Random matrices arise from, and have important applications to, number theory, probability, combinatorics, representation theory, quantum mechanics, solid state physics, quantum field theory, quantum gravity, and many other areas of physics and mathematics. This 2001 volume of surveys and research results, based largely on lectures given at the Spring 1999 MSRI program of the same name, covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its stress on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.