Metrics
Full text views
Full text views help
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
'Quantum Engineering' covers the theory, design, fabrication and applications of quantum coherent solid-state structures. This updated and expanded second edition provides a self-contained presentation of the theoretical methods and experimental results in both first and second waves of quantum technology innovation. Topics span the quantum theory of electric circuits, theoretical methods of quantum optics in application to solid-state circuits, the quantum theory of noise, decoherence and measurements, Landauer formalism for quantum transport, the physics of weak superconductivity and the physics of two-dimensional electron gas in semiconductor heterostructures. The author introduces microscopic ion- and defect-based qubits, currently among the most successful platforms for quantum computation and quantum sensing. Reflecting the significant progress of quantum hardware, state-of-the-art implementations such as quantum metamaterials and quantum reservoir computing are also added to the discussion. Written for graduate students in physics, this book also serves electronic engineers working in quantum engineering.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.