.

S. Klugman (1992). Bayesian Statistics in Actuarial Science: With Emphasis on Credibility, Volume 15. Springer, New York.

A. Kottas (2006). Nonparametric Bayesian survival analysis using mixtures of Weibull distributions. Journal of Statistical Planning and Inference 136(3), 578–596.

D. Lunn , Thomas A. , Best N. , and Spiegelhalter D. (2000). Winbugs-A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10(4), 325–337.

J. Ma , Kockelman K. , and Damien P. (2008). A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accident Analysis & Prevention 40(3), 964–975.

B. Mallick , Denison D. , and Smith A. (1999). Bayesian survival analysis using a MARS model. Biometrics 55(4), 1071–1077.

N. Metropolis , Rosenbluth A. W. , Rosenbluth M. N. , Teller A. H. , and Teller E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1091.

M. Neil , Fenton N. , and Tailor M. (2005). Using Bayesian networks to model expected and unexpected operational losses. Risk Analysis 25(4), 963–972.

G. Pallier , Wilkinson R. , Danthiir V. , Kleitman S. , Knezevic G. , Stankov L. , and Roberts R. (2002). The role of individual differences in the accuracy of confidence judgments. Journal of General Psychology 129(3), 257–299.

C. Pedroza (2006). A Bayesian forecasting model: Predicting US male mortality. Biostatistics 7(4), 530–550.

F. Ronquist and Huelsenbeck J. (2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574.

J. Song , Ghosh M. , Miaou S. , and Mallick B. (2006). Bayesian multivariate spatial models for roadway traffic crash mapping. Journal of Multivariate Analysis 97(1), 246–273.

S. Sturtz , Ligges U. , and Gelman A. (2005). R2winbugs: A package for running WinBUGS from R. Journal of Statistical Software 12(3), 1–16.

V. Young (1998). Robust Bayesian credibility using semiparametric models. ASTIN Bulletin 28, 187–204.

D. Bellhouse (2004). The Reverend Thomas Bayes, frs: A biography to celebrate the tercentenary of his birth. Statistical Science 19(1), 3–43.

T. Ferguson (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics 1, 209–230.

T. Ferguson (1974). Prior distributions on spaces of probability measures. Annals of Statistics 2, 615–629.

A. Gelman , Jakulin A. , Grazia-Pittau M. , and Su Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics 2, 1360–1383.

T. Hanson and Johnson W. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association 97, 1020–1033.

S. Klugman (1992). Bayesian Statistics in Actuarial Science: With Emphasis on Credibility. Huebner International Series on Risk, Insurance, and Economic Security. Kluwer Academic Publishers, Boston.

M. Lavine (1992). Some aspects of Polya tree distributions for statistical modelling. Annals of Statistics 20, 1222–1235.

U. E. Makov (2001). Principal applications of Bayesian methods in actuarial science: A perspective. North American Actuarial Journal 5(4), 53–73.

D. Scollnik (2001). Actuarial modeling with MCMC and BUGS. North American Actuarial Journal 5(4), 96–125.

P. Shi , Basu S. , and Meyers G. (2012). A Bayesian log-normal model for multivariate loss reserving. North American Actuarial Journal 16(1), 29–51.

D. Spiegelhalter , Best N. , Carlin B. , and van der Linde A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583–639.

S. Walker and Mallick B. (1999). Semiparametric accelerated life time model. Biometrics 55, 477–483.

A. Buja , Hastie T. , and Tibshirani R. (1989). Linear smoothers and additive models (with discussion). Annals of Statistics 17(2), 453–510.

W. S. Cleveland (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368), 829–836.

W. S. Cleveland (1981). Lowess: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician 35(1), 54.

V. A. Epanechnikov (1969). Nonparametric estimation of a multidimensional probability density. Theory of Probability and its Application 14(1), 156–161.

G. H. Golub , Heath M. , and Wahba G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223.

M. L. Johnson , Bengtson V. L. , Coleman P. G. , and Kirkwood T. B. (2005). The Cambridge Handbook of Age and Ageing. Cambridge University Press, Cambridge.

K.-C. Li (1986). Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing. Annals of Statistics 14(3), 1101–1112.

C. H. Reinsch (1967). Smoothing by spline functions. Numerische Mathematik 10(3), 177–183.

M. G. Schimek (2000). Smoothing and Regression: Approaches, Computation, and Application. John Wiley & Sons, New York.

M. Stone (1977). Asymptotics for and against cross-validation. Biometrika 64(1), 29–35.

Y. Wang (2011). Smoothing Splines: Methods and Applications. Taylor & Francis Group, New York.

N. Breslow and Clayton D. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88(421), 9–25.

N. Breslow and Lin X. (1995). Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika 82, 81–91.

M. Denuit , Maréchal X. , Pitrebois S. , and Walhin J.-F. (2007). Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Scales. Wiley, New York.

S. Haberman and Renshaw A. (1996). Generalized linear models and actuarial science. The Statistician 45(4), 407–436.

Y. Kim , Choi Y.-K. , and Emery S. (2013). Logistic regression with multiple random effects: A simulation study of estimation methods and statistical packages. The American Statistician 67(3), 171–182.

K. Liang and Zeger S. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73(1), 13–22.

X. Lin and Breslow N. (1996). Analysis of correlated binomial data in logistic-normal models. Journal of Statistical Computation and Simulation 55, 133–146.

Q. Liu and Pierce D. (1994). A note on Gauss-Hermite quadrature. Biometrika 81(3), 624–629.

J. Nelder and Wedderburn R. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A 135, 370–384.

J. Pinheiro and Bates D. (2000). Mixed Effects Models in S and S-Plus. Springer, New York.

F. Tuerlinckx , Rijmen F. Verbeke G. , and Boeck P. D. (2006). Statistical inference in generalized linear mixed models: A review. British Journal of Mathematical and Statistical Psychology 59, 225–255.

Y. Zhao , Staudenmayer J. , Coull B. , and Wand M. (2006). General design Bayesian generalized linear mixed models. Statistical Science 21, 35–51.

R. H. Shumway and Stoffer D. S. (2011). Time Series Analysis and Its Applications: With R Examples. Springer, New York.

P. De Jong and Zehnwirth B. (1983). Claims reserving state space models and the Kalman filter. Journal of the Institute of Actuaries 110, 157–181.

P. D. England and Verrall R. J. (2002). Stochastic claims reserving in general insurance. British Actuarial Journal 8, 443–518.

T. Mack (1993). Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin 23, 213–225.

D. H. Reid (1978). Claims reserves in general insurance. Journal of the Institute of Actuaries 105, 211–296.

B. Efron (1977). The efficiency of Cox's likelihood function for censored data. Journal of the American statistical Association 72(359), 557–565.

E. L. Kaplan and Meier P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282), 457–481.

O. Aalen (1978). Nonparametric inference for a family of counting processes. Annals of Statistics 6(4), 701–726.

P. K. Andersen (1993). Statistical Models Based on Counting Processes. Springer, New York.

P. K. Andersen and Keiding N. (2002). Multi-state models for event history analysis. Statistical Methods in Medical Research 11(2), 91–115.

D. C. Dickson , Hardy M. R , and Waters H. R (2009). Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, Cambridge.

J. M. Hoem (1969). Markov chain models in life insurance. Blätter der DGVFM 9(2), 91–107.

J. D. Kalbfleisch and Prentice R. L (2002). The Statistical Analysis of Failure Time Data (2nd ed.). John Wiley & Sons, New York.

A. Macdonald (1996a). An actuarial survey of statistical models for decrement and transition data-i: Multiple state, Poisson and binomial models. British Actuarial Journal 2(1), 129–155.

A. S. Macdonald , Waters H. R , and Wekwete C. T (2005a). A model for coronary heart disease and stroke with applications to critical illness insurance underwriting I: The model. North American Actuarial Journal 9(1), 13–40.

H. R. Waters (1984). An approach to the study of multiple state models. Journal of the Institute of Actuaries 111(2), 363–374.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 932 *
Loading metrics...

Book summary page views

Total views: 404 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.