Skip to main content Accessibility help
×
  • Coming soon
  • Show more authors
  • Select format
  • Publisher:
    Cambridge University Press
    Publication date:
    30 July 2026
    31 July 2026
    ISBN:
    9781009711067
    9781009711104
    Dimensions:
    (254 x 178 mm)
    Weight & Pages:
    350 Pages
    Dimensions:
    Weight & Pages:
Selected: Digital
Add to cart View cart Buy from Cambridge.org

Book description

Bridging the gap between introductory texts and the specialized research literature, this is one of the first truly rigorous yet accessible treatments of modern reinforcement learning. Written by three leading researchers with over a decade of teaching experience, the book uniquely combines mathematical precision with practical insights. It progresses naturally from planning (dynamic programming, MDPs, value and policy iteration) to learning (model-based and model-free algorithms, function approximation, policy gradients, and regret minimization). Each concept is developed from first principles with complete proofs, making the material self-contained. The modular chapter organization enables flexible course design. The book's website offers battle-tested exercises refined through years of classroom use. Combining mathematical rigor with practical applications, this definitive text is ideal for advanced undergraduate and graduate students as well as practitioners seeking a deep understanding of sequential decision-making and intelligent agent design.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.