In many areas of mathematics, science and engineering, from computer graphics to inverse methods to signal processing, it is necessary to estimate parameters, usually multidimensional, by approximation and interpolation. Radial basis functions are a powerful tool which work well in very general circumstances and so are becoming of widespread use as the limitations of other methods, such as least squares, polynomial interpolation or wavelet-based, become apparent. The author's aim is to give a thorough treatment from both the theoretical and practical implementation viewpoints. For example, he emphasises the many positive features of radial basis functions such as the unique solvability of the interpolation problem, the computation of interpolants, their smoothness and convergence and provides a careful classification of the radial basis functions into types that have different convergence. A comprehensive bibliography rounds off what will prove a very valuable work.
"A must read for anyone making direct use of this tool, and a must browse for anyone interested in keeping up with the state of the art in multivariate approximation theory in general." Computing Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.