Skip to main content
×
×
Home
Probability on Graphs
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Probability on Graphs
    • Online ISBN: 9781108528986
    • Book DOI: https://doi.org/10.1017/9781108528986
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
1. Aaronson, J. An Introduction to Infinite Ergodic Theory, American Mathematical Society, Providence, RI, 1997.fields and Ising
2. Ahlfors, L. Complex Analysis, 3rd edn, McGraw-Hill, New York, 1979.
3. Aizenman, M. Geometric analysis of ϕ4 fields and Ising models, Communications in Mathematical Physics 86 (1982), 1-48.
4. Aizenman, M. The geometry of critical percolation and conformal invariance, in Proceedings STATPHYS 19 (Xiamen 1995) (H., Bai-Lin, ed.), World Scientific, 1996, pp. 104-120.
5. Aizenman, M. Scaling limit for the incipient infinite clusters, in Mathematics of Multiscale Materials (K., Golden, G., Grimmett, J., Richard, G., Milton, P., Sen, eds), IMA Volumes in Mathematics and its Applications, vol. 99, Springer, New York, 1998, pp. 1-24.
6. Aizenman, M., Barsky, D.J. Sharpness of the phase transition in percolation models, Communications in Mathematical Physics 108 (1987), 489-526.
7. Aizenman, M., Barsky, D.J., Fernàndez, R. The phase transition in a general class of Ising-type models is sharp, Journal of Statistical Physics 47 (1987), 343-374.
8. Aizenman, M., Burchard, A. Holder regularity and dimension bounds for random curves, Duke Mathematical Journal 99 (1999), 419-453.
9. Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M. Discontinuity of the magnetization in one-dimensional 1/|x — y|2 Ising and Potts models, Journal of Statistical Physics 50 (1988), 1-40.
10. Aizenman, M., Duminil-Copin, H., Sidoravicius, V. Random currents and continuity of Ising model's spontaneous magnetization, Communications in Mathematical Physics 334 (2015), 719-742.
11. Aizenman, M., Fernàndez, R. On the critical behavior of the magnetization in high-dimensional Ising models, Journal of Statistical Physics 44 (1986), 393-454.
12. Aizenman, M., Grimmett, G.R. Strict monotonicity for critical points in percolation and ferromagnetic models, Journal of Statistical Physics 63 (1991), 817-835.
13. Aizenman, M., Kesten, H., Newman, C.M. Uniqueness of the infinite cluster and related results in percolation, in Percolation Theory and Ergodic Theory of Infinite Particle Systems (H., Kesten, ed.), IMA Volumes in Mathematics and its Applications, vol. 8, Springer, New York, 1987, pp. 13-20.
14. Aizenman, M., Klein, A., Newman, C.M. Percolation methods for disordered quantum Ising models, in Phase Transitions: Mathematics, Physics, Biology, … (R., Kotecky, ed.), World Scientific, Singapore, 1992, pp. 129-137.
15. Aizenman, M., Nachtergaele, B. Geometric aspects of quantum spin systems, Communications in Mathematical Physics 164 (1994), 17-63.
16. Aizenman, M., Newman, C.M. Tree graph inequalities and critical behavior in percolation models, Journal of Statistical Physics 36 (1984), 107-143.
17. Aldous, D.J. Brownian excursions, critical random graphs and the multiplicative coalescent, Annals of Probability 25 (1997), 812-854.
18. Aldous, D.J. The random walk construction of uniform spanning trees and uniform labelled trees, SI AM Journal of Discrete Mathematics 3 (1990), 450-465.
19. Aldous, D., Fill, J. Reversible Markov Chains and Random Walks on Graphs, 2002 http: //www. stat. berkeley. edu/∼aldous/RWG/book. html.
20. Alexander, K. On weak mixing in lattice models, Probability Theory and Related Fields 110(1998), 441-471.
21. Alexander, K. Mixing properties and exponential decay for lattice systems in finite volumes, Annals of Probability 32 (2004), 441-487.
22. Alon, N., Spencer, J.H. The Probabilistic Method, Wiley, New York, 2000.
23. Azuma, K. Weighted sums of certain dependent random variables, Tohoku Mathematics Journal 19 (1967), 357-367.
24. Balint, A., Camia, F., Meester, R. The high temperature Ising model on the triangular lattice is a critical percolation model, Journal of Statistical Physics 139 (2010), 122-138.
25. Barlow, R.N., Proschan, F. Mathematical Theory of Reliability, Wiley, New York, 1965.
26. Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G. Lectures on self-avoiding-walks, in Probability and Statistical Physics in Two and More Dimensions (D., Ellwood, C., Newman, V., Sidoravicius, W., Werner, eds), Clay Mathematics Proceedings, vol. 15, American Mathematical Society, Providence, RI, 2012, pp. 395-476.
27. Baxter, R.J. Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.
28. Beaton, N.R., Bousquet-Mélou, M., de Gier, J., Duminil-Copin, H., Guttmann, A.J. The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is 1 + V2, Communications in Mathematical Physics 326 (2014), 727-754.
29. Beckner, W. Inequalities in Fourier analysis, Annals of Mathematics 102 (1975), 159—182.
30. Beffara, V. Cardy's formula on the triangular lattice, the easy way, in Universality and Renormalization, Fields Institute Communications, vol. 50, American Mathematical Society, Providence, RI, 2007, pp. 39-45.
31. Beffara, V., Duminil-Copin, H. The self-dual point of the two-dimensional random-cluster model is critical for q>\, Probability Theory and Related Fields 153 (2012), 511-542.
32. Beffara, V., Duminil-Copin, H. Critical point and duality in planar lattice models, in Probability and Statistical Physics in St Petersburg (V., Sidoravicius, S., Smirnov, eds), Proceedings of Symposia in Pure Mathematics, vol. 91, American Mathematical Society, Providence, RI, 2016, pp. 58-105.
33. Beffara, V., Duminil-Copin, H., Smirnov, S. On the critical parameters of the q > 4 random-cluster model on isoradial graphs, Journal of Physics A: Mathematical and Theoretical 48 (2015) 484003.
34. Benaï'm, M., Rossignol, R. Exponential concentration for first passage percolation through modified Poincaré inequalities, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 44 (2008), 544-573.
35. Ben-Or, M., Linial, N. Collective coin flipping, in Randomness and Computation (S., Micali, ed.), Academic Press, New York, 1990, pp. 91-115.
36. Benjamini, I., Kalai, G., Schramm, O. First passage percolation has sublinear distance variance, Annals of Probability 31 (2003), 1970-1978.
37. Benjamini, I., Lyons, R., Peres, Y., Schramm, O. Uniform spanning forests, Annals of Probability 29 (2001), 1-65.
38. Berg van den, J. Disjoint occurrences of events: results and conjectures, in Particle Systems, Random Media and Large Deviations (R., T. Durrett, ed.), Contemporary Mathematics no. 41, American Mathematical Society, Providence, RI, 1985, pp. 357-361.
39. Berg van den, J. Approximate zero-one laws and sharpness of the percolation transition in a class of models including 2D Ising percolation, Annals of Probability 36 (2008), 1880-1903.
40. Berg, J. van den Jonasson, J. A BK inequality for randomly drawn subsets of fixed size, Probability Theory and Related Fields 154 (2012), 835-844.
41. Berg, J. van den Kesten, H. Inequalities with applications to percolation and reliability, Journal of Applied Probability 22 (1985), 556-569.
42. Bezuidenhout, C.E., Grimmett, G.R. The critical contact process dies out, Annals of Probability 18 (1990), 1462- 1482.
43. Bezuidenhout, C.E., Grimmett, G.R. Exponential decay for subcritical contact and percolation processes, Annals of Probability 19 (1991), 984-1009.
44. Bezuidenhout, C.E., Grimmett, G.R. A central limit theorem for random walks in random labyrinths, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 35 (1999), 631-683.
45. Billingsley, P. Convergence of Probability Measures, 2nd edn, Wiley, New York, 1999.
46. Bjornberg, J.E. Graphical representations of Ising and Potts models, Ph.D. thesis, Cambridge University, arXiv: 1011.2683 (2009).
47. Bjornberg, J.E. Vanishing critical magnetization in the quantum Ising model, Communications in Mathematical Physics 337 (2015), 879-907.
48. Bjornberg, J.E., Grimmett, G.R. The phase transition of the quantum Ising model is sharp, Journal of Statistical Physics 136 (2009), 231-273.
49. Bollobás, B. The chromatic number of random graphs, Combinatorica 8 (1988), 49-55.
50. Bollobás, B. Modern Graph Theory, Springer, Berlin, 1998.
51. Bollobás, B. Random Graphs, 2nd edn, Cambridge University Press, Cambridge, 2001.
52. Bollobás, B., Grimmett, G.R., Janson, S. The random-cluster process on the complete graph, Probability Theory and Related Fields 104 (1996), 283-317.
53. Bollobás, B., Riordan, O. The critical probability for random Voronoi percolation in the plane is 1/2, Probability Theory and Related Fields 136 (2006), 417-468.
54. Bollobás, B., Riordan, O. A short proof of the Harris-Kesten theorem, Bulletin of the London Mathematical Society 38 (2006), 470-484.
55. Bollobás, B., Riordan, O. Percolation, Cambridge University Press, Cambridge, 2006.
56. Bonami, A. Étude des coefficients de Fourier des fonctions de LP(G), Annales de l'Institut Fourier 20 (1970), 335-402.
57. Borgs, C., Chayes, J.T., Randall, R. The van-den-Berg-Kesten-Reimer inequality: a review, in Perplexing Problems in Probability (M., Bramson R.T., Durrett, eds), Birkhauser, Boston, 1999, pp. 159-173.
58. Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y., Linial, N. The influence of variables in product spaces, Israel Journal of Mathematics 11 (1992), 55-64.
59. Broadbent, S.R., Hammersley, J.M. Percolation processes I., Crystals and mazes, Proceedings of the Cambridge Philosophical Society 53 (1957), 629-641.
60. Broder, A.Z. Generating random spanning trees, in Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 442-447.
61. Brook, D. On the distinction between the conditional probability and joint probability approaches in the specification of nearest-neighbour systems, Biometrika 51(1964), 481-483.
62. Burton, R.M., Keane, M. Density and uniqueness in percolation, Communications in Mathematical Physics 121 (1989), 501-505.
63. Camia, F., Newman, C.M. Continuum nonsimple loops and 2D critical percolation, Journal of Statistical Physics 116 (2004), 157-173.
64. Camia, F., Newman, C.M. Two-dimensional critical percolation: the full scaling limit, Communications in Mathematical Physics 268 (2006), 1-38.
65. Camia, F., Newman, C.M. Critical percolation exploration path and SLE6: a proof of convergence, Probability Theory and Related Fields 139 (2007), 473-519.
66. Cardy, J. Critical percolation in finite geometries, Journal of Physics A: Mathematical and General 25 (1992), L201.
67. Cerf, R. The Wulff crystal in Ising and percolation models, in Ecole d'Eté de Probabilités de Saint Flour XXXIV-2004 (J., Picard, ed.), Lecture Notes in Mathematics, vol. 1878, Springer, Berlin, 2006.
68. Cerf, R., Pisztora, Á. On the Wulff crystal in the Ising model, Annals of Probability 28 (2000), 947-1017. Cerf, R., Pisztora, Á.
69. Cerf, R., Pisztora, Á. Phase coexistence in Ising, Potts and percolation models, Annales de l'In- stitut Henri Poincaré, Probability et Statistiques 37 (2001), 643-724.
70. Chayes, J.T., Chayes, L. Percolation and random media, in Critical Phenomena, Random Systems and Gauge Theories (K., Osterwalder, R., Stora, eds), Les Houches, Session XLIII, 1984, Elsevier, Amsterdam, 1986, pp. 1001-1142.
71. Chayes, J.T., Chayes, L. An inequality for the infinite cluster density in percolation, Physical Review Letters 56 (1986), 16191622.
72. Chayes, J.T., Chayes, L. The mean field bound for the order parameter of Bernoulli percolation, in Percolation Theory and Ergodic Theory of Infinite Particle Systems (H., Kesten, ed.), IMA Volumes in Mathematics and its Applications, vol. 8, Springer, New York, 1987, pp. 49-71.
73. Chayes, J.T., Chayes, L., Grimmett, G.R., Kesten, H., Schonmann, R.H. The correlation length for the high density phase of Bernoulli percolation, Annals of Probability 17 (1989), 1277-1302.
74. Chayes, J.T., Chayes, L., Newman, C.M. Bernoulli percolation above threshold: an invasion percolation analysis, Annals of Probability 15 (1987), 1272-1287.
75. Chayes, L., Lei, H.K. Cardy's formula for certain models of the bond-triangular type, Reviews in Mathematical Physics 19 (2007), 511-565.
76. Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S. Convergence of Ising interfaces to Schramm's SLE curves, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathematique 352 (2014), 157-161.
77. Chelkak, D., Smirnov, S. Universality in the 2D Ising model and conformal invariance of fermionic observables, Inventiones Mathematicae 189 (2012), 515-580.
78. Clifford, P. Markov random fields in statistics, in Disorder in Physical Systems (G., R. Grimmett D.J., A. Welsh, eds), Oxford University Press, Oxford, 1990, pp. 19-32.
79. Crawford, N., Ioffe, D. Random current representation for transverse field Ising model, Communications in Mathematical Physics 296 (2010), 447-474.
80. Damron, M., Hanson, J., Sosoe, P. Sublinear variance in first-passage percolation for general distributions, Probability Theory and Related Fields 163 (2015), 223-258.
81. Dobrushin, R.L. Gibbs state describing coexistence of phases for a three-dimensional Ising model, Theory of Probability and its Applications 18 (1972), 582-600.
82. Doeblin, W. Exposé de la théorie des chaï'nes simples constantes de Markoff á un nombre fini d'etats, Revue Mathématique de V Union Interbalkanique 2 (1938), 77- 105.
83. Doyle, P.G., Snell, J.L. Random Walks and Electric Networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984.
84. Dudley, R.M. Real Analysis and Probability, Wadsworth, Brooks & Cole, Pacific Grove CA, 1989.
85. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V. Discontinuity of the phase transition for the planar random-cluster and Potts models with q > 4, arXiv:1611.09877 (2016).
86. Duminil-Copin, H., Manolescu, I. The phase transitions of the planar random-cluster and Potts models with q > 1 are sharp, Probability Theory and Related Fields 164 (2016), 865-892.
87. Duminil-Copin, H., Raoufi, A., Tassion, V. Sharp phase transition for the random-cluster and Potts models via decision trees, arXiv: 1705.03104 (2017).
88. Duminil-Copin, H., Raoufi, A., Tassion, V. Exponential decay of connection probabilities for subcritical Voronoi percolation in Rd, arXiv: 1705.07978 (2017).
89. Duminil-Copin, H., Sidoravicius, V., Tassion, V. Continuity of the phase transition for planar random-cluster and Potts models with 1 < q < 4, Communications in Mathematical Physics 349 (2017), 47-107.
90. Duminil-Copin, H., Smirnov, S. The connective constant of the honeycomb lattice equals 2 + V2, Annals of Mathematics 175 (2012), 1653-1665.
91. Duminil-Copin, H., Smirnov, S. Conformal invariance of lattice models, in Probability and Statistical Physics in Two and More Dimensions (D., Ellwood, C., Newman, V., Sidoravicius, W., Werner, eds), Clay Mathematics Proceedings, vol. 15, American Mathematical Society, Providence, RI, 2012, pp. 213-276.
92. Duminil-Copin, H., Tassion, V. A new proof of the sharpness of the phase transition for Bernoulli percolation on Zd, L'Enseignement Mathematique 62 (2016), 199-206.
93. Duminil-Copin, H., Tassion, V. A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Communications in Mathematical Physics 343 (2016), 725-745.
94. Duplantier, B. Brownian motion, “diverse and undulating”, in Einstein, 1905-2005, Poincaré Seminar 1 (2005) (T., Damour, O., Darrigol, B., Duplantier, V., Rivasseau, eds), Progress in Mathematical Physics, vol. 47, Birkhauser, Boston, 2006, pp. 201-293.
95. Durrett, R.T. On the growth of one-dimensional contact processes, Annals of Probability 8 (1980), 890-907.
96. Durrett, R.T. Oriented percolation in two dimensions, Annals of Probability 12 (1984), 999-1040.
97. Durrett, R.T. The contact process, 1974-1989, in Mathematics of Random Media (W., E. Kohler, B. S., White, eds), American Mathematical Society, Providence, RI, 1992, pp. 1-18.
98. Durrett, R.T. Random Graph Dynamics, Cambridge University Press, Cambridge, 2007.
99. Durrett, R., Schonmann, R.H. Stochastic growth models, in Percolation Theory and Ergodic Theory of Infinite Particle Systems (H., Kesten, ed.), Springer, New York, 1987, pp. 85- 119.
100. Ehrenfest, P. Collected Scientific Papers (M. J., Klein, ed.), North-Holland, Amsterdam, 1959.
101. Erdős, P., Rényi, A. The evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17-61.
102. Ethier, S., Kurtz, T. Markov Processes: Characterization and Convergence, Wiley, New York, 1986.
103. Falik, D., Samorodnitsky, A. Edge-isoperimetric inequalities and influences, Combinatorics, Probability, Computing 16 (2007), 693-712.
104. Feder, T., Mihail, M. Balanced matroids, in Proceedings of the 24th ACM Symposium on the Theory of Computing, ACM, New York, 1992, pp. 26-38.
105. Ferrari, P.L., Spohn, H. Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process, Communications in Mathematical Physics 265 (2006), 1-44.
106. Fisher, M.E. On the dimer solution of planar Ising models, Journal of Mathematical Physics 7 (1966,), 1776-1781.
107. Fitzner, R., van der Hofstad, R. Mean-field behavior for nearest-neighbor percolation in d > 10, Electronic Journal of Probability 22 (2017), Paper 43.
108. Fortuin, C.M. On the random-cluster model, Ph D. thesis, University of Leiden (1971).
109. Fortuin, C.M. On the random-cluster model. II., The percolation model, Physica 58 (1972), 393-418.
110. Fortuin, C.M. On the random-cluster model. III., The simple random-cluster process, Physica 59 (1972), 545-570.
111. Fortuin, C.M., Kasteleyn, P.W. On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), 536-564.
112. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J. Correlation inequalities on some partially ordered sets, Communications in Mathematical Physics 22 (1971), 89-103.
113. Friedgut, E. Influences in product spaces: KKL and BKKKL revisited, Combinatorics, Probability, Computing 13 (2004), 17-29.
114. Friedgut, E., Kalai, G. Every monotone graph property has a sharp threshold, Proceedings of the American Mathematical Society 124 (1996), 2993-3002.
115. Georgii, H.-O. Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, 1988.
116. Gibbs, J.W. Elementary Principles in Statistical Mechanics, Charles Scribner's Sons, New York, 1902; http://www.archive.org/details/elementary princi00gibbrich.
117. Gilbert, E.N. Random graphs, Annals of Mathematical Statistics 30 (1959), 1141-1144.
118. Ginibre, J. Reduced density matrices of the anisotropic Heisenberg model, Communications in Mathematical Physics 10 (1968), 140-154.
119. Glauber, R.J. Time-dependent statistics of the Ising model, Journal of Mathematical Physics 4 (1963), 294-307.
120. Gowers, W.T. How to lose your fear of tensor products, (2001); http: //www. dpmms. cam. ac . uk/∼wtglO/tensors3.html.
121. Graham, B.T., Grimmett, G.R. Influence and sharp-threshold theorems for monotonic measures, Annals of Probability 34 (2006), 1726-1745.
122. Graham, B.T., Grimmett, G.R. Sharp thresholds for the random-cluster and Ising models, Annals of Applied Probability 21 (2011), 240-265.
123. Grassberger, P., Torre de la, A. Reggeon field theory (Schögl's first model) on a lattice: Monte Carlo calculations of critical behaviour, Annals of Physics 122 (1979), 373-396.
124. Grimmett, G.R. A theorem about random fields, Bulletin of the London Mathematical Society 5 (1973), 81-84.
125. Grimmett, G.R. The stochastic random-cluster process and the uniqueness of random- cluster measures, Annals of Probability 23 (1995), 1461-1510.
126. Grimmett, G.R. Percolation and disordered systems, in Ecole d'Eté de Probabilité's de Saint Flour XXVI-1996 (P., Bernard, ed.), Lecture Notes in Mathematics, vol. 1665, Springer, Berlin, 1997, pp. 153-300.
127. Grimmett, G.R. Percolation, 2nd edition, Springer, Berlin, 1999.
128. Grimmett, G.R. Stochastic pin-ball, in Random Walks and Discrete Potential Theory (M., Picardello, W., Woess, eds), Cambridge University Press, Cambridge, 1999.
129. Grimmett, G.R. Infinite paths in randomly oriented lattices, Random Structures and Algorithms 18 (2001), 257-266.
130. Grimmett, G.R. The Random-Cluster Model, corrected reprint (2009), Springer, Berlin, 2006; http: //www. statslab. cam. ac . uk/∼grg/books/rcm. html.
131. Grimmett, G.R. Space-time percolation, in In and Out of Equilibrium 2 (V., Sidoravicius M.E., Vares, eds), Progress in Probability, vol. 60, Birkhauser, Boston, 2008, pp. 305-320.
132. Grimmett, G.R. Three problems for the clairvoyant demon, in Probability and Mathematical Genetics (N., H. Bingham C.M., Goldie, eds), Cambridge University Press, Cambridge, 2010, pp. 379-395.
133. Grimmett, G.R. Three problems in discrete random geometry, Probability Surveys 8 (2011), 403-441.
134. Grimmett, G.R. Criticality, universality, and isoradiality, in Proceedings of the 2014 International Congress of Mathematicians, Seoul (S., Y. Jang Y.R., Kim D.-W., Lee, I., Yie, eds), vol. IV, Kyung Moon, Seoul, 2014, pp. 25-48.
135. Grimmett, G.R., Hiemer, P. Directed percolation and random walk, in In and Out of Equilibrium (V., Sidoravicius, ed.), Progress in Probability, vol. 51, Birkhauser, Boston, 2002, pp. 273-297.
136. Grimmett, G.R., Janson, S. Random even graphs, Paper R46, Electronic Journal of Combinatorics 16 (2009).
137. Grimmett, G.R., Janson, S., Norris, J.R. Influence in product spaces, Advances in Applied Probability 48A (2016), 145-152.
138. Grimmett, G.R., Kesten, H., Zhang, Y. Random walk on the infinite cluster of the percolation model, Probability Theory and Related Fields 96 (1993), 33-44.
139. Grimmett, G.R., Li, Z. Self-avoiding walks and the Fisher transformation, Electronic Journal of Combinatorics 20 (2013), Paper P47, 14 pp.
140. Grimmett, G.R., Li, Z. Self-avoiding walks and connective constants, arXiv: 1704.15884 (2017).
141. Grimmett, G.R., Manolescu, I. Bond percolation on isoradial graphs: criticality and universality, Probability Theory and Related Fields 159 (2013), 273-327.
142. Grimmett, G.R., Marstrand, J.M. The supercritical phase of percolation is well behaved, Proceedings of the Royal Society (London), Series A 430 (1990), 439-457.
143. Grimmett, G.R., McDiarmid, C.J.H. On colouring random graphs, Mathematical Proceedings of the Cambridge Philosophical Society 77 (1975), 313-324.
144. Grimmett, G.R., Menshikov, M.V., Volkov, S.E. Random walks in random labyrinths, Markov Processes and Related Fields 2 (1996), 69-86.
145. Grimmett, G.R., Osborne, T.J., Scudo, P.F. Entanglement in the quantum Ising model, Journal of Statistical Physics 131(2008), 305-339.
146. Grimmett, G.R., Piza, M.S. Decay of correlations in subcritical Potts and random-cluster models, Communications in Mathematical Physics 189 (1997), 465-480.
147. Grimmett, G.R., Stacey, A.M. Critical probabilities for site and bond percolation models, Annals of Probability 26 (1998), 1788-1812.
148. Grimmett, G.R., Stirzaker, D.R. Probability and Random Processes, 3rdedn, Oxford University Press, 2001.
149. Grimmett, G.R., Welsh, D.J.A. John Michael Hammersley (1920-2004), Biographical Memoirs of Fellows of the Royal Society 53 (2007), 163-183.
150. Grimmett, G.R., Welsh, D.J.A. Probability, an Introduction, 2nd edn, Oxford University Press, Oxford, 2014.
151. Grimmett, G.R., Winkler, S.N. Negative association in uniform forests and connected graphs, Random Structures and Algorithms 24 (2004), 444-460.
152. Gross, L. Logarithmic Sobolev inequalities, American Journal of Mathematics 97 (1975), 1061-1083.
153. Halmos, P.R. Measure Theory, Springer, Berlin, 1974.
154. Halmos, P.R. Finite-Dimensional Vector Spaces, 2nd edn, Springer, New York, 1987.
155. Hammersley, J.M. Percolation processes. Lower bounds for the critical probability, Annals of Mathematical Statistics 28 (1957), 790-795.
156. Hammersley, J.M. Percolation processes II., The connective constant, Proceedings of the Cambridge Philosophical Society 53 (1957), 642-645.
157. Hammersley, J.M., Clifford, P. Markov fields on finite graphs and lattices, unpublished (1971); http:// www. stat slab. cam.ac . uk/∼grg/books/hammf est/hamm- cliff . pdf.
158. Hammersley, J.M., Morton, W. Poor man's Monte Carlo, Journal of the Royal Statistical Society B 16 (1954), 23-38.
159. Hammersley, J.M., Welsh, D.J.A. Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quarterly Journal of Mathematics. Oxford. Second Series 13 (1962), 108-110.
160. Hammersley, J.M., Welsh, D.J.A. First-passage percolation, subadditive processes, stochastic networks and generalized renewal theory, in Bernoulli, Bayes, Laplace Anniversary Volume (J., Neyman, L., LeCam, eds), Springer, Berlin, 1965, pp. 61-110.
161. Hara, T., Slade, G. Mean-field critical behaviour for percolation in high dimensions, Communications in Mathematical Physics 128 (1990), 333-391.
162. Hara, T., Slade, G. Mean-field behaviour and the lace expansion, in Probability and Phase Transition (G. R., Grimmett, ed.), Kluwer, Dordrecht, 1994, pp. 87-122.
163. Harris, M. Nontrivial phase transition in a continuum mirror model, Journal of Theoretical Probability 14 (2001), 299-317.
164. Harris, T.E. A lower bound for the critical probability in a certain percolation process, Proceedings of the Cambridge Philosophical Society 56 (1960), 13-20.
165. Harris, T.E. Contact interactions on a lattice, Annals of Probability 2 (1974), 969-988.
166. Higuchi, Y. A sharp transition for the two-dimensional Ising percolation, Probability Theory and Related Fields 97 (1993), 489-514.
167. Hintermann, A., Kunz, H., Wu, F.Y. Exact results for the Potts model in two dimensions, Journal of Statistical Physics 19 (1978), 623-632.
168. Hoeffding, W. Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963), 13-30.
169. Hofstad van der, R. Random Graphs and Complex Networks, Cambridge University Press, Cambridge, 2016.
170. Holley, R. Remarks on the FKG inequalities, Communications in Mathematical Physics 36 (1974), 227-231.
171. Hughes, B.D. Random Walks and Random Environments, Volume I, Random Walks, Oxford University Press, Oxford, 1996.
172. Hutchcroft, T., Peres, Y. The component graph of the uniform spanning forest: transitions in dimensions 9, 10, 11,…, arXiv: 1702:05780 (2017).
173. Ising, E. Beitrag zur Theorie des Ferromagnetismus, ZeitschriftfiirPhysik 31 (1925), 253-258.
174. Janson, S. Graphons, Cut Norm and Distance, Couplings and Rearrangements, New York Journal of Mathematics Monographs, http: //ny jm. albany. edu/m/, vol. 4, 2013.
175. Janson, S., Knuth, D., & Luczak, T., Pittel, B. The birth of the giant component, Random Structures and Algorithms 4 (1993), 233-358.
176. Janson, S., & Luczak, T., Ruciński, A. Random Graphs, Wiley, New York, 2000.
177. Jensen, I., Guttmann, A.J. Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices, Journal of Physics A: Mathematical and General 31 (1998), 8137- 8145.
178. Jössang, P., Jössang, A. Monsieur, C.S. M., Pouillet, de l'Académie, qui découvritlepoint “de Curie“ en … 1832, http://www.tribunes.com/tribune/art97/jos2f.htm, Science Tribune (1997).
179. Kahn, J., Kalai, G., Linial, N. The influence of variables on Boolean functions, in Proceedings of the 29th Symposium on the Foundations of Computer Science, Computer Science Press, 1988, pp. 68-80.
180. Kahn, J., Neiman, M. Negative correlation and log-concavity, Random Structures and Algorithms 37 (2010), 367-388.
181. Kalai, G., Safra, S. Threshold phenomena and influence, in Computational Complexity and Statistical Physics (A.G. Percus, G., Istrate, C., Moore, eds), Oxford University Press, New York, 2006.
182. Kasteleyn, P.W., Fortuin, C.M. Phase transitions in lattice systems with random local properties, Journal of the Physical Society of Japan 26 (1969), 11-14. Supplement.
183. Keane, M. Interval exchange transformations, Mathematische Zeitschrift 141 (1975), 25-31.
184. Keller, N. On the influences of variables on Boolean functions in product spaces, Combinatorics, Probability, Computing 20 (2011), 83-102.
185. Kennelly, A.E. Equivalence of triangles and three-pointed stars in conducting networks, Electrical World and Engineer 34 (1899), 413-414.
186. Kesten, H. The critical probability of bond percolation on the square lattice equals j, Communications in Mathematical Physics 74 (1980a), 41-59.
187. Kesten, H. Percolation Theory for Mathematicians, Birkhauser, Boston, 1982.
188. Kirchhoff, G. Uber die Aufiosung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Strome gefuhrt wird, Annalen der Physik und Chemie 72 (1847), 497-508.
189. Klein, A. Extinction of contact and percolation processes in a random environment, Annals of Probability 22 (1994), 1227-1251.
190. Klein, A. Multiscale analysis in disordered systems: percolation and contact process in random environment, in Disorder in Physical Systems (G., R. Grimmett, ed.), Kluwer, Dordrecht, 1994, pp. 139-152.
191. Kotecký, R., Shlosman, S. First order phase transitions in large entropy lattice systems, Communications in Mathematical Physics 83 (1982), 493-515.
192. Kozdron, M., Richards, L.M., Stroock, D.W. Determinants, their applications to Markov processes, and a random walk proof of Kirchhoff s matrix tree theorem, arXiv: 1306.2059 (2013).
193. Laanait, L., Messager, A., Miracle-Solé, S., Ruiz, J., Shlosman, S. Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin- Kasteleyn representation, Communications in Mathematical Physics 140 (1991), 81-91.
194. Laanait, L., Messager, A., Ruiz, J. Phase coexistence and surface tensions for the Potts model, Communications in Mathematical Physics 105 (1986), 527-545.
195. Langlands, R., Pouliot, P., Saint-Aubin, Y. Conformal invariance in two-dimensional percolation, Bulletin of the American Mathematical Society 30 (1994), 1-61.
196. Lauritzen, S. Graphical Models, Oxford University Press, Oxford, 1996.
197. Lawler, G. Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, RI, 2005.
198. Lawler, G. Scaling limits and the Schramm-Loewner evolution, Probability Surveys 8 (2011), 442-495.
199. Lawler, G.F., Limic, V. Random Walk: A Modern Introduction, Cambridge University Press, Cambridge, 2010.
200. Lawler, G.F., Schramm, O., Werner, W. The dimension of the planar Brownian frontier is 4/3, Mathematics Research Letters 8 (2001), 401-411.
201. Lawler, G.F., Schramm, O., Werner, W. Values of Brownian intersection exponents III: two-sided exponents, Annales de l'Institut Henri Poincaré, Probabilité's et Statistiques 38 (2002), 109-123.
202. Lawler, G.F., Schramm, O., Werner, W. One-arm exponent for critical 2D percolation, Electronic Journal of Probability 7 (2002), Paper 2.
203. Lawler, G.F., Schramm, O., Werner, W. Conformal invariance of planar loop-erased random walks and uniform spanning trees, Annals of Probability 32 (2004), 939-995.
204. Levin, D.A., Peres, Y., Wilmer, E.L. Markov Chains and Mixing Times, AMS, Providence, RI, 2009.
205. Lieb, E., Schultz, T., Mattis, D. Two soluble models of an antiferromagnetic chaïn, Annals of Physics 16 (1961), 407-466.
206. Liggett, T.M. Interacting Particle Systems, Springer, Berlin, 1985.
207. Liggett, T.M. Multiple transition points for the contact process on the binary tree, Annals of Probability 24 (1996), 1675-1710.
208. Liggett, T.M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, Berlin, 1999.
209. Liggett, T.M. Interacting particle systems - an introduction, in ICTP Lecture Notes Series, vol. 17, 2004; http://publications.ictp.it/lns/vol17/vol17 toc. html.
210. Lima, B.N.B. A note about the truncation question in percolation of words, Bulletin of the Brazilian Mathematical Society 39 (2008), 183-189.
211. Lima, B.N., Sanchis, R., Silva, R.W.C. Percolation of words on Zd with long range connections, Journal of Applied Probability 48 (2011), 1152-1162.
212. Lindvall, T. Lectures on the Coupling Method, Wiley, New York, 1992.
213. Linusson, S. On percolation and the bunkbed conjecture, Combinatorics, Probability, Computing 20 (2011), 103-117.
214. Linusson, S. A note on correlations in randomly oriented graphs, arXiv:0905.2881 (2009).
215. Lorentz, H.A. The motion of electrons in metallic bodies, I, II, III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences 7 (1905), 438-453. 585-593. 684-691.
216. Löwner, K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Mathematische Annalen 89 (1923), 103-121.
217. Lubetzky, E., Sly, A. Critical Ising on the square lattice mixes in polynomial time, Communications in Mathematical Physics 313 (2012), 815-836.
218. Lubetzky, E., Sly, A. Cutoff for the Ising model on the lattice, Inventiones Mathematicae 191 (2013),719-755.
219. Lubetzky, E., Sly, A. Information percolation and cutoff for the stochastic Ising model, Journal of the American Mathematical Society 29 (2016), 729-77.4.
220. Lyons, R. Phase transitions on nonamenable graphs, Journal of Mathematical Physics 41(2001), 1099-1126.
221. Lyons, R., Peres, Y. Probability on Trees and Networks, Cambridge University Press, (2016), http: //mypage . iu. edu/∼rdlyons/prbtree/prbtree . html.
222. Lyons, T.J. A simple criterion for transience of a reversible Markov chaïn, Annals of Probability 11 (1983), 393-402.
223. Madras, N., Slade, G. The Self-Avoiding Walk, Birkhäuser, Boston, 1993.
224. Margulis, G. Probabilistic characteristics of graphs with large connectivity, Problemy Peredachi Informatsii (in Russian) 10 (1974), 101-108.
225. Martinelli, F. Lectures on Glauber dynamics for discrete spin models, in Ecole d'Eté de Probabilité de Saint Flour XXVII-1997 (P., Bernard, ed.), Lecture Notes in Mathematics, vol. 1717, Springer, Berlin, pp. 93-191.
226. McDiarmid, C.J.H. On the method of bounded differences, in Surveys in Combinatorics, 1989 (J., Siemons, ed.), LMS Lecture Notes Series 141, Cambridge University Press, Cambridge, 1989.
227. McDiarmid, C.J.H. On the chromatic number of random graphs, Random Structures and Algorithms 1 (1990), 435-442.
228. Meester, R., Roy, R. Continuum Percolation, Cambridge University Press, Cambridge, 1996.
229. Menshikov, M.V. Critical points in the mathematical theory of percolation, Doctoral Dissertation, University of Moscow (1987).
230. Menshikov, M.V. Coincidence of critical points in percolation problems, Soviet Mathematics Doklady 33 (1987), 856-859.
231. Menshikov, M.V., Molchanov, S.A., Sidorenko, A.F. Percolation theory and some applications, Itogi Nauki i Techniki (Series of Probability Theory, Mathematical Statistics, Theoretical Cybernetics) 24 (1986),53-110.
232. Moussouris, J. Gibbs and Markov random fields with constraints, Journal of Statistical Physics 10(1974), 11-33.
233. Nachtergaele, B. A stochastic geometric approach to quantum spin systems, in Probability and Phase Transition (G., R. Grimmett, ed.), Kluwer, Dordrecht, 1994, pp. 237-246.
234. Nienhuis, B. Exact critical point and exponents of O(n) models in two dimensions, Physical Review Letters 49 (1982), 1062-1065.
235. Onsager, L. Crystal statistics I, A two-dimensional model with an order-disorder transition, The Physical Review 65 (1944), 117-149.
236. Peierls, R. On Ising's model of ferromagnetism, Proceedings of the Cambridge Philosophical Society 36 (1936), 477-481.
237. Pemantle, R. Choosing a spanning tree for the infinite lattice uniformly, Annals of Probability 19 (1991), 1559-1574.
238. Pemantle, R. The contact process on trees, Annals of Probability 20 (1992), 2089-2116.
239. Pemantle, R. Uniform random spanning trees, in Topics in Contemporary Probability and its Applications (J., L. Snell, ed.), CRC Press, Boca Raton, 1994, pp. 1-54.
240. Pemantle, R. Towards a theory of negative dependence, Journal of Mathematical Physics 41 (2000), 1371-1390.
241. Petersen, K. Ergodic Theory, Cambridge University Press, Cambridge, 1983.
242. Pólya, G. Über eine Aufgabe betreffend die Irrfahrt im Strassennetz, Mathematische Annalen 84 (1921), 149-160.
243. Pólya, G. Two incidents, in Collected Papers (G., Pólya G.-C., Rota, eds), vol. IV, The MIT Press, Cambridge, Massachusetts, 1984, pp. 582-585.
244. Potts, R.B. Some generalized order-disorder transformations, Proceedings of the Cambridge Philosophical Society 48 (1952), 106-109.
245. Propp, D., Wilson, D.B. How to get a perfectly random sample from a generic Markov chaïn and generate a random spanning tree of a directed graph, Journal of Algebra 27 (1998), 170-217.
246. Quas, A. Infinite paths in a Lorentz lattice gas model, Probability Theory and Related Fields 114(1999), 229-244.
247. Ráth, B. Conformal invariance of critical percolation on the triangular lattice, Diploma thesis, http://www.math.bme.hu/∼rathb/rbperko.pdf (2005).
248. Reimer, D. Proof of the van den Berg-Kesten conjecture, Combinatorics, Probability, Computing 9 (2000), 27-32.
249. Rohde, S., Schramm, O. Basic properties of SLE, Annals of Mathematics 161 (2005), 879-920.
250. Rossignol, R. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality, Annals of Probability 34 (2005), 1707-1725.
251. Rossignol, R. Threshold phenomena on product spaces: BKKKL revisited (once more), Electronic Communications in Probability 13 (2008), 35-44.
252. Rudin, W. Real and Complex Analysis, 3rd edn, McGraw-Hill, New York, 1986.
253. Rudolph, D.J. Fundamentals of Measurable Dynamics, Clarendon Press, Oxford, 1990.
254. Russo, L. A note on percolation, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 43 (1978), 39-48.
255. Russo, L. On the critical percolation probabilities, Zeitschriftfilr Wahrscheinlichkeitstheorie und Verwandte Gebiete 56 (1981), 229-237.
256. Russo, L. An approximate zero-one law, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 61 (1982), 129-139.
257. Schonmann, R.H. Metastability and the Ising model, Documenta Mathematica, Extra volume (Proceedings of the 1998 ICM) III (1998), 173-181.
258. Schramm, O. Scaling limits of loop-erased walks and uniform spanning trees, Israel Journal of Mathematics 118 (2000), 221-288.
259. Schramm, O. Conformally invariant scaling limits: an overview and collection of open problems, in Proceedings of the International Congress of Mathematicians, Madrid (M., Sanz-Sole et al., eds), vol. I, European Mathematical Society, Zurich, 2007, pp. 513-544.
260. Schramm, O., Sheffield, S. Harmonic explorer and its convergence to SLE4 , Annals of Probability 33 (2005), 2127-2148.
261. Schramm, O., Sheffield, S. Contour lines of the two-dimensional discrete Gaussian free field, Acta Mathematica 202 (2009), 21-137.
262. Schulman, L.S. Techniques and Applications of Path Integration, Wiley, New York, 1981.
263. Seppalainen, T. Entropy for translation-invariant random-cluster measures, Annals of Probability 26 (1998), 1139-1178.
264. Seymour, P.D., Welsh, D.J.A. Percolation probabilities on the square lattice, in Advances in Graph Theory (B., Bollobás, ed.), Annals of Discrete Mathematics 3, North-Holland, Amsterdam, 1978, pp. 227-245.
265. Slade, G. The Lace Expansion and its Applications, Lectures from the 34th Summer School on Probability Theory, Lecture Notes in Mathematics, vol. 1879 (J., Picard, ed.), Springer, Berlin, 2006.
266. Smirnov, S. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, Comptes Rendus des Seances de l'Academie des Sciences. Serie I, Mathematique 333 (2001), 239-244.
267. Smirnov, S. Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit, arXiv:0909.4499 (2001).
268. Smirnov, S. Towards conformal invariance of 2D lattice models, in Proceedings of the International Congress of Mathematicians, Madrid, 2006 (M., Sanz-Sole et al., eds), vol. II, European Mathematical Society, Zurich, 2007, pp. 1421— 1452.
269. Smirnov, S. Conformal invariance in random cluster models. I, Holomorphic fermions in the Ising model, Annals of Mathematics 172 (2010), 1435-1467.
270. Smirnov, S., Werner, W. Critical exponents for two-dimensional percolation, Mathematics Research Letters 8 (2001), 729-744.
271. Strassen, V. The existence of probability measures with given marginals, Annals of Mathematical Statistics 36 (1965), 423-439.
272. Sun, N. Conformally invariant scaling limits in planar critical percolation, Probability Surveys 8 (2011), 155-209.
273. Swendsen, R.H., Wang, J.S. Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58 (1987), 86-88.
274. Szasz, D. Hard Ball Systems and the Lorentz Gas, Encyclopaedia of Mathematical Sciences, vol. 101, Springer, Berlin, 2000.
275. Talagrand, M. Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem, Geometric and Functional Analysis 3(1993), 295-314.
276. Talagrand, M. On Russo's approximate zero-one law, Annals of Probability 22 (1994), 1576-1587.
277. Talagrand, M. On boundaries and influences, Combinatorica 17 (1997), 275-285.
278. Talagrand, M. On influence and concentration, Israel Journal of Mathematics 111 (1999), 275-284.
279. Toth, B. Persistent random walks in random environment, Probability Theory and Related Fields 71 (1986), 615-625.
280. Welsh, D.J.A. Percolation in the random-cluster process, Journal of Physics A: Mathematical and General 26 (1993), 2471-2483.
281. Werner, W. Random planar curves and Schramm-Loewner evolutions, in Ecole d'Eté de Probability de Saint Flour XXXII-2002 (J., Picard, ed.), Springer, Berlin, 2004, pp. 107-195.
282. Werner, W. Lectures on two-dimensional critical percolation, in Statistical Mechanics (S., Sheffield, T., Spencer, eds), IAS/Park City Mathematics Series, Vol. 16, AMS, Providence, RI, 2009, pp. 297-360.
283. Werner, W. Percolation et Modéle d'Ising, Cours Spécialisés, vol. 16, Société Math-ématique de France, 2009.
284. Wierman, J.C. Bond percolation on the honeycomb and triangular lattices, Advances in Applied Probability 13 (1981), 298-313.
285. Williams, G.T., Bjerknes, R. Stochastic model for abnormal clone spread through epithelial basal layer, Nature 236 (1972), 19-21.
286. Wilson, D.B. Generating random spanning trees more quickly than the cover time, in Proceedings of the 28th ACM on the Theory of Computing, ACM, New York, 1996, pp. 296-303.
287. Wood, De Volson Problem 5, American Mathematical Monthly 1 (1894), 99, 211-212.
288. Wu, F.Y. The Potts model, Reviews in Modern Physics 54 (1982), 235-268.
289. Wulff, G. Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Krystallflächen, Zeitschrift für Krystallographie und Mineralogie 34 (1901), 449-530

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 644 *
Loading metrics...

Book summary page views

Total views: 3147 *
Loading metrics...

* Views captured on Cambridge Core between 12th January 2018 - 21st April 2018. This data will be updated every 24 hours.