Skip to main content Accessibility help
×
  • Cited by 2
Publisher:
Cambridge University Press
Online publication date:
May 2014
Print publication year:
2014
Online ISBN:
9781139525381

Book description

Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Abel,, N. H. 1829. Précis d'une théorie des fonctions elliptiques. J. Reine Angew. Math., 4, 309–348.
Abers,, E., and Lee, B., W. 1973. Gauge theories. Phys. Rep., 9C(1), 1–141.
Abraham,, R., and Marsden,, J. E. 2008. Foundations of Mechanics. Second edn. Providence, RI: AMS Chelsea Publishing.
Arfken,, G. 1985. Mathematical Methods for Physicists. Third edn. New York: Academic Press Inc.
Aristotle 1930. Physica (The Physics). Oxford: Clarendon Press.
Arthur,, R. 1988. Continuous creation, continuous time: a refutation of the alleged discontinuity of Cartesian time. J. Hist. Phil., 26(3), 349–375.
Barrow,, J. D. 1992. Pi in the Sky.Oxford: Clarendon Press.
Bartholomæus Anglicus 1240. De Proprietatibus Rerum (On the Properties of Things).
Bender,, C. M., Cooper,, F., Gutschick,, V. P., and Nieto, M. M. 1985a. Simple approach to tunneling using the method of finite elements. Phys. Rev. D, 32(6), 1486–1490.
Bender,, C. M., Milton,, K. A., Sharp,, D. H., Simmons., L. M. Jr and Strong,, R. 1985b. Discrete-time quantum mechanics. Phys. Rev. D, 32(6), 1476–1485.
Bender,, C. M., Mead, L. R., and Milton, K. A. 1993. Discrete time quantum mechanics. hep-ph/9305246, 1–52.
Benza, V., and Caldirola, P. 1981. De Sitter microuniverse associated to the electron. Nuovo Cimento, 62A(3), 175–185.
Bishop, E. 1977. Book review of Elementary Calculus, by H. J., Keisler. Bull. Am. Math. Soc., 83, 205–208.
Bjorken, J. D., and Drell, S. D. 1964. Relativistic Quantum Mechanics.New York: McGraw-Hill.
Bjorken, J. D., and Drell, S. D. 1965. Relativistic Quantum Fields. New York: McGraw-Hill Inc.
Blaszczyk, P., Katz, M. G., and Sherry, D. 2013. Ten misconceptions from the history of analysis and their debunking. Foundations Sci., 18, 43–74.
Bohr, N. 1920. Über die Serienspektra der Elemente. Z. Phys., 2(5), 423–478.
Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. 1987. Space-time as a causal set. Phys. Rev. Lett., 59(5), 521–524.
Born, M. 1926. Zur Quantenmechanik der Stoβvorgänge. Z. Phys., 38, 803–827.
Brightwell, G., and Gregory, R. 1991. Structure of random discrete spacetime. Phys. Rev. Lett., 66(3), 260–263.
Brown, L. M. 2005. Feynman's Thesis, A New Approach to Quantum Theory.Singapore: World Scientific.
Brown, R. 1828. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4, 161–173.
Bureau International des Poids et Mesures (BIPM) 2006. The International System of Units (SI). Eight edn. Sèvres: BIPM.
Cadzow, J. A. 1970. Discrete calculus of variations. Int. J. Control, 11(3), 393–407.
Caldirola, P. 1978. The chronon in the quantum theory of the electron and the existence of heavy leptons. Nuovo Cimento, 45(4), 549–579.
Candlin, D. J. 1956. On sums over trajactories for systems with Fermi statistics. Nuovo Cimento, 4(2), 231–239.
Casalbuoni, R. 1976a. The classical mechanics for Bose–Fermi systems. Nuovo Cimento A Series ll, 33(3), 389–431.
Casalbuoni, R. 1976b. On the quantization of systems with anticommuting variables. Nuovo Cimento A Series ll, 33(1), 115–125.
Chamseddine, A., and Connes, A. 1996. Universal formula for noncommutative geometry actions: unification of gravity and the standard model. Phys. Rev. Lett., 24, 4868–4871.
Cho, K. H., Ji, J. Y., Kim, S. P., Lee, C. H., and Ryu, J. Y. 1997. Heisenberg-picture approach to the evolution of the scalar fields in an expanding universe. Phys. Rev. D, 56, 4916–4921.
Cohen, I. B. 1999. A Guide to Newton's Principia. Berkeley, CA: University of California Press.
Colosi, D., and Rovelli, C. 2009. What is a particle?Classical Quantum Gravity, 26, 025002 (22 pp.).
Cornell, J. (ed.). 1989. Bubbles, Voids, and Bumps in Time: The New Cosmology.Cambridge: Cambridge University Press.
Cornish, F. H. J. 1984. The hydrogen atom and the four-dimensional harmonic oscillator. J. Phys. A: Math. Gen., 17, 323–327.
Davisson, C., and Germer, L. H. 1927. Diffraction of electrons by a crystal of nickel. Phys. Rev., 6, 705–740.
De Broglie, L. 1924. Recherches sur la théorie des quanta. Ph.D. thesis, Faculty of Sciences at Paris University.
DeWitt, B. S. 1965. Dynamical Theory ofGroups and Fields.London: Blackie and Son Limited.
Dirac, P. A. M. 1925. The fundamental equations of quantum mechanics. Proc. Roy. Soc. A, 109, 642–653.
Dirac, P. A. M. 1928. The quantum theory of the electron. Proc. Roy. Soc. A, 117(778), 610–624.
Dirac, P. A. M. 1933. The Lagrangian in quantum mechanics. Phys. Z. Sowjetunion, 3(1), 64–72.
Dirac, P. A. M. 1938. Classical theory of radiating electrons. Proc. Roy. Soc. A, 167, 148–169.
Dirac, P. A. M. 1958. The Principles of Quantum Mechanics. Oxford: Clarendon Press.
Dirac, P. A. M. 1964. Lectures on Quantum Mechanics.New York: Belfer Graduate School of Science, Yeshiva University.
Dray, T., Manogue, C. A., and Tucker, R. W. 1991. Particle production from signature change. Gen. Rel. Grav., 23(8), 967–971.
Eakins, J. 2004. Classical and Quantum Causality in Quantum Field Theory, or, ‘The Quantum Universe’. Ph.D. thesis, University of Nottingham.
Eakins, J., and Jaroszkiewicz, G. 2003. Factorization and entanglement in quantum systems. J. Phys. A: Math. Gen., 36, 517–526.
Eakins, J., and Jaroszkiewicz, G. 2005. A quantum computational approach to the quantum Universe, Reimer, A. (ed.), New Developments in Quantum Cosmology Research. New York: Nova Science Publishers, Inc., pages 1–51.
Eden, R. J., Landshoff, P. V., Olive, D. I., and Polkinghorne, J. C. 1966. The Analytic S-Matrix. Cambridge: Cambridge University Press.
Einstein, A. 1905a. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys., 17, 132–148. (English Translation: 1965. Concerning an heuristic point of view toward the emission and transformation of light. Am. J. Phys. 33(5), 1-16.)
Einstein, A. 1905b. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Phys., 17, 549–560.
Einstein, A. 1913. Letter to Ernst Mach. Reprinted with commentary in Misner, C., Thorne, K., and Wheeler, J., 1973. Gravitation. San Francisco, CA: W. H. Freeman.
Einstein, A. 1915. Die Feldgleichungen der Gravitation. Sitzungsber. Preuß. Akad. Wiss. Berlin, 844–847.
Encyclopædia Britannica 1993. Time. In Encyclopædia Britannica, 15th edn, Vol. 28. London: Encyclopædia Britannica, Inc., pages 662–673.
Encyclopædia Britannica. 2000. CD Rom edn. britannica.co.uk.
Farias, R. H. A., and Recami, E. 2010. Introduction of a quantum of time (“chronon”) and its consequences for quantum mechanics. Adv. Imaging Electron Phys., 163, 33–115.
Fermi, E. 1926. Sulla quantizzazione del gas perfetto monoatomico. Rend. Lincei, 3, 145–149. (English translation by A. Zannoni: On the quantization of the monoatomic ideal gas. arXiv:cond-mat/9912229.)
Feynman, R. P. 1948. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20(2), 367–387.
Feynman, R. P. 1982. Simulating physics with computers. Int. J. Theor. Phys., 21(6/7), 467–488.
Feynman, R. P., and Hibbs, A. R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill.
Finkelstein, D. 1969. Space-time code. Phys. Rev., 184(4), 1969–1971.
Finkelstein, D. 1972a. Space-time code. II. Phys. Rev. D, 5(2), 320–328.
Finkelstein, D. 1972b. Space-time code. III. Phys. Rev. D, 5(12), 2923–2931.
Finkelstein, D. 1974. Space-time code. IV. Phys. Rev. D, 9(8), 2219–2231.
Finkelstein, D., Frye, G., and Susskind, L. 1974. Space-time code. V. Phys. Rev. D, 9(8), 2231–2236.
FitzGerald, G. F. 1889. The ether and the Earth's atmosphere. Science, 13, 390.
Fredkin, E. 1990. Digital mechanics: an informational process based on reversible universal CA. Physica, D45, 254–270.
Fredkin, E. 2001. A physicist's model of computation. Digital Mechanics, 11 November, 1–13.
Fredkin, E., and Toffoli, T. 1982. Conservative logic. Int. J. Theor. Phys., 21(3-4), 219–253.
Gagnon, P. 2012. Is the moon full? Just ask the LHC operators. http://www.quantumdiaries.org/2012/06/07/is-the-moon-full-just-ask-the-lhc-operators/.
Galapon, E. A. 2002. Pauli's theorem and quantum canonical pairs: the consistency of a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with non-empty point spectrum. Proc. R. Soc. Lond. A, 458, 451–472.
Gardner, M. 1970. The fantastic combinations of John Conway's new solitaire game “life”. Scient. Am., 223, 120–123.
Gasiorowicz, S. 1967. Elementary Particle Physics. New York: John Wiley and Sons.
Gelfand, I. M., and Shilov, G. E. 1964. Generalised Functions. New York: Academic Press.
Gerlach, W., and Stern, O. 1922a. Der experimentelle Nachweis des magnetischen Moments des SilberatomsZ. Phys., 8, 110–111.
Gerlach, W., and Stern, O. 1922b. Der experimentelle Nachweis der Richtungs-quantelung im Magnetfeld. Z. Phys., 9, 349–355.
Gödel, K. 1949. An example of a new type of cosmological solutions of Einstein's field equations of gravity. Rev. Mod. Phys., 21(3), 447–450.
Goldstein, H. 1964. Classical Mechanics. New York: Addison-Wesley.
Goldstein, H., Poole, C., and Safko, J. 2002. Classical Mechanics. Third edn. New York: Addison-Wesley.
Hamermesh, M. 1962. Group Theory and Its Applications to Physical Problems. New York: Addison-Wesley.
Hartley, L. P. 1953. The Go-Between. London: Hamish Hamilton.
Heisenberg, W. 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. A, 33(1), 879–893.
Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kine-matik und Mechanik. Z. Phys, 43, 172–198. (Reprinted English translation: The physical content of quantum kinematics and mechanics, in Wheeler, J. A., and Zurek, W. H. (eds.) 1983. Quantum Theory of Measurement. Princeton, NJ: Princeton University Press.)
Hilbert, D. 1915. Die Grundlagen der Physik. Nachr. Königl. Gesell. Wiss. Göttingen, Math.-Phys., 3, 395–407.
Hildebrandt, S. 2012. Mountains are younger than we think. Science Nordic. Available online at sciencenordic.com.
Howson, A. G. 1972. A Handbook of Terms Used in Algebra and Analysis. Cambridge: Cambridge University Press.
Ikeda, M., and Maeda, S. 1978. On symmetries in a discrete model of mechanical systems. Math. Japonica, 23(2), 231–244.
Jackson, F. H. 1910. On q-definite integrals. Q. J. Pure Appl. Math., 41, 193–203.
Jaroszkiewicz, G. 1994a. Conserved quantities in classical and quantised discrete time systems. Nottingham University Mathematics Department preprint. (Talk given at International Workshop on Finite dimensional Integrable systems, Dubna, Russia, 1994.)
Jaroszkiewicz, G. 1994b. A q-ball simulation of bag scattering. J. Phys. G: Nucl. Part. Phys., 21, 501–516.
Jaroszkiewicz, G. A. 1995a. Deformed mechanics and the discrete time quantised anharmonic oscillator, in Lukierski, J., Popowicz, Z., and Sobczyk, J. (eds.), Proceedings of XXX Karpacz Winter School of Theoretical Physics Poland, on Quantum Groups, Formalism and Applications, Wrocław, 1994. Warsaw: Wydawnictwo Naukowe PWN.
Jaroszkiewicz, G. 1995b. Hilbert space condition on conserved quantities in second-order discrete time classical mechanics. J. Phys. A: Math. Gen., 28, L197–L199.
Jaroszkiewicz, G. 1999. Discrete spacetime: classical causality, prediction, retrodiction and the mathematical arrow of time. (Talk at First Interdisciplinary Workshop on Studies on the Structure of Time: from Physics to Psycho(patho)logy, Palermo, (1999).)
Jaroszkiewicz, G. 2002. Analysis of the Relationship Between Real and Imaginary Time in Physics. Dordrecht: Kluwer Academic Publishers.
Jaroszkiewicz, G. 2008. Quantized detector networks: a review of recent developments. Int. J. Mod. Phys. B, 22(3), 123–188.
Jaroszkiewicz, G. 2010. Towards a dynamical theory of observation. Proc. Roy. Soc. A, 466(2124), 3715–3739.
Jaroszkiewicz, G., and Nikolaev, V. 2001. Temporal discretization of the Skyrme model. arXiv:hep-th/0110052, 1–12.
Jaroszkiewicz, G., and Norton, K. 1997a. Principles of discrete time mechanics: I. Particle systems. J. Phys. A: Math. Gen., 30(9), 3115–3144.
Jaroszkiewicz, G., and Norton, K. 1997b. Principles of discrete time mechanics: II. Classical field theory. J. of Phys. A: Math. Gen., 30(9), 3145–3163.
Jordan, P., and Wigner, E. P. 1928. Uber das Paulische Aquivalenzverbot. Z. Phys., 47, 631–651.
Keisler, H. J. 2012. Elementary Calculus: An Elementary Approach. (available online).
Kennard, E. H. 1927. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys., 44(4-5), 326–352.
Klimek, M. 1993. Extension of q-deformed analysis and q-deformed models of classical mechanics. J. Phys. A: Math. Gen., 26, 955–967.
Klimek, M. 1996. The conservation laws and integrals of motion for a certain class of equations in discrete models. J. Phys. A: Math. Gen., 29, 1747–1758.
Koke, S., Grebing, C., Frei, H., et al. 2010. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nature Photonics, 4, 463–465.
Kowalczynski, J. K. 2000. Can we detect tachyons now? Acta Phys. Slovaca, 50, 381–395.
Kowalski, K. 1994. Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems. Singapore: World Scientific.
Lee, T. D. 1983. Can time be a discrete dynamical variable?Phys. Lett. B, 122(3-4), 217–220.
Leech, J. W. 1965. Classical Mechanics. London: Methuen and Co. Ltd.
Lehmann, H., Symanzik, K., and Zimmermann, W. 1955. Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento, 1(1), 205–225.
Levi, R. 1927. Theorie de l'action universelle et discontinue. J. Phys. Radium, 8, 182–198.
Lewis, H. R., and Riesenfeld, W. B. 1969. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys, 10, 1458–1473.
Li, A., and Richardson, M. 2009. The speed and lifetime of cosmic-ray muons. MIT Department of Physics, 1–5 (available online).
Logan, J. D. 1973. First integrals in the discrete variational calculus. Aequat. Math., 9, 210–220.
Lukierski, J., Nowicki, A., and Ruegg, H. 1992. New quantum Poincare algebra and kappa-deformed field theory. Phys. Lett., 293B, 344–352.
Mach, E. 1912. Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. (English translation by T. J., McCormack, 1934. The Science of Mechanics. La Salle, IL: Open Court.)
Maeda, S. 1981. Extension of discrete Noether theorem. Math. Japonica, 26(1), 85–90.
Maimonides, M. 1190. The Guide for the Perplexed. London: George Routledge, (Translated by M. Freidlander (1904).)
Markopoulou, F. 2000. Quantum causal histories. Class. Quantum Gravity. 17, 2059–2072.
Marsden, J. E., and West, M. 2001. Discrete mechanics and variational integrators. Acta Numer., 1–158.
Martin, J. L. 1959a. The Feynman principle for a Fermi system. Proc.Roy.Soc.A, 251, 543–549.
Martin, J. L. 1959b. Generalized classical dynamics and the “classical analogue” of a Fermi oscillator. Proc. Roy. Soc. A, 251, 536–542.
McAllister, R. W., and Hofstadter, R. 1956. Elastic scattering of 188 MeV electrons from proton and the alpha particle. Phys. Rev., 102, 851–856.
Meschini, D. 2006. Planck-scale physics: facts and belief. Foundations Sci., 11, 1233–1821.
Minkowski, H. 1908. Space and time. (A translation of an address delivered at the 80th Assembly of German Natural Scientists and Physicians, at Cologne, 21 September), in Lorentz, H. A., Einstein, A., Minkowski, H., and Weyl, H.The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (1952). New York: Dover Publications, Inc.
Minsky, M. 1982. Cellular vacuum. Int. J. Theor. Phys., 21(6/7), 537–551.
Mir-Kasimov, R. M. 1991. On the principle of gauge invariance in field theory with curved momentum space. Phys. Lett. B, 259(1–2), 79–83.
Moser, J., and Veselov, A. P. 1991. Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys., 139, 217–243.
Muga, J. G., Sala Mayato, R., and Egusquiza, I. L. (eds.). 2008. Time in Quantum Mechanics. Second edn. Berlin: Springer.
Newton, I. 1687. The Principia (Philosophiae Naturalis Principia Mathematica). New translation by I. B., Cohen and Anne, Whitman, Berkeley, CA: University of California Press (1999).
Noether, E. 1918. Invariante Variationsprobleme. Nachr. Konigl. Gesell. Wiss. Gottingen, Math.-Phys., 235–257.
Norton, K., and Jaroszkiewicz, G. 1998a. Principles of discrete time mechanics: III. Quantum field theory. J. Phys. A: Math. Gen., 31(3), 977–1000.
Norton, K., and Jaroszkiewicz, G. 1998b. Principles of discrete time mechanics: IV. The Dirac equation, particles and oscillons. J. Phys. A: Math. Gen., 31(3), 1001–1023.
Oney, S. 2007. The Jackson integral, http://www.stephenoney.com/papers/JacksonIntegral.pdf.
Pauli, W. 1925. Uber den Einfluß der Geschwindigkeitsabhängigkeit der Elektronen-masse auf den Zeemaneffekt. Z. Phys., 31, 373–385.
Pauli, W. 1933. Die allgemeinen Prinzipien der Wellenmechanik. Berlin: Springer.
Pauli, W. 1946. Exclusion principle and quantum mechanics. Nobel Lecture (available online).
Peierls, R. E. 1952. The commutation laws of relativistic field theory. Proc. Roy. Soc. A, 214, 143–157.
Peres, A. 1993. Quantum Theory: Concepts and Methods. Dordrecht: Kluwer Academic Publishers.
Pinney, E. 1958. Ordinary Difference-Differential Equations. Berkeley, CA: University of California Press.
Planck, M. 1900. Über eine Verbesserung der Wienschen Spektralgleichung Verhandl. Deutsch. Phys. Gesell., 2, 202–204.
Planck, M. 1901. Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Phys., 309(3), 553–563.
Poincare, H. 1890. Sur le probleme des trois corps et les equations de la dynamique. Acta Math., 13, 1–270.
Price, H. 1997. Time's Arrow. Oxford: Oxford Üniversity Press.
Rabei, E., Ajlouni, A., and Ghassib, H. 2006. Quantization of Brownian Motion. Int. J. Theor. Phys., 45(9), 1613–1623.
Regge, T. 1961. General relativity without coordinates. Nuovo Cimento, 19(3), 558–571.
Reichenbach, H. 1958. The Philosophy of Time and Space. New York: Dover Publications.
Requardt, M. 1999. Space-time as an orderparameter manifold in random networks and the emergence of physical points. gr-qc/99023031, 1–40.
Ridout, D. P., and Sorkin, R. D. 2000. A classical sequential growth dynamics for causal sets. Phys. Rev. D, 61, 024002.
Rindler, W. 1969. Essential Relativity. New York: Van Nostrand Reinhold Company.
Robinson, A. 1966. Non-standard Analysis. Amsterdam: North-Holland Publishing Co.
Roman, P. 1969. Introduction to Quantum Field Theory. New York: John Wiley and Sons, Inc.
Rovelli, C. 1996. Relational quantum mechanics. Int. J. Theor. Phys., 35, 1637–1678.
Rudin, W. 1964. Principles of Mathematical Analysis. New York: McGraw-Hill Book Company.
Sambursky, S. 1959. Physics of the Stoics. London: Routledge and Kegan Paul.
Scarani, V., Tittel, W., Zbinden, H., and Gisin, N. 2000. The speed of quantum information and the preferred frame: analysis of experimental data. Phys. Lett. A, 276, 1–7.
Schneider, D. P., Hell, P. B., Richards, G. T., et al. 2007. The Sloan Digital Sky Survey Quasar Catalog IV. Fifth data release. Astron. J., 134, 102–117.
Schrödinger, E. 1926. Quantisierung als Eigenwertproblem (erste Mitteilung). Ann. Phys., 79, 361–376.
Schutz, B. 1980. Geometrical Methods of Mathematical Physics. Cambridge: Cambridge Üniversity Press.
Schwinger, J. 1959. Field theory commutators. Phys. Rev. Lett., 3(6), 296–297.
Schwinger, J. 1963. Gauge theories of vector particles, in Theoretical Physics (Trieste Seminar 1962). Vienna: IAEA, pages 89–134.
Schwinger, J. 1965. Relativistic quantum field theory. Nobel Prize Lecture, 1–13 (available online).
Schwinger, J. 1969. Particles and Sources. New York: Gordon and Breach.
Secada, J. E. K. 1990. Descartes on time and causality. Philos. Rev., 99(1), 45–72.
Skyrme, T. H. 1961. A non-linear field theory. Proc. Roy. Soc. A, 260, 127–138.
Smolin, L. 2013. Time Reborn: From the Crisis of Physics to the Future of the Universe. London: Allen Lane.
Smoluchowski, M. 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys., 21, 756–780.
Snyder, H. S. 1947a. The electromagnetic field in quantized space-time. Phys. Rev., 72(1), 68–71.
Snyder, H. S. 1947b. Quantized space-time. Phys. Rev., 71(1), 38–41.
Spiegel, M. R. 1965. Laplace Transforms. New York: McGraw-Hill Book Company.
Stein, E., and Shakarchi, R. 2003. Fourier Analysis: An Introduction. Princeton, NJ: Princeton Üniversity Press.
Stern, A., and Desbrun, M. 2006. Discrete geometric mechanics for variational integrators, Proceedings of in SIGGRAPH '06. New York: ACM, Pages 75–80.
Streater, R. F., and Wightman, A. S. 1964. PCT, Spin and Statistics, and All That. New York: W. A. Benjamin, Inc.
Stueckelberg, E. C. G. 1941. Remarque aproposdelacreation de paires de particules en theorie de la relativite. Helv. Phys. Acta, 14, 588–594.
Sudarshan, E. C. G., and Mukunda, N. 1983. Classical Dynamics: A Modern Perspective. Malabar, FL: Robert E. Krieger Publishing Company.
Susskind, L. 1995. The world as a hologram. J. Math. Phys., 36(11), 6377–6396.
't Hooft, G. 1993. Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026, 1–13.
Tapia, V. 1988. Second order field theory and nonstandard Lagrangians. Nuovo Cimento B, 101, 183–196.
Taylor, J. G. (ed.) 1987. Tributes to Paul Dirac, Cambridge, 1985. Bristol: Adom Hilger.
Tegmark, M. 1997. On the dimensionality of spacetime. Class. Quantum Gravity., 14, L69–L75.
Tifft, W. G. 1996. Three-dimensional quantized time in cosmology. Astrophys. Space Sci., 244, 187–210.
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., and Ezawa, H. 1989. Demonstration of single-electron buildup of an interference pattern. Am. J. Phys., 57(2), 117–120.
TOTEM Collaboration 2012. Luminosity-independent measurements of total, elastic and inelastic cross-sections at s = 7 TeV. Preprint CERN-PH-EP-2012-353, 1–7.
Weiss, P. 1936. On the quantization of a theory arising from a variational principle for multiple integrals with application to Born's electrodynamics. Proc. Roy. Soc. A, 156, 192–220.
Weiss, P. 1938. Proc. Roy. Soc. A, 169, 102–119.
Wells, H. G. 1895. The Time Machine. London: Willian Heinemann.
Wheeler, J. A. 1979. From the Big Bang to the Big Crunch. Cosmic Search Mag., 1 (4). Interview with J. A. Wheeler (available online).
Whitrow, G. J. 1980. The Natural Philosophy of Time. Second edn. Oxford: Clarendon Press.
WMAP 2013. Wilkinson Microwave Anisotropy Probe empirical results. http://lambda.gsfc.nasa.gov/product/map/current/parameters.cfm.
Wolfram, S. 1986. Theory and Applications of Cellular Automata. Singapore: World Scientific.
Yang, C. N. 1947. On quantized space-time. Phys. Rev., 72, 874.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.