Networks surround us, from social networks to protein–protein interaction networks within the cells of our bodies. The theory of random graphs provides a necessary framework for understanding their structure and development. This text provides an accessible introduction to this rapidly expanding subject. It covers all the basic features of random graphs – component structure, matchings and Hamilton cycles, connectivity and chromatic number – before discussing models of real-world networks, including intersection graphs, preferential attachment graphs and small-world models. Based on the authors' own teaching experience, it can be used as a textbook for a one-semester course on random graphs and networks at advanced undergraduate or graduate level. The text includes numerous exercises, with a particular focus on developing students' skills in asymptotic analysis. More challenging problems are accompanied by hints or suggestions for further reading.
‘Random Graphs and Networks: A First Course’ is a wonderful textbook that covers a remarkable set of topics written by two leading experts in the field. The textbook is comprehensive and contains a wealth of theoretical preliminaries, exercises and problems, making it ideal for an introductory course or for self-study. It is the best starting point in the present textbook market for any university student interested in the foundations of network science.’
Charalampos E. Tsourakakis - Boston University
'This is a very concise, highly informative introduction to the theory of random graphs and networks ... Essential.'
M. Bona Source: Choice
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.