Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
February 2021
Print publication year:
2021
Online ISBN:
9781108870962

Book description

Paleosols formed in direct contact with the Earth's atmosphere, so they can record the composition of the atmosphere through weathering processes and products. Herein we critically review a variety of different approaches for reconstructing atmospheric O2 and CO2 over the past three billion years. Paleosols indicate relatively low CO2 over that time, requiring additional greenhouse forcing to overcome the 'faint young Sun' paradox in the Archean and Mesoproterozoic, as well as low O2 levels until the Neoproterozoic. Emerging techniques will revise the history of Earth's atmosphere further and may provide a window into atmospheric evolution on other planets.

References

Key References (10 important papers)

Crowe, S. A., Dossing, L. N., Beukes, N. J., et al., 2013. Atmospheric oxygenation three billion years ago. Nature 501, 535538.
Kanzaki, Y., Murakami, T., 2015. Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochimica et Cosmochimica Acta 159, 190219.
Maynard, J. B., 1992. Chemistry of modern soils and a guide to interpreting Precambrian paleosols. The Journal of Geology 100, 279289.
Ohmoto, H., 1996. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24, 11351138.
Retallack, G. J., 1991. Untangling the effects of burial alteration and ancient soil formation. Annual Reviews of Earth and Planetary Sciences 19, 183206.
Retallack, G. J., 1992. How to find a Precambrian paleosol, in Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., Trudinger, P. A. (eds.), Early Organic Evolution and Mineral and Energy Resources. Berlin: Springer, pp. 1630.
Rye, R., Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. American Journal of Science 298, 621672.
Rye, R., Kuo, P. H., Holland, H. D., 1995. Atmospheric carbon dioxide levels before 2.2 billion years ago. Nature 378, 603605.
Sheldon, N. D., 2006. Precambrian paleosols and atmospheric CO2 levels. Precambrian Research 147, 148155.
Sheldon, N. D., Tabor, N. J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews 95, 152.

Additional References

Alfimova, N. A., Novoselov, A. A., Matrenichev, V. A., de Souza Filho, C. R., 2014. Conditions of subaerial weathering of basalts in the Neoarchean and Paleoproterozoic. Precambrian Research 2014, 116.
Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A whiff of oxygen before the great oxidation event? Science 317, 19031906.
Babechuk, M. G., Kleinhanns, I.C., Schoenberg, R., 2017. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosols. Geobiology 15, 3050.
Babechuk, M. G., Weimar, N., Kleinhanns, I. C., et al., 2019. Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol. Precambrian Research 323, 126163.
Bekker, A., Holland, H. D., Wang, P.-L., et al., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117120.
Blake, R. E., Chang, S. J., Lepland, A., 2010. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 10291032.
Cloud, P. E., Jr., 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science 160, 729736.
Cerling, T. E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.
Colwyn, D. A., Sheldon, N. D., Maynard, J. B., et al., 2019. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology, doi: 10.1111/gbi.12360
Dimroth, E., Kimberley, M. M., 1976. Precambrian atmospheric oxygen: evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Canadian Journal of Earth Sciences 13, 11611185.
Driese, S. D., 2004. Pedogenic translocation of Fe in modern and ancient Vertisols and implications for interpretations of the Hekpoort paleosol (2.25 Ga). Journal of Geology 112, 543560.
Driese, S. G., Jirsa, M. A., Ren, M., et al., 2011. Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research 189, 117.
Driese, S. G., Medaris Jr., L. G., Ren, M., Runkel, A. C., Langford, R. P., 2007. Differentiating pedogenesis from diagenesis in early terrestrial weathering surfaces formed on granitic composition parent materials. Journal of Geology 115, 387406.
Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756758.
Farquhar, J., Wing, B. A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters 213, 113.
Fiorella, R. P., Sheldon, N. D., 2017. Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45, 231234.
Galili, N., Shemesh, A., Yam, R., et al., 2019. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365, 469473.
Gay, A. L., Grandstaff, D. E., 1980. Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Research 12, 349373.
Hessler, A. M., Lowe, D. R., Jones, R. L., Bird, D. K., 2004. A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736738.
Holland, H. D., 1999. When did the Earth’s atmosphere become oxic? A Reply. The Geochemical News 100, 2022
Holland, H. D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton, NJ: Princeton University Press.
Holland, H. D., Feakes, C. R., Zbinden, E. A., 1989. The Flin Flon paleosol and the composition of the atmosphere 1.8 bybp. American Journal of Science 289, 362389.
Holland, H. D., Zbinden, E. A., 1988. Paleosols and evolution of the atmosphere: part I, in Lerman, A., Meybeck, M. (eds.) Physical and Chemical Weathering in Geochemical Cycles. Dordecht: Reidel, pp. 6182.
Hren, M. T., Sheldon, N. D., 2020. Terrestrial microbialites provide constraints on the Mesoproterozoic atmosphere. The Depositional Record 6, 420. doi: 10.1002/dep2.79
Hren, M. T., Tice, M. M., Chamberlain, C. P., 2009. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205208.
Jacobson, A., Blum, J. D., Walter, L. M., 2002. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Earth and Planetary Science Letters 66, 34173429.
Kanzaki, Y., Murakami, T., 2018a. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation. Geochimica et Cosmochimica Acta 233, 159186.
Kanzaki, Y., Murakami, T., 2018b. Effects of atmospheric composition on apparent activation energy of silicate weathering: II. Implications for evolution of atmospheric CO2 in the Precambrian. Geochimica et Cosmochimica Acta 240, 314330.
Kasting, J. F., 1993. Earth’s early atmosphere. Science 259, 920926.
Kavanagh, L., Goldblatt, C., 2015. Using raindrops to constrain past atmospheric density. Earth and Planetary Science Letters 413, 5158.
Kenrick, P., Crane, P. R., 1997. The origin and early evolution of plants on land. Nature 389, 3339.
Laakso, T. A., Schrag, D. P., 2019. Methane in the Precambrian atmosphere. Earth and Planetary Science Letters 522, 4854.
Lalonde, S. V., Konhauser, K. O., 2015. Benthic perspective on Earth’s oldest evidence for oxygenic phtosynthesis. Proceedings of the National Academy of Sciences (USA) 112, 9951000.
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307315.
Maynard, J. B., Sutherland, S. J., RumbleIII, D., Bekker, A., 2013. Mass-independently fractionated sulfur in paleosols: a large reservoir of negative Δ33S. Chemical Geology 362, 7481.
Mitchell, R. L., Sheldon, N. D., 2010. The ~1100 Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels. Precambrian Research 183, 738748.
Mitchell, R. L., Sheldon, N. D., 2016. Sedimentary provenance and weathering processes in the 1.1 Ga Midcontinental Rift of the Keewenaw Peninsula, Michigan, USA. Precambrian Research 275, 225240.
Murakami, T., Matsuura, K., Kanzaki, Y., 2016. Behaviors of trace elements in Neoarchean and Paleoproterozoic paleosols: implications for atmospheric oxygen and continental oxidative weathering. Geochemica et Cosmochimica Acta 192, 203219.
Murakami, T., Sreenivas, B., Sharma, S. D., Sugimori, H., 2011. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochimica et Cosmochimica Acta 75, 39824004.
Ohmoto, H., 1997. When did the Earth’s atmosphere become oxic? The Geochemical News 93, 12–13, 2627.
Ohmoto, H., Watanabe, Y., Kumazawa, K., 2004. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billions years ago. Nature 429, 395399.
Olson, S. L., Reinhard, C. T., Lyons, T. W., 2016. Limited role for methane in the mid-Proterozoic greenhouse. Proceedings of the National Academy of Science 113, 1144711552.
Payne, R. C., Brownlee, D., Kasting, J. F., 2020. Oxidized micrometeorites suggest either high pCO2 or low pN2 during the Neoarchean. Proceedings of the National Academy of Sciences 117, 13601366.
Pinto, J. P., Holland, H. D., 1988. Paleosols and the evolution of the atmosphere: part II, in, Reinhardt, J., Sigleo, W., (eds.) Paleosols and Weathering through Geologic Time. Geological Society of America Special Paper 216, pp.2134.
Planavsky, N. J., Cole, D. B., Isson, T. T., et al., 2018. A case for low oxygen during Earth’s middle history. Emerging Topics in Life Sciences 2, 149159.
Planavsky, N. J., Reinhard, C. T., Isson, T. T., Ozaki, K., Crockford, P. W., 2020. Oxygen isotope fractionations in Mid-Proterozoic sediments: evidence for a low-oxygen atmosphere? Astrobiology 20 (5), doi: http://doi.org/101.1089/ast.2019.2060
Poulsen, C. J., Tabor, C., White, J. D., 2015. Long-term climate forcing by atmospheric oxygen concentration. Science 348, 12381241.
Retallack, G. J., 2013. A short history and long future for paleopedology, in Driese, S. G., Nordt, L. (eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication 104, pp. 516.
Rybacki, K. S., Kump, L. R., Hanski, E. J., Melezhik, V. A., 2016. Weathering during the Great Oxidation Event: Fennoscandai, arctic Russia 2.06 Ga ago. Precambrian Research 275, 513525.
Sheldon, N. D., 2013. Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic. Chemical Geology 362, 224231.
Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M., Buick, R., 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484, 359362.
Utsunomiya, S., Murakami, T., Nakada, M., Kasama, T., 2003. Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics. Geochemica et Cosmochimica Acta 67, 213221.
Wei, W., Klaebe, R., Ling, H-F., Huang, F., Frei, R., 2020. Biogeochemical cycle of chromium isotopes at the modern Earth’s surface and its application as a paleo-environmental proxy. Chemical Geology 541, article 119570.
White, A. F., Brantley, S. L., 2003. The effect of time on the weathering rates of silicate minerals: why do weathering rates differ in the laboratory and in the field? Chemical Geology 202, 479506.
Wordsworth, R., Pierrehumbert, R., 2013. Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 6467.
Yokota, K., Kanzaki, Y., Murakami, T., 2013. Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic. Geochimica et Cosmochimica Acta 117, 332347.
Zbinden, E. A., Holland, H. D., Feakes, C. R., 1988.The Sturgeon Falls paleosol and the composition of the atmosphere 1.1GaBP. Precambrian Research 42, 141163.
Zhao, M., Reinhard, C. T., Planavsky, N., 2017. Terrestrial methane fluxes and Proterozoic climate. Geology 46, 139142.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.