Skip to main content Accessibility help
×
  • Cited by 1
Publisher:
Cambridge University Press
Online publication date:
September 2016
Print publication year:
2016
Online ISBN:
9781316411483

Book description

Covering both TFT technologies, and the theory and practice of circuit design, this book equips engineers with the technical knowledge and hands-on skills needed to make circuits on foil with organic or metal oxide based TFTs for applications such as flexible displays and RFID. It provides readers with a solid theoretical background and gives an overview of current TFT technologies including device architecture, typical parameters, and a theoretical framework for comparing different logical families. Concrete, real-world design cases, such as RFID circuits, and organic and metal oxide TFT-based 8-bit microprocessors, enable readers to grasp the practical potential of these design techniques and how they can be applied. This is an essential guide for students and professionals who need to make better transistors on foil.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography

[1]Street, R. A., “Thin-film transistors,” Advanced Materials, vol. 21, no. 20, pp. 20072022, 2009.
[2]Wagner, S., Gleskova, H., Cheng, I.-C., and Wu, M., “Silicon for thin-film transistors,” Thin Solid Films, vol. 430, no. 1–2, pp. 1519, Apr. 2003.
[3]Powell, M. J., “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors,” Applied Physics Letters, vol. 43, no. 6, pp. 597599, Sep. 1983.
[4]Powell, M. J., van Berkel, C., and Hughes, J. R., “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Applied Physics Letters, vol. 54, no. 14, pp. 13231325, Apr. 1989.
[5]Libsch, F. R. and Kanicki, J., “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors,” Applied Physics Letters, vol. 62, no. 11, pp. 12861288, Mar. 1993.
[6]Nathan, A., Chaji, G. R., and Ashtiani, S. J., “Driving schemes for a-Si and LTPS AMOLED displays,” Journal of Display Technology, vol. 1, no. 2, pp. 267277, Dec. 2005.
[7]He, Y., Hattori, R., and Kanicki, J., “Improved a-Si:H TFT pixel electrode circuits for active-matrix organic light emitting displays,” IEEE Transactions on Electron Devices, vol. 48, no. 7, pp. 13221325, Jul. 2001.
[8]Goh, J.-C., Jang, J., Cho, K.-S., and Kim, C.-K., “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Letters, vol. 24, no. 9, pp. 583585, Sep. 2003.
[9]Lee, J.-H., Kim, J.-H., and Han, M.-K., “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Letters, vol. 26, no. 12, pp. 897899, Dec. 2005.
[10]Kumar, A., Nathan, A., and Jabbour, G. E., “Does TFT Mobility Impact Pixel Size in AMOLED Backplanes?IEEE Transactions on Electron Devices, vol. 52, no. 11, pp. 23862394, Nov. 2005.
[11]Yamamoto, Y., “Technological innovation of thin-film transistors: Technology development, history, and future,” Japanese Journal of Applied Physics, vol. 51, p. 060001, 2012.
[12]Brotherton, S. D., “Polycrystalline silicon thin film transistors,” Semiconductor Science and Technology, vol. 10, no. 6, pp. 721738, Jun. 1995.
[13]Choi, J. B., Chang, Y. J., Park, C. H., Choi, B. R., Kim, H. S., and Park, K. C., “TFT backplane technologies for AMLCD and AMOLED applications,” Journal of the Korean Physical Society, vol. 54, no. 925, p. 549, Jan. 2009.
[14]Uchikoga, S. and Ibaraki, N., “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383, no. 1–2, pp. 1924, Feb. 2001.
[15]Ohwada, J.-I., Takabatake, M., Ono, Y. A., Mimura, A., Ono, K., and Konishi, N., “Peripheral circuit integrated poly-Si TFT LCD with gray scale representation,” IEEE Transactions on Electron Devices, vol. 36, no. 9, pp. 19231928, Sep. 1989.
[16]Yang, J. Y., Kim, S.-H., Park, Y.-I., Lim, K.-M., and Kim, C.-D., “P-2: A novel structure of AMLCD panel using poly-Si CMOS TFT,” SID Symposium Digest of Technical Papers, vol. 35, no. 1, pp. 224227, 2004.
[17]Goh, J.-C., Chung, H.-J., Jang, J., and Han, C.-H., “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Electron Device Letters, vol. 23, no. 9, pp. 544546, Sep. 2002.
[18]Fan, C.-L., Shang, M.-C., Lin, W.-C., Chang, H.-C., Chao, K.-C., and Guo, B.-L., “LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop on the power line for AMOLED displays,” Advances in Materials Science and Engineering, vol. 2012, pp. 15, 2012.
[19]Klauk, H., “Organic thin-film transistors,” Chemical Society Reviews, vol. 39, no. 7, pp. 26432666, 2010.
[20]Herwig, P. T. and Müllen, K., “A Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor,” Advanced Materials, vol. 11, no. 6, pp. 480483, 1999.
[21]Chen, J., Subramanian, S., Parkin, S. R., Siegler, M., Gallup, K., Haughn, C., Martin, D. C., and Anthony, J. E., “The influence of side chains on the structures and properties of functionalized pentacenes,” Journal of Materials Chemistry, vol. 18, no. 17, p. 1961, 2008.
[22]Kobayashi, N., Sasaki, M., and Nomoto, K., “Stable peri-Xanthenoxanthene thin-film transistors with efficient carrier injection,” Chemistry of Materials, vol. 21, no. 3, pp. 552556, Feb. 2009.
[23]Yoo, B., Jones, B. A., Basu, D., Fine, D., Jung, T., Mohapatra, S., Facchetti, A., Dimmler, K., Wasielewski, M. R., Marks, T. J., and Dodabalapur, A., “High-performance solution-deposited n-channel organic transistors and their complementary circuits,” Advanced Materials, vol. 19, no. 22, pp. 40284032, 2007.
[24]Kang, M. J., Doi, I., Mori, H., Miyazaki, E., Takimiya, K., Ikeda, M., and Kuwabara, H., “Alkylated Dinaphtho[2,3-b:2′,3′-f]Thieno[3,2-b]Thiophenes (Cn-DNTTs): Organic semiconductors for high-performance thin-film transistors,” Advanced Materials, vol. 23, no. 10, pp. 12221225, 2011.
[25]Lunt, R. R., Lassiter, B. E., Benziger, J. B., and Forrest, S. R., “Organic vapor phase deposition for the growth of large area organic electronic devices,” Applied Physics Letters, vol. 95, no. 23, pp. 233305–233305–3, Dec. 2009.
[26]Rolin, C., Steudel, S., Vicca, P., Genoe, J., and Heremans, P., “Functional pentacene thin films grown by in-line organic vapor phase deposition at web speeds above 2 m/min,” Applied Physics Express, vol. 2, no. 8, p. 086503, 2009.
[27]Rolin, C., Vasseur, K., Niesen, B., Willegems, M., Müller, R., Steudel, S., Genoe, J., and Heremans, P., “Vapor phase growth of functional pentacene films at atmospheric pressure,” Advanced Functional Materials, vol. 22, no. 23, pp. 50505059, 2012.
[28]Gelinck, G. H., Geuns, T. C. T., and de Leeuw, D. M., “High-performance all-polymer integrated circuits,” Applied Physics Letters, vol. 77, no. 10, pp. 14871489, Sep. 2000.
[29]Noh, Y.-Y., Zhao, N., Caironi, M., and Sirringhaus, H., “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nature Nanotechnology, vol. 2, no. 12, pp. 784789, 2007.
[30]Hambsch, M., Reuter, K., Stanel, M., Schmidt, G., Kempa, H., Fügmann, U., Hahn, U., and Hübler, A. C., “Uniformity of fully gravure printed organic field-effect transistors,” Materials Science and Engineering: B, vol. 170, no. 13, pp. 9398, Jun. 2010.
[31]Daami, A., Bory, C., Benwadih, M., Jacob, S., Gwoziecki, R., Chartier, I., Coppard, R., Serbutoviez, C., Maddiona, L., Fontana, E., and Scuderi, A., “Fully printed organic CMOS technology on plastic substrates for digital and analog applications,” in IEEE International Solid-State Circuits Conference (ISSCC), 2011, pp. 328–330.
[32]Shin, A., Hwang, S. J., Yu, S. W., and Sung, M. Y., “Design of organic TFT pixel electrode circuit for active-matrix OLED displays,” Journal of Computers, vol. 3, no. 3, pp. 15, 2008.
[33]Vaidya, V., Soggs, S., Kim, J., Haldi, A., Haddock, J. N., Kippelen, B., and Wilson, D. M., “Comparison of pentacene and amorphous silicon AMOLED display driver circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 5, pp. 11771184, Jun. 2008.
[34]Liu, P.-T. and Chu, L.-W., “Innovative voltage driving pixel circuit using organic thin-film transistor for AMOLEDs,” Journal of Display Technology, vol. 5, no. 6, pp. 224227, Jun. 2009.
[35]Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 12691272, May 2003.
[36]Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488492, Nov. 2004.
[37]Fortunato, E., Barquinha, P., and Martins, R., “Oxide semiconductor thin-film transistors: A review of recent advances,” Advanced Materials, vol. 24, no. 22, pp. 29452986, 2012.
[38]Park, J. S., Maeng, W.-J., Kim, H.-S., and Park, J.-S., “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, vol. 520, no. 6, pp. 16791693, Jan. 2012.
[39]Jeong, J. K., Jeong, J. H., Choi, J. H., Im, J. S., Kim, S. H., Yang, H. W., Kang, K. N., Kim, K. S., Ahn, T. K., Chung, H.-J., Kim, M., Gu, B. S., Park, J.-S., Mo, Y.-G., Kim, H. D., and Chung, H. K., “3.1: Distinguished paper: 12.1-Inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array,” SID Symposium Digest of Technical Papers, vol. 39, no. 1, pp. 14, 2008.
[40]Kim, Y.-H., Heo, J.-S., Kim, T.-H., Park, S., Yoon, M.-H., Kim, J., Oh, M. S., Yi, G.-R., Noh, Y.-Y., and Park, S. K., “Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films,” Nature, vol. 489, no. 7414, pp. 128132, Sep. 2012.
[41]Shimoda, T. and Inoue, S., “Surface free technology by laser annealing (SUFTLA),” in IEEE International Electron Devices Meeting (IEDM), 1999, pp. 289–292.
[42]Lifka, H., Tanase, C., McCulloch, D., Van de Weijer, P., and French, I., “53.4: Ultra-Thin Flexible OLED Device,” SID Symposium Digest of Technical Papers, vol. 38, no. 1, pp. 15991602, 2007.
[43]Inoue, S., Utsunomiya, S., Saeki, T., and Shimoda, T., “Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on plastic film with integrated drivers,” IEEE Transactions on Electron Devices, vol. 49, no. 8, pp. 13531360, Aug. 2002.
[44]Utsunomiya, S., Kamakura, T., Kasuga, M., Kimura, M., Miyazawa, W., Inoue, S., and Shimoda, T., “21.3: Flexible Color AM-OLED Display Fabricated Using Surface Free Technology by Laser Ablation/Annealing (SUFTLA®) and Ink-jet Printing Technology,” SID Symposium Digest of Technical Papers, vol. 34, no. 1, pp. 864867, 2003.
[45]Karaki, N., Nanmoto, T., Ebihara, H., Utsunomiya, S., Inoue, S., and Shimoda, T., “A flexible 8b asynchronous microprocessor based on low-temperature poly-silicon TFT technology,” in IEEE International Solid-State Circuits Conference (ISSCC), 2005, pp. 272598.
[46]Park, J.-S., Kim, T.-W., Stryakhilev, D., Lee, J.-S., An, S.-G., Pyo, Y.-S., Lee, D.-B., Mo, Y. G., Jin, D.-U., and Chung, H. K., “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Applied Physics Letters, vol. 95, no. 1, pp. 013503013503–3, Jul. 2009.
[47]Noda, M., Kobayashi, N., Katsuhara, M., Yumoto, A., Ushikura, S., Yasuda, R., Hirai, N., Yukawa, G., Yagi, I., Nomoto, K., and Urabe, T., “A Rollable AM-OLED Display Driven by OTFTs,” SID Symposium Digest of Technical Papers, vol. 41, no. 1, pp. 710713, 2010.
[48]Lim, W., Douglas, E. A., Kim, S.-H., Norton, D. P., Pearton, S. J., Ren, F., Shen, H., and Chang, W. H., “High mobility InGaZnO4 thin-film transistors on paper,” Applied Physics Letters, vol. 94, no. 7, pp. 072103–072103–3, Feb. 2009.
[49]Martins, R., Nathan, A., Barros, R., Pereira, L., Barquinha, P., Correia, N., Costa, R., Ahnood, A., Ferreira, I., and Fortunato, E., “Complementary Metal Oxide Semiconductor Technology With and On Paper,” Advanced Materials, vol. 23, no. 39, pp. 44914496, 2011.
[50]Eder, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., and Dehm, C., “Organic electronics on paper,” Applied Physics Letters, vol. 84, no. 14, pp. 26732675, Apr. 2004.
[51]Zschieschang, U., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., and Klauk, H., “Organic Electronics on Banknotes,” Advanced Materials, vol. 23, no. 5, pp. 654658, 2011.
[52]Theiss, S. D. and Wagner, S., “Amorphous silicon thin-film transistors on steel foil substrates,” IEEE Electron Device Letters, vol. 17, no. 12, pp. 578580, Dec. 1996.
[53]Serikawa, T. and Omata, F., “High-mobility poly-Si TFTs fabricated on flexible stainless-steel substrates,” IEEE Electron Device Letters, vol. 20, no. 11, pp. 574576, Nov. 1999.
[54]Gleskova, H. and Wagner, S., “DC-gate-bias stressing of a-Si:H TFTs fabricated at 150 deg C on polyimide foil,” IEEE Transactions on Electron Devices, vol. 48, no. 8, pp. 16671671, Aug. 2001.
[55]Lee, M. H., Ho, K.-Y., Chen, P.-C., Cheng, C.-C., Chang, S. T., Tang, M., Liao, M. H., and Yeh, Y.-H., “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” in IEEE International Electron Devices Meeting (IEDM), 2006, pp. 1–4.
[56]Yang, P.-C., Chang, H.-Y., Yang, C.-H., Hsueh, C.-Y., Lin, H.-W., Chang, C.-Y., and Lee, S.-C., “Low Temperature Polycrystalline Silicon TFTs on Polyimide and Glass Substrates,” in IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), 2007, pp. 519–522.
[57]Sarma, K. R., “Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate,” in Annual Laser and Electro-Optics Society (LEOS) Meeting, 2003, vol. 5080, pp. 180191.
[58]Lujan, R. A. and Street, R. A., “Flexible X-ray detector array fabricated with oxide thin-film transistors,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 688690, May 2012.
[59]Fischer, J., Tietke, M., Fritze, F., Muth, O., Paeschke, M., Han, D., Kwack, J., Kim, T., Lee, J., Kim, S., and Chung, H., “Electronic passports with AMOLED displays,” Journal of the Society for Information Display, vol. 19, no. 2, pp. 163169, 2011.
[60]Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 99669970, Jul. 2004.
[61]Marien, H., Steyaert, M. S. J., van Veenendaal, E., and Heremans, P., “A fully integrated ΔΣ ADC in organic thin-film transistor technology on flexible plastic foil,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 276284, Jan. 2011.
[62]Xiong, W., Guo, Y., Zschieschang, U., Klauk, H., and Murmann, B., “A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass,” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 13801388, Jul. 2010.
[63]Myny, K., van Veenendaal, E., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 284291, Jan. 2012.
[64]Marien, H., Steyaert, M., van Aerle, N., and Heremans, P., “An analog organic first-order CT ΔΣ ADC on a flexible plastic substrate with 26.5dB precision,” in IEEE International Solid-State Circuits Conference (ISSCC), 2010, pp. 136137.
[65]Morosawa, N., Ohshima, Y., Morooka, M., Arai, T., and Sasaoka, T., “Novel self-aligned top-gate oxide TFT for AMOLED displays,” Journal of the Society for Information Display, vol. 20, no. 1, p. 47, 2012.
[66]Meijer, E. J., de Leeuw, D. M., Setayesh, S., van Veenendaal, E., Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., and Klapwijk, T. M., “Solution-processed ambipolar organic field-effect transistors and inverters,” Nature Materials, vol. 2, no. 10, pp. 678682, 2003.
[67]Zaumseil, J. and Sirringhaus, H., “Electron and ambipolar transport in organic field-effect transistors,” Chemical Reviews, vol. 107, no. 4, pp. 1296–323, 2007.
[68]Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C. D., Nichols, J. A., and Jackson, T. N., “Contact resistance in organic thin film transistors,” Solid-State Electronics, vol. 47, no. 2, pp. 297301, Feb. 2003.
[69]Necliudov, P. V., Shur, M. S., Gundlach, D. J., and Jackson, T. N., “Contact resistance extraction in pentacene thin film transistors,” Solid-State Electronics, vol. 47, no. 2, pp. 259262, Feb. 2003.
[70]Marinov, O., Deen, M. J., Zschieschang, U., and Klauk, H., “Organic thin-film transistors: Part I-compact DC modeling,” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 29522961, Dec. 2009.
[71]Deen, M. J., Marinov, O., Zschieschang, U., and Klauk, H., “Organic thin-film transistors: Part II: Parameter extraction,” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 29622968, Dec. 2009.
[72]Torricelli, F., “Charge transport in organic transistors accounting for a wide distribution of carrier energies: Part I: Theory,” IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 15141519, May 2012.
[73]Torricelli, F., O’Neill, K., Gelinck, G. H., Myny, K., Genoe, J., and Cantatore, E., “Charge transport in organic transistors accounting for a wide distribution of carrier energies: Part II: TFT modeling,” IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 15201528, May 2012.
[74]Li, L., Debucquoy, M., Genoe, J., and Heremans, P., “A compact model for polycrystalline pentacene thin-film transistor,” Journal of Applied Physics, vol. 107, no. 2, pp. 024519–024519–3, Jan. 2010.
[75]Li, L., Marien, H., Genoe, J., Steyaert, M., and Heremans, P., “Compact model for organic thin-film transistor,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 210212, Mar. 2010.
[76]Torricelli, F., Meijboom, J. R., Smits, E., Tripathi, A. K., Ferroni, M., Federici, S., Gelinck, G. H., Colalongo, L., Kovacs-Vajna, Z. M., de Leeuw, D., and Cantatore, E., “Transport physics and device modeling of zinc oxide thin-film transistors: Part I: Long-channel devices,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 26102619, Aug. 2011.
[77]Torricelli, F., Smits, E. C. P., Meijboom, J. R., Tripathi, A. K., Gelinck, G. H., Colalongo, L., Kovacs-Vajna, Z. M., de Leeuw, D. M., and Cantatore, E., “Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors: Part II: Contact resistance in short channel devices,” IEEE Transactions on Electron Devices, vol. 58, no. 9, pp. 30253033, Sep. 2011.
[78]He, H. and Zheng, X., “Analytical drain current model for amorphous IGZO thin-film transistors in above-threshold regime,” Journal of Semiconductors, vol. 32, no. 7, p. 074004, Jul. 2011.
[79]Abe, K., Kaji, N., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H., “Simple analytical model of on operation of amorphous in-Ga-Zn-O thin-film transistors,” IEEE Transactions on Electron Devices, vol. 58, no. 10, pp. 34633471, Oct. 2011.
[80]Kim, D. H., Jeon, Y. W., Kim, S., Kim, Y., Yu, Y. S., Kim, D. M., and Kwon, H.-I., “Physical parameter-based SPICE models for InGaZnO thin-film transistors applicable to process optimization and robust circuit design,” IEEE Electron Device Letters, vol. 33, no. 1, pp. 5961, Jan. 2012.
[81]Pherson, M. R. M., “The adjustment of MOS transistor threshold voltage by ion implantation,” Applied Physics Letters, vol. 18, no. 11, pp. 502504, Jun. 1971.
[82]Mizuno, T., Okumtura, J., and Toriumi, A., “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 22162221, Nov. 1994.
[83]Nausieda, I., Ryu, K. K., He, D. D., Akinwande, A. I., Bulovic, V., and Sodini, C. G., “Dual threshold voltage organic thin-film transistor technology,” IEEE Transactions on Electron Devices, vol. 57, no. 11, pp. 30273032, Nov. 2010.
[84]Han, S.-T., Zhou, Y., Xu, Z.-X., and Roy, V. A. L., “Controllable threshold voltage shifts of polymer transistors and inverters by utilizing gold nanoparticles,” APL: Organic Electronics and Photonics, vol. 5, no. 7, pp. 154154, Jul. 2012.
[85]Yokota, T., Nakagawa, T., Sekitani, T., Noguchi, Y., Fukuda, K., Zschieschang, U., Klauk, H., Takeuchi, K., Takamiya, M., Sakurai, T., and Someya, T., “Control of threshold voltage in low-voltage organic complementary inverter circuits with floating gate structures,” Applied Physics Letters, vol. 98, no. 19, pp. 193302–193302–3, May 2011.
[86]Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H., Yoshimoto, N., Ogawa, S., and Iwasa, Y., “Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nature Materials, vol. 3, no. 5, pp. 317322, 2004.
[87]Pernstich, K. P., Haas, S., Oberhoff, D., Goldmann, C., Gundlach, D. J., Batlogg, B., Rashid, A. N., and Schitter, G., “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” Journal of Applied Physics, vol. 96, no. 11, pp. 64316438, Dec. 2004.
[88]Kitamura, M., Kuzumoto, Y., Aomori, S., Kamura, M., Na, J. H., and Arakawa, Y., “Threshold voltage control of bottom-contact n-channel organic thin-film transistors using modified drain/source electrodes,” Applied Physics Letters, vol. 94, no. 8, pp. 083310–083310–3, Feb. 2009.
[89]Gelinck, G. H., van Veenendaal, E., and Coehoorn, R., “Dual-gate organic thin-film transistors,” Applied Physics Letters, vol. 87, no. 7, pp. 073508073508–3, Aug. 2005.
[90]Iba, S., Sekitani, T., Kato, Y., Someya, T., Kawaguchi, H., Takamiya, M., Sakurai, T., and Takagi, S., “Control of threshold voltage of organic field-effect transistors with double-gate structures,” Applied Physics Letters, vol. 87, no. 2, pp. 023509023509–3, Jul. 2005.
[91]Morana, M., Bret, G., and Brabec, C., “Double-gate organic field-effect transistor,” Applied Physics Letters, vol. 87, no. 15, pp. 153511–153511–3, Oct. 2005.
[92]Spijkman, M.-J., Myny, K., Smits, E. C. P., Heremans, P., Blom, P. W. M., and Leeuw, D. M., “Dual-gate thin-film transistors, integrated circuits and sensors,” Advanced Materials, vol. 23, no. 29, pp. 32313242, 2011.
[93]Brondijk, J. J., Spijkman, M., Torricelli, F., Blom, P. W. M., and de Leeuw, D. M., “Charge transport in dual-gate organic field-effect transistors,” Applied Physics Letters, vol. 100, no. 2, pp. 023308–023308–4, Jan. 2012.
[94]Gelinck, G. H., Huitema, H. E. A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J. B. P. H., Geuns, T. C. T., Beenhakkers, M., Giesbers, J. B., Huisman, B.-H., Meijer, E. J., Benito, E. M., Touwslager, F. J., Marsman, A. W., van Rens, B. J. E., and de Leeuw, D. M., “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nature Materials, vol. 3, no. 2, pp. 106110, Jan. 2004.
[95]Huitema, H. E. A., “Rollable displays: The start of a new mobile device generation,” presented at the Proc. 7th Annu. USDC Flexible Electron. Displays Conf., Phoenix, AZ, 2008.
[96]Kagan, C. R., Afzali, A., and Graham, T. O., “Operational and environmental stability of pentacene thin-film transistors,” Applied Physics Letters, vol. 86, no. 19, pp. 193505–193505–3, May 2005.
[97]Myny, K., Steudel, S., Vicca, P., Beenhakkers, M. J., van Aerle, N. A. J. M., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Plastic circuits and tags for 13.56 MHz radio-frequency communication,” Solid-State Electronics, vol. 53, no. 12, pp. 12201226, Dec. 2009.
[98]De Vusser, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., “Integrated shadow mask method for patterning small molecule organic semiconductors,” Applied Physics Letters, vol. 88, no. 10, pp. 103501–103501–3, Mar. 2006.
[99]Tripathi, A. K., Smits, E. C. P., van der Putten, J. B. P. H., van Neer, M., Myny, K., Nag, M., Steudel, S., Vicca, P., O’Neill, K., van Veenendaal, E., Genoe, G., Heremans, P., and Gelinck, G. H., “Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application,” Applied Physics Letters, vol. 98, p. 162102, 2011.
[100]Rockelé, M., Pham, D.-V., Hoppe, A., Steiger, J., Botnaras, S., Nag, M., Steudel, S., Myny, K., Schols, S., Müller, R., van der Putten, B., Genoe, J., and Heremans, P., Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs,” Organic Electronics, vol. 12, no. 11, pp. 19091913, Nov. 2011.
[101]Myny, K., Rockele, M., Chasin, A., Pham, D., Steiger, J., Botnaras, S., Weber, D., Herold, B., Ficker, J., van der Putten, B., Gelinck, G., Genoe, J., Dehaene, W., and Heremans, P., “Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag,” in IEEE International Solid-State Circuits Conference (ISSCC), 2012, pp. 312314.
[102]Rockelé, M., Pham, D.-V., Steiger, J., Botnaras, S., Weber, D., Vanfleteren, J., Sterken, T., Cuypers, D., Steudel, S., Myny, K., Schols, S., van der Putten, B., Genoe, J., and Heremans, P., “Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil,” Journal of the Society for Information Display, vol. 20, no. 9, pp. 499507, 2012.
[103]Crone, B., Dodabalapur, A., Lin, Y.-Y., Filas, R. W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H. E., and Li, W., “Large-scale complementary integrated circuits based on organic transistors,” Nature, vol. 403, no. 6769, pp. 521523, Feb. 2000.
[104]van Lieshout, P., van Veenendaal, E., Schrijnemakers, L., Gelinck, G., Touwslager, F., and Huitema, E., “A flexible 240×320-pixel display with integrated row drivers manufactured in organic electronics,” in IEEE International Solid-State Circuits Conference (ISSCC), 2005, Vol. 1, pp. 578618.
[105]Noda, M., Kobayashi, N., Katsuhara, M., Yumoto, A., Ushikura, S., Yasuda, R., Hirai, N., Yukawa, G., Yagi, I., Nomoto, K., and Urabe, T., “An OTFT-driven rollable OLED display,” Journal of the Society for Information Display, vol. 19, no. 4, pp. 316322, 2011.
[106]Cantatore, E., Geuns, T. C. T., Gruijthuijsen, A. F. A., Gelinck, G. H., Drews, S., and de Leeuw, D. M., “A 13.56MHz RFID system based on organic transponders,” in IEEE International Solid-State Circuits Conference (ISSCC), 2006, pp. 10421051.
[107]Cantatore, E., Geuns, T. C. T., Gelinck, G. H., van Veenendaal, E., Gruijthuijsen, A. F. A., Schrijnemakers, L., Drews, S., and de Leeuw, D. M., “A 13.56-MHz RFID system based on organic transponders,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 8492, Jan. 2007.
[108]Ullmann, A., Bohm, M., Krumm, J., and Fix, W., “Polymer multi-bit RFID transponder,” in International Conference on Organic Electronics (ICOE), Eindhoven, The Netherlands, 2007.
[109]Myny, K., Van Winckel, S., Steudel, S., Vicca, P., De Jonge, S., Beenhakkers, M. J., Sele, C. W., van Aerle, N. A. J. M., Gelinck, G. H., Genoe, J., and Heremans, P., “An inductively-coupled 64b organic RFID tag operating at 13.56MHz with a data rate of 787b/s,” in IEEE International Solid-State Circuits Conference (ISSCC), 2008, pp. 290291.
[110]Myny, K., Beenhakkers, M. J., van Aerle, N. A. J. M., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “A 128b organic RFID transponder chip, including Manchester encoding and ALOHA anti-collision protocol, operating with a data rate of 1529b/s,” in IEEE International Solid-State Circuits Conference (ISSCC), 2009, pp. 206207.
[111]Koo, J. B., Lim, J. W., Kim, S. H., Ku, C. H., Lim, S. C., Lee, J. H., Yun, S. J., and Yang, Y. S., “Pentacene thin-film transistors and inverters with dual-gate structure,” Electrochemical and Solid-State Letters, vol. 9, no. 11, p. G320, 2006.
[112]Koo, J. B., Ku, C. H., Lim, J. W., and Kim, S. H., “Novel organic inverters with dual-gate pentacene thin-film transistor,” Organic Electronics, vol. 8, no. 5, pp. 552558, Oct. 2007.
[113]Spijkman, M., Smits, E. C. P., Blom, P. W. M., Leeuw, D. M., Bon Saint Côme, Y., Setayesh, S., and Cantatore, E., “Increasing the noise margin in organic circuits using dual gate field-effect transistors,” Applied Physics Letters, vol. 92, no. 14, pp. 143304143304–3, Apr. 2008.
[114]Myny, K., Beenhakkers, M. J., van Aerle, N. A. J., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Robust digital design in organic electronics by dual-gate technology,” in IEEE International Solid-State Circuits Conference (ISSCC), 2010, pp. 140141.
[115]Myny, K., Beenhakkers, M. J., van Aerle, N. A. J., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Unipolar organic transistor circuits made robust by dual-gate technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 12231230, May 2011.
[116]Myny, K., van Veenendaal, E., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “An 8b organic microprocessor on plastic foil,” in IEEE International Solid-State Circuits Conference (ISSCC), 2011, pp. 322324.
[117]Blache, R., Krumm, J., and Fix, W., “Organic CMOS circuits for RFID applications,” in Solid-State Circuits Conference – Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 208209.
[118]Myny, K., Steudel, S., Smout, S., Vicca, P., Furthner, F., van der Putten, B., Tripathi, A. K., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Organic RFID transponder chip with data rate compatible with electronic product coding,” Organic Electronics, vol. 11, no. 7, pp. 11761179, Jul. 2010.
[119]Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M., “Ultralow-power organic complementary circuits,” Nature, vol. 445, no. 7129, pp. 745748, Feb. 2007.
[120]Ishida, K., Masunaga, N., Zhou, Z., Yasufuku, T., Sekitani, T., Zschieschang, U., Klauk, H., Takamiya, M., Someya, T., and Sakurai, T., “Stretchable EMI measurement sheet with 8 × 8 coil array, 2 V organic CMOS decoder, and 0.18µm silicon CMOS LSIs for electric and magnetic field detection,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 249259, Jan. 2010.
[121]Ishida, K., Masunaga, N., Takahashi, R., Sekitani, T., Shino, S., Zschieschang, U., Klauk, H., Takamiya, M., Someya, T., and Sakurai, T., “User customizable logic paper (UCLP) with sea-of transmission-gates (SOTG) of 2-V organic CMOS and ink-jet printed interconnects,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 285292, Jan. 2011.
[122]Fukuda, K., Sekitani, T., Zschieschang, U., Klauk, H., Kuribara, K., Yokota, T., Sugino, T., Asaka, K., Ikeda, M., Kuwabara, H., Yamamoto, T., Takimiya, K., Fukushima, T., Aida, T., Takamiya, M., Sakurai, T., and Someya, T., “A 4 V operation, flexible braille display using organic transistors, carbon nanotube actuators, and organic static random-access memory,” Advanced Functional Materials, vol. 21, no. 21, pp. 40194027, 2011.
[123]Xiong, W., Zschieschang, U., Klauk, H., and Murmann, B., “A 3V 6b successive-approximation ADC using complementary organic thin-film transistors on glass,” in IEEE International Solid-State Circuits Conference (ISSCC), 2010, pp. 134135.
[124]Klauk, H., Halik, M., Zschieschang, U., Eder, F., Schmid, G., and Dehm, C., “Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates,” Applied Physics Letters, vol. 82, no. 23, pp. 41754177, Jun. 2003.
[125]Fukuda, K., Sekitani, T., Yokota, T., Kuribara, K., Huang, T.-C., Sakurai, T., Zschieschang, U., Klauk, H., Ikeda, M., Kuwabara, H., Yamamoto, T., Takimiya, K., Cheng, K.-T., and Someya, T., “Organic pseudo-CMOS circuits for low-voltage large-gain high-speed operation,” IEEE Electron Device Letters, vol. 32, no. 10, pp. 14481450, Oct. 2011.
[126]Marien, H., Steyaert, M., Steudel, S., Vicca, P., Smout, S., Gelinck, G., and Heremans, P., “An organic integrated capacitive DC-DC up-converter,” in European Solid-State Circuits Conference (ESSCIRC), 2010, pp. 510513.
[127]Marien, H., Steyaert, M., van Veenendaal, E., and Heremans, P., “Organic dual DC-DC upconverter on foil for improved circuit reliability,” Electronics Letters, vol. 47, no. 4, pp. 278280, 2011.
[128]Marien, H., Steyaert, M., van Veenendaal, E., and Heremans, P., “DC-DC converter assisted two-stage amplifier in organic thin-film transistor technology on foil,” in European Solid-State Circuits Conference (ESSCIRC), 2011, pp. 411414.
[129]Park, Y.-S., Kim, D.-Y., Kim, K.-N., Matsueda, Y., Choi, J.-H., Kang, C.-K., Kim, H.-D., Chung, H. K., and Kwon, O.-K., “An 8b source driver for 2.0 inch full-color active-matrix OLEDs made with LTPS TFTs,” in IEEE International Solid-State Circuits Conference (ISSCC), 2007, pp. 130592.
[130]Zaki, T., Ante, F., Zschieschang, U., Butschke, J., Letzkus, F., Richter, H., Klauk, H., and Burghartz, J. N., “A 3.3 V 6-bit 100 kS/s current-steering digital-to-analog converter using organic P-type thin-film transistors on glass,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 292300, Jan. 2012.
[131]Raiteri, D., Torricelli, F., Myny, K., Nag, M., Van der Putten, B., Smits, E., Steudel, S., Tempelaars, K., Tripathi, A., Gelinck, G., Van Roermund, A., and Cantatore, E., “A 6b 10MS/s current-steering DAC manufactured with amorphous Gallium-Indium-Zinc-Oxide TFTs achieving SFDR > 30dB up to 300kHz,” in IEEE International Solid-State Circuits Conference (ISSCC), 2012, pp. 314316.
[132]Rabaey, J. M., Chandrakasan, A., and Nikolic, B., Digital Integrated Circuits, 2nd ed. Prentice Hall, 2003.
[133]Hill, C. F., “Noise margin and noise immunity in logic circuits,” Microelectronics, vol. 1, pp. 1621, Apr. 1968.
[134]Seevinck, E., List, F. J., and Lohstroh, J., “Static-noise margin analysis of MOS SRAM cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp. 748754, Oct. 1987.
[135]Hauser, J. R., “Noise margin criteria for digital logic circuits,” IEEE Transactions on Education, vol. 36, no. 4, pp. 363368, Nov. 1993.
[136]Lohstroh, J., Seevinck, E., and de Groot, J., “Worst-case static noise margin criteria for logic circuits and their mathematical equivalence,” IEEE Journal of Solid-State Circuits, vol. 18, no. 6, pp. 803807, Dec. 1983.
[137]Vusser, S., Genoe, J., and Heremans, P., “Influence of transistor parameters on the noise margin of organic digital circuits,” IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 601610, Apr. 2006.
[138]Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, vol. 290, no. 5499, pp. 21232126, Dec. 2000.
[139]Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M., and Stellacci, F., “Low-voltage organic transistors with an amorphous molecular gate dielectric,” Nature, vol. 431, no. 7011, pp. 963966, Oct. 2004.
[140]Kim, K. and Kim, Y., “Intrinsic capacitance characteristics of top-contact organic thin-film transistors,” IEEE Transactions on Electron Devices, vol. 57, no. 9, pp. 23442347, Sep. 2010.
[141]Torricelli, F., Kovacs-Vajna, Z. M., and Colalongo, L., “A charge-based OTFT model for circuit simulation,” IEEE Transactions on Electron Devices, vol. 56, no. 1, pp. 2030, Jan. 2009.
[142]Klauk, H., Gundlach, D. J., and Jackson, T. N., “Fast organic thin-film transistor circuits,” IEEE Electron Device Letters, vol. 20, no. 6, pp. 289291, Jun. 1999.
[143]Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., and De, V., “Parameter variations and impact on circuits and microarchitecture,” in Design Automation Conference (DAC), 2003, pp. 338342.
[144]Asenov, A., Brown, A. R., Davies, J. H., Kaya, S., and Slavcheva, G., “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 18371852, Sep. 2003.
[145]Bernstein, K., Frank, D. J., Gattiker, A. E., Haensch, W., Ji, B. L., Nassif, S. R., Nowak, E. J., Pearson, D. J., and Rohrer, N. J., “High-performance CMOS variability in the 65-nm regime and beyond,” IBM Journal of Research and Development, vol. 50, no. 4/5, pp. 433449, Jul. 2006.
[146]Kuhn, K. J., “Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS,” in IEEE International Electron Devices Meeting (IEDM), 2007, pp. 471474.
[147]Sylvester, D., Agarwal, K., and Shah, S., “Variability in nanometer CMOS: Impact, analysis, and minimization,” Integration, the VLSI Journal, vol. 41, no. 3, pp. 319339, May 2008.
[148]Soeleman, H., Roy, K., and Paul, B. C., “Robust subthreshold logic for ultra-low power operation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 9099, Feb. 2001.
[149]Kim, J.-J. and Roy, K., “Double gate-MOSFET subthreshold circuit for ultralow power applications,” IEEE Transactions on Electron Devices, vol. 51, no. 9, pp. 14681474, Sep. 2004.
[150]Kwong, J. and Chandrakasan, A. P., “Variation-driven device sizing for minimum energy sub-threshold circuits,” in International Symposium on Low Power Electronics and Design (ISLPED), 2006, pp. 813.
[151]Fisher, S., Teman, A., Vaysman, D., Gertsman, A., Yadid-Pecht, O., and Fish, A., “Digital subthreshold logic design – motivation and challenges,” in IEEE 25th Convention of Electrical and Electronics Engineers in Israel (IEEEI), 2008, pp. 702706.
[152]Verlaak, S., Steudel, S., Heremans, P., Janssen, D., and Deleuze, M., “Nucleation of organic semiconductors on inert substrates,” Physical Review B, vol. 68, no. 19, Nov. 2003.
[153]Verlaak, S., Arkhipov, V., and Heremans, P., “Modeling of transport in polycrystalline organic semiconductor films,” Applied Physics Letters, vol. 82, no. 5, pp. 745747, Feb. 2003.
[154]Li, X., Kadashchuk, A., Fishchuk, I. I., Smaal, W. T. T., Gelinck, G., Broer, D. J., Genoe, J., Heremans, P., and Bässler, H., “Electric field confinement effect on charge transport in organic field-effect transistors,” Physical Review Letters, vol. 108, no. 6, p. 066601, Feb. 2012.
[155]Verlaak, S. and Heremans, P., “Molecular microelectrostatic view on electronic states near pentacene grain boundaries,” Physical Review B, vol. 75, no. 11, p. 115127, Mar. 2007.
[156]Li, X., Smaal, W. T. T., Kjellander, C., van der Putten, B., Gualandris, K., Smits, E. C. P., Anthony, J., Broer, D. J., Blom, P. W. M., Genoe, J., and Gelinck, G., “Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend,” Organic Electronics, vol. 12, no. 8, pp. 13191327, Aug. 2011.
[157]Steudel, S., De Vusser, S., De Jonge, S., Janssen, D., Verlaak, S., Genoe, J., and Heremans, P., “Influence of the dielectric roughness on the performance of pentacene transistors,” Applied Physics Letters, vol. 85, no. 19, pp. 44004402, Nov. 2004.
[158]Mityashin, A., Olivier, Y., Van Regemorter, T., Rolin, C., Verlaak, S., Martinelli, N. G., Beljonne, D., Cornil, J., Genoe, J., and Heremans, P., “Unraveling the mechanism of molecular doping in organic semiconductors,” Advanced Materials, vol. 24, no. 12, pp. 15351539, 2012.
[159]Debucquoy, M., Verlaak, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., “Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors,” Applied Physics Letters, vol. 91, no. 10, pp. 103508103508–3, Sep. 2007.
[160]Chen, C.-Y., Wang, S.-D., Shieh, M.-S., Chen, W.-C., Lin, H.-Y., Yeh, K.-L., Lee, J.-W., and Lei, T.-F., “Plasma-Induced Damage on the Performance and Reliability of Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” Journal of the Electrochemical Society, vol. 154, no. 1, pp. H30–H35, Jan. 2007.
[161]Eriguchi, K., Nakakubo, Y., Matsuda, A., Kamei, M., Takao, Y., and Ono, K., “Comprehensive modeling of threshold voltage variability induced by plasma damage in advanced metal–oxide–semiconductor field-effect transistors,” Japanese Journal of Applied Physics, vol. 49, no. 4, p. 04DA18, 2010.
[162]Kim, B., Kwon, S. H., Kwon, K. H., Baek, K.-H., Lee, J. H., Kim, D. H., and May, G. S., “Statistical characterization of process-induced plasma damage,” Materials and Manufacturing Processes, vol. 24, no. 6, pp. 610614, 2009.
[163]Halik, M., Klauk, H., Zschieschang, U., Kriem, T., Schmid, G., Radlik, W., and Wussow, K., “Fully patterned all-organic thin film transistors,” Applied Physics Letters, vol. 81, no. 2, pp. 289291, Jul. 2002.
[164]Tseng, H.-Y. and Subramanian, V., “All inkjet printed self-aligned transistors and circuits applications,” in IEEE International Electron Devices Meeting (IEDM), 2009, pp. 14.
[165]de la Fuente Vornbrock, A., Sung, D., Kang, H., Kitsomboonloha, R., and Subramanian, V., “Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors,” Organic Electronics, vol. 11, no. 12, pp. 20372044, Dec. 2010.
[166]Hill, I. G., “Numerical simulations of contact resistance in organic thin-film transistors,” Applied Physics Letters, vol. 87, no. 16, pp. 163505163505–3, Oct. 2005.
[167]Barquinha, P., Vila, A. M., Goncalves, G., Pereira, L., Martins, R., Morante, J. R., and Fortunato, E., “Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material,” IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954960, Apr. 2008.
[168]Shimura, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., and Hosono, H., “Specific contact resistances between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes,” Thin Solid Films, vol. 516, no. 17, pp. 58995902, Jul. 2008.
[169]Kim, W.-S., Moon, Y.-K., Kim, K.-T., Lee, J.-H., Ahn, B., and Park, J.-W., “An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors,” Thin Solid Films, vol. 518, no. 22, pp. 63576360, Sep. 2010.
[170]Weis, M., Lin, J., Taguchi, D., Manaka, T., and Iwamoto, M., “Insight into the contact resistance problem by direct probing of the potential drop in organic field-effect transistors,” Applied Physics Letters, vol. 97, no. 26, pp. 263304263304–3, Dec. 2010.
[171]Marinkovic, M., Belaineh, D., Wagner, V., and Knipp, D., “On the origin of contact resistances of organic thin film transistors,” Advanced Materials, vol. 24, no. 29, pp. 40054009, 2012.
[172]Yakimets, I., MacKerron, D., Giesen, P., Kilmartin, K. J., Goorhuis, M., Meinders, E., and MacDonald, W. A., “Polymer Substrates for Flexible Electronics: Achievements and Challenges,” Advanced Materials Research, vol. 93–94, pp. 58, Jan. 2010.
[173]Bode, D., Rolin, C., Schols, S., Debucquoy, M., Steudel, S., Gelinck, G. H., Genoe, J., and Heremans, P., “Noise-margin analysis for organic thin-film complementary technology,” IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 201208, Jan. 2010.
[174]Bode, D., “Complementary Technology for Organic Thin-Film Transistors,” PhD dissertation, KULeuven, Leuven, 2011.
[175]Myny, K., van Lieshout, P., Genoe, J., Dehaene, W., and Heremans, P., “Accounting for variability in the design of circuits with organic thin-film transistors,” Organic Electronics, vol. 15, no. 4, pp. 937942, Apr. 2014.
[176]Pelgrom, M. J. M., Duinmaijer, A. C. J., and Welbers, A. P. G., “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 14331439, Oct. 1989.
[177]Tschanz, J., Kao, J., Narendra, S., Nair, R., Antoniadis, D., Chandrakasan, A., and De, V., “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” in IEEE International Solid-State Circuits Conference (ISSCC), 2002, vol. 1, pp. 422478.
[178]Liu, Q. and Sapatnekar, S. S., “Capturing post-silicon variations using a representative critical path,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 2, pp. 211222, Feb. 2010.
[179]Gelinck, G., Heremans, P., Nomoto, K., and Anthopoulos, T. D., “Organic transistors in optical displays and microelectronic applications,” Advanced Materials, vol. 22, no. 34, pp. 37783798, 2010.
[180]Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T., “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 35, pp. 1232112325, Aug. 2005.
[181]Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T., “Flexible organic transistors and circuits with extreme bending stability,” Nature Materials, vol. 9, no. 12, pp. 10151022, 2010.
[182]Hong, S. K., “A Study on Compensation and Driving Circuits for AMOLED Display,” PhD dissertation, Kyung Hee University, Seoul, Korea, 2010.
[183]Fan, C.-L., Lai, H.-L., and Chang, J.-Y., “Improvement in brightness uniformity by compensating for the threshold voltages of both the driving thin-film transistor and the organic light-emitting diode for active-matrix organic light-emitting diode displays,” Japanese Journal of Applied Physics, vol. 49, no. 5, p. 05EB04, May 2010.
[184]Jankovic, N. D. and Brajovic, V., “Vth compensated AMOLED pixel employing dual-gate TFT driver,” Electronics Letters, vol. 47, no. 7, p. 456, 2011.
[185]Oh, K. and Kwon, O.-K., “Threshold-voltage-shift compensation and suppression method using hydrogenated amorphous silicon thin-film transistors for large active matrix organic light-emitting diode displays,” Japanese Journal of Applied Physics, vol. 51, p. 03CD01, Mar. 2012.
[186]Tai, Y.-H., Chou, L.-S., Chiu, H.-L., and Chen, B.-C., “Three-transistor AMOLED pixel circuit with threshold voltage compensation function using dual-gate IGZO TFT,” IEEE Electron Device Letters, vol. 33, no. 3, pp. 393395, Mar. 2012.
[187]Bohm, M., Ullmann, A., Zipperer, D., Knobloch, A., Glauert, W. H., and Fix, W., “Printable electronics for polymer RFID applications,” in IEEE International Solid-State Circuits Conference (ISSCC), 2006, pp. 10341041.
[188]Jung, M., Kim, J., Noh, J., Lim, N., Lim, C., Lee, G., Kim, J., Kang, H., Jung, K., Leonard, A. D., Tour, J. M., and Cho, G., “All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils,” IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 571580, Mar. 2010.
[189]Cho, G., “Roll-to-Roll Printed 13.56 MHz Operated 16-Bit RFID Tags and Smart RF Logos,” in Printed Electronics and Photovoltaics Europe, Dresden, Germany, 2010.
[190]Finkenzeller, D. K., RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed. John Wiley & Sons, 2010.
[191]Marsman, A. W., Hart, C. M., Gelinck, G. H., Geuns, T. C. T., and de Leeuw, D. M., “Doped polyaniline polymer fuses: Electrically programmable read-only-memory elements,” Journal of Materials Research, vol. 19, no. 07, pp. 20572060, 2004.
[192]Myny, K., Steudel, S., Vicca, P., Genoe, J., and Heremans, P., “An integrated double half-wave organic Schottky diode rectifier on foil operating at 13.56 MHz,” Applied Physics Letters, vol. 93, p. 093305, 2008.
[193]Pal, B. N., Sun, J., Jung, B. J., Choi, E., Andreou, A. G., and Katz, H. E., “Pentacene-zinc oxide vertical diode with compatible grains and 15-MHz rectification,” Advanced Materials, vol. 20, no. 5, pp. 10231028, 2008.
[194]Steudel, S., Myny, K., Arkhipov, V., Deibel, C., De Vusser, S., Genoe, J., and Heremans, P., “50 MHz rectifier based on an organic diode,” Nature Materials, vol. 4, no. 8, pp. 597600, 2005.
[195]Steudel, S., De Vusser, S., Myny, K., Lenes, M., Genoe, J., and Heremans, P., “Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags,” Journal of Applied Physics, vol. 99, no. 11, pp. 114519114519–7, Jun. 2006.
[196]Chasin, A., Steudel, S., Myny, K., Nag, M., Ke, T.-H., Schols, S., Genoe, J., Gielen, G., and Heremans, P., “High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts,” Applied Physics Letters, vol. 101, no. 11, pp. 113505113505–5, Sep. 2012.
[197]Kawamura, T., Wakana, H., Fujii, K., Ozaki, H., Watanabe, K., Yamazoe, T., Uchiyama, H., and Torii, K., “Oxide TFT rectifier achieving 13.56-MHz wireless operation with DC output up to 12 V,” in IEEE International Electron Devices Meeting (IEDM), 2010, pp. 21.4.1–21.4.4.
[198]“EPC standard” [Online]. Available: http://www.epcglobalinc.org/standards/specs/.
[199]Ozaki, H., Kawamura, T., Wakana, H., Yamazoe, T., and Uchiyama, H., “20-µW operation of an a-IGZO TFT-based RFID chip using purely NMOS ‘active’ load logic gates with ultra-low-consumption power,” in 2011 Symposium on VLSI Circuits (VLSIC), 2011, pp. 5455.
[200]Myny, K., Rockele, M., Chasin, A., Pham, D.-V., Steiger, J., Botnaras, S., Weber, D., Herold, B., Ficker, J., van Putten, B. D., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “Bidirectional Communication in an HF Hybrid Organic/Solution-Processed Metal-Oxide RFID Tag,” IEEE Transactions on Electron Devices, vol. 61, no. 7, pp. 23872393, Jul. 2014.
[201]Myny, K., Smout, S., Rockelé, M., Bhoolokam, A., Ke, T. H., Steudel, S., Cobb, B., Gulati, A., Rodriguez, F. G., Obata, K., Marinkovic, M., Pham, D.-V., Hoppe, A., Gelinck, G. H., Genoe, J., Dehaene, W., and Heremans, P., “A thin-film microprocessor with inkjet print-programmable memory,” Sci. Rep., vol. 4, Dec. 2014.
[202]Rogers, J. A., Someya, T., and Huang, Y., “Materials and Mechanics for Stretchable Electronics,” Science, vol. 327, no. 5973, pp. 16031607, Mar. 2010.
[203]“Historic data are collected on the Intel Museum” [Online]. Available: http://www.intel.com/about/companyinfo/museum/exhibits/4004/index.htm. The specifications can be found at http://datasheets.chipdb.org/Intel/MCS-4/datashts/intel-4004.pdf

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.