Skip to main content
×
Home
Predictive Modeling Applications in Actuarial Science
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Predictive Modeling Applications in Actuarial Science
    • Online ISBN: 9781139342681
    • Book DOI: https://doi.org/10.1017/CBO9781139342681
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Predictive modeling uses data to forecast future events. It exploits relationships between explanatory variables and the predicted variables from past occurrences to predict future outcomes. Forecasting financial events is a core skill that actuaries routinely apply in insurance and other risk-management applications. Predictive Modeling Applications in Actuarial Science emphasizes life-long learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used to gain a competitive advantage in situations with complex data. Volume 2 examines applications of predictive modeling. Where Volume 1 developed the foundations of predictive modeling, Volume 2 explores practical uses for techniques, focusing on property and casualty insurance. Readers are exposed to a variety of techniques in concrete, real-life contexts that demonstrate their value and the overall value of predictive modeling, for seasoned practicing analysts as well as those just starting out.

Reviews

Praise for Volume 1:‘With contributions coming from a wide variety of researchers, professors, and actuaries - including several CAS Fellows - it's clear that this book will be valuable for any actuary whose main concern is using predictive modeling in his or her own work.'

David Zornek Source: Actuarial Review

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.


P. de Jong , and Heller G. . Generalized Linear Models for Insurance Data. International Series on Actuarial Science. Cambridge University Press, Cambridge, 2008.

E. W. Frees Frequency and severity models. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 138–164. Cambridge University Press, Cambridge, 2014.

M. Khun , and Johnson K. . Applied Predictive Modeling. Springer, New York, 2013.

P. McCullagh , and Nelder J. A. . Generalized Linear Models. 2nd ed. Chapman and Hall, Boca Raton, 1989.

J. A. Nelder , and Wedderburn R. W. M. . Generalized linear models. Journal of the Royal Statistical Society, Series A, 135: 370–384, 1972.

D. A. Pierce , and Shafer D. W. . Residuals in generalised linear models. Journal of the American Statistical Association, 81: 977–986, 1986.

D. H. Reid Claim reserves in general insurance. Journal of the Institute of Actuaries, 105: 211–296, 1978.

G. C. Taylor Separation of inflation and other effects from the distribution of non-life insurance claim delays. Astin Bulletin, 9: 217–230, 1977.

G. Taylor Loss Reserving: An Actuarial Perspective. Kluwer Academic, Boston, 2000.

J.-P. Boucher Regression with count-dependent variables. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 87–106. Cambridge University Press, Cambridge, 2014.

E. Frees , Jin X. , and Lin X. . Actuarial applications of multivariate two-part regression models. Annals of Actuarial Science, 7(2): 71–30, 2013.

E. Frees , Shi P. , and Valdez E. . Actuarial applications of a hierarchical claims model. ASTIN Bulletin, 39(1): 165–197, 2009.

E. Frees , and Valdez E. . Hierarchical insurance claims modeling. Journal of the American Statistical Association, 103(484): 1457–1469, 2008.

A. Gelman , and Hill J. . Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, 2006.

C. Genest , and Nešlehová J. . A primer on copulas for count data. Astin Bulletin, 37(2): 475, 2007.

M. Rosenberg , and Guszcza J. . Overview of linear models. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 13–64. Cambridge University Press, Cambridge, 2014.

P. Shi Insurance ratemaking using a copula-based multivariate Tweedie model. Scandinavian Actuarial Journal, 2016(3): 198–215, 2016.

P. Shi , and Zhang W. . Managed care and health care utilization: Specification of bivariate models using copulas. North American Actuarial Journal, 17(4): 306–324, 2013.

G. Smyth , and Jørgensen B. . Fitting Tweedie's compound Poisson model to insurance claims data: Dispersion modeling. Astin Bulletin, 32(1): 143–157, 2002.

E. W. Frees Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. Cambridge University Press, New York, 2004a.

E. W. Frees Regression models for data analysis. In Teugels J. L. and Sundt B. (Eds.), Encyclopedia of Actuarial Science. John Wiley, Hoboken, NJ, 2004b.

E. W. Frees (Jed), Meyers G. , and Cummings A. D. . Insurance ratemaking and a Gini index. Journal of Risk and Insurance, 81(2):335–366, 2014.

E. W. Frees , and Miller T. W. . Sales forecasting using longitudinal data models. International Journal of Forecasting, 20(1): 99–114, 2004.

E. W. Frees , Young V. R. , and Luo Y. . Case studies using panel data models. North American Actuarial Journal, 5(4): 24–42, 2001.

G. C. Orros , and Webber J. M. . Medical expenses insurance – An actuarial review. Journal of the Institute of Actuaries, 115: 169–269, 1988.

M. A. Rosenberg , Frees E. W. , Sun J. , Johnson P. H. , and Robinson J. M. . Predictive modeling with longitudinal data: A case study of Wisconsin nursing homes. North American Actuarial Journal, 11(3): 54–69, 2007.

J. D. Singer Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23(4): 323–355, 1998.

G. Taylor Non-life Insurance. In Teugels J. L. and Sundt B. (Eds.), Encyclopedia of Actuarial Science. John Wiley, Hoboken, NJ, 2004.

M. Filippone , Camastra F. , Masulli F. , and Rovetta S. . A survey of kernel and spectral methods for clustering. Pattern Recognition, 41(1): 176–190, 2008.

L. Francis Unsupervised learning. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 280–311. Cambridge University Press, Cambridge, 2014.

J. Han , Kamber M. , and Tung A. K. H. . Spatial clustering methods in data mining: A survey. In H. Miller , and Han J. (eds.), Geographic Data Mining and Knowledge Discovery. Taylor and Francis, London, 2001.

A. K. Jain , Murty M. N. , and Flynn P. J. . Data clustering: A review. ACM Comput. Surveys, 31: 264–323, 1999.

R. Xu , and Wunsch D. . Survey of clustering algorithms. IEEE Trans. Neural Networks, 16: 645–678, 2005.

P. Brockett , and Levine A. . On a characterization of RIDITS. Annals of Statistics, 5(6): 1245–1248, 1977.

P. Brockett , Xia X. , and Derrig R. . Use of Kohonen's self organized feature maps to uncover automobiler bodily injury claims fraud. Journal of Risk and Insurance, 65(2): 245–274, 1998.

I. Bross How to use Ridit analysis. Biometrics, 14(1): 18–38, 1958.

R. Derrig and Ostaszewski K. . Fuzzy techniques of pattern recognition in risk and claim classification. Journal of Risk and Insurance, 62(3): 447–482, 1995.

M. Guillén Regression with categorical dependent variables. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 65–86. Cambridge University Press, Cambridge, 2014.

G. James , Witten D. , Hastie T. , and Tibshirani R. . An Introduction to Statistical Learning with Applications in R. Springer, New York, 2013.

L. Kaufman , and Rousseeuw P. . Finding Groups in Data. John Wiley, New York, 1990.

J. Kim , and Mueller C. W. . Factor Analysis: Statistical Methods and Practical Issues, Sage, Thousand Oaks, CA, 1978.

D. R. Lieberthal Hospital quality: A PRIDIT approach. Health Services Research, 43(3): 988–1005, 2008.

T. Shi , and Horvath S. . Unsupervised learning with Random Forest predictors. Journal of Computational and Graphical Statistics, 15(1): 118–138, 2006.

W. Venables , and Ripley B. . Modern Applied Statistics with S-PLUS, Springer, New York, 1999.

T. Mack Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin, 23(2): 213–225, 1993.

J. Beirlant , Matthys G. , and Dierckx G. . Heavy tailed distributions and rating. ASTIN Bulletin, 31: 37–58, 2001.

C. G. Dean Generalized linear models. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 107–137. Cambridge University Press, Cambridge, 2014.

B. S. Everitt , and Hand D. J. . Finite Mixture Distributions. Chapman and Hall, London, 1981.

W. G. Johnson , Baldwin M. L. , and Butler R. J. . The costs and outcomes of chiropractic and physician care for workers' compensation back claims. The Journal of Risk and Insurance, 66(2): 185–205, 1999.

E. Kremer IBNR claims and the two way model of ANOVA. Scandinavian Actuarial Journal, 1982: 47–55, 1982.

G. J. McLachlan , and Peel D. . Finite Mixture Models. New York: John Wiley, 2000.

J. A. Nelder , and Pregibon O. . An extended quasi-likelihood function. Biometrik, 74: 221–231, 1987.

S. Newcomb A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics, 8: 343–366, 1886.

K. Pearson Contributions to mathematical theory of evolution. Philosophical Transactions, Series A, 185: 71–110, 1894.

O. Pregibon Review of generalized linear models. Ann. Statistics, 12: 1589–1596, 1984.

A. E. Renshaw Chain ladder and interactive modelling (claims reserving and GLIM). Journal of the Institute of Actuaries, 116(3): 559–587, 1989.

P. Shi Fat-tailed regression models. In Frees E. W. , Meyers G. , and Derrig R. A. (eds.), Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques, pp. 236–259. Cambridge University Press, Cambridge, 2014.

G. K. Smyth , and Verbyla A. P. . Adjusted likelihood methods for modelling dispersion ingeneralized linear models. Environmetrics, 10: 696–709, 1999.

G. C. Taylor , and Ashe F. R. . Second moments of estimates of outstanding claims. Journal of Econometrics, 23: 37–61, 1983.

G. Venter Generalized linear models beyond the exponential family with loss reserve applications. Casualty Actuarial Society E-Forum, Summer 2007.

R. W. M. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61(3): 439–447, 1974.

M. Wedel , and DeSarbo W. S. . A mixture likelihood approach for generalized linear models. Journal of Classification, 12: 21–55, 1995.

A. Hoerl , and Kennard R. . Ridge regression: An application to nonorthogonal problems. Technometrics, 12: 69–82, 1970.

C. R. Larsen An individual claims reserving model. Astin Bulletin, 37(1): 113–132, 2007.

P. Parodi Triangle-free reserving: A non-traditional framework for estimating reserves and reserve uncertainty. British Actuarial Journal, 19(01): 168–218, 2014.

H. Zou , and Hastie T. , T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67: 301–320, 2005.

T. Hastie , Tibshirani R. , and Friedman J. . Additive models, trees, and related methods. In The Elements of Statistical Learning, pp. 295–334. Springer, Stanford, 2009.

G. Shmueli To explain or predict? Statistical Science, 25(3): 289–310, 2010.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 746 *
Loading metrics...

Book summary page views

Total views: 791 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.