Skip to main content Accesibility Help
×
×
Home
The Rock Physics Handbook
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 906
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Picotti, Stefano Carcione, José M. and Ba, Jing 2019. Rock-physics templates based on seismic Q. GEOPHYSICS, Vol. 84, Issue. 1, p. MR13.

    Das, Prabal Shankar Chatterjee, Rima Dasgupta, Sumangal Das, Ranajit Bakshi, Debjani and Gupta, Mukesh 2019. Quantification and spatial distribution of pore-filling materials through constrained rock physics template and fluid response modelling in Paleogene clastic reservoir from Cauvery basin, India. Geophysical Prospecting, Vol. 67, Issue. 1, p. 150.

    Fang, Hongjian Yao, Huajian Zhang, Haijiang Thurber, Clifford Ben-Zion, Yehuda and van der Hilst, Robert D 2019. V p/Vs tomography in the southern California plate boundary region using body and surface wave traveltime data. Geophysical Journal International, Vol. 216, Issue. 1, p. 609.

    Wapenaar, Kees 2019. Unified matrix–vector wave equation, reciprocity and representations. Geophysical Journal International, Vol. 216, Issue. 1, p. 560.

    Ramos, Matthew J. Nicolas Espinoza, D. Laubach, Stephen E. and Torres-Verdín, Carlos 2019. Quantifying static and dynamic stiffness anisotropy and nonlinearity in finely laminated shales: Experimental measurement and modeling. GEOPHYSICS, Vol. 84, Issue. 1, p. MR25.

    Azevedo, Leonardo Grana, Dario and Amaro, Catarina 2019. Geostatistical rock physics AVA inversion. Geophysical Journal International, Vol. 216, Issue. 3, p. 1728.

    Doghmane, M. Z. Belahcene, B. and Kidouche, M. 2019. Renewable Energy for Smart and Sustainable Cities. Vol. 62, Issue. , p. 129.

    Tiberi, C Gautier, S Ebinger, C Roecker, S Plasman, M Albaric, J Déverchère, J Peyrat, S Perrot, J Wambura, R Ferdinand Msabi, M Muzuka, A Mulibo, G and Kianji, G 2019. Lithospheric modification by extension and magmatism at the craton-orogenic boundary: North Tanzania Divergence, East Africa. Geophysical Journal International, Vol. 216, Issue. 3, p. 1693.

    Narongsirikul, Sirikarn Mondol, Nazmul Haque and Jahren, Jens 2019. Acoustic and petrophysical properties of mechanically compacted overconsolidated sands: Part 2 - Rock physics modelling and applications. Geophysical Prospecting, Vol. 67, Issue. 1, p. 114.

    Meng, Qingjuan and Shi, Zhifei 2019. Vibration Isolation of Plane Waves by Periodic Pipe Pile Barriers in Saturated Soil. Journal of Aerospace Engineering, Vol. 32, Issue. 1, p. 04018114.

    Smrekar, Suzanne E. Lognonné, Philippe Spohn, Tilman Banerdt, W. Bruce Breuer, Doris Christensen, Ulrich Dehant, Véronique Drilleau, Mélanie Folkner, William Fuji, Nobuaki Garcia, Raphael F. Giardini, Domenico Golombek, Matthew Grott, Matthias Gudkova, Tamara Johnson, Catherine Khan, Amir Langlais, Benoit Mittelholz, Anna Mocquet, Antoine Myhill, Robert Panning, Mark Perrin, Clément Pike, Tom Plesa, Ana-Catalina Rivoldini, Attilio Samuel, Henri Stähler, Simon C. van Driel, Martin Van Hoolst, Tim Verhoeven, Olivier Weber, Renee and Wieczorek, Mark 2019. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Vol. 215, Issue. 1,

    Liu, Changcheng Ghosh, Deva Prasad Salim, Ahmed Mohamed Ahmed and Chow, Weng Sum 2019. A new fluid factor and its application using a deep learning approach. Geophysical Prospecting, Vol. 67, Issue. 1, p. 140.

    Zhang, Zhishuai Du, Jing and Mavko, Gary M 2019. Reservoir characterization using perforation shots: anisotropy, attenuation and uncertainty analysis. Geophysical Journal International, Vol. 216, Issue. 1, p. 470.

    Li, Chunxiao Ostadhassan, Mehdi Abarghani, Arash Fogden, Andrew and Kong, Lingyun 2019. Multi-scale evaluation of mechanical properties of the Bakken shale. Journal of Materials Science, Vol. 54, Issue. 3, p. 2133.

    Mašín, David 2019. Modelling of Soil Behaviour with Hypoplasticity. p. 119.

    Regnet, Jean-Baptiste Fortin, Jérôme Nicolas, Aurélien Pellerin, Matthieu and Guéguen, Yves 2019. Elastic properties of continental carbonates: From controlling factors to an applicable model for acoustic-velocity predictions. GEOPHYSICS, Vol. 84, Issue. 1, p. MR45.

    Bangash, Anees Ahmad Khan, Khalid Amin and Akhter, Gulraiz 2019. Rock Physics Relations Derived from Petrophysical Logs for Indus Offshore Area, Pakistan. Arabian Journal for Science and Engineering, Vol. 44, Issue. 1, p. 409.

    Pan, Xinpeng and Zhang, Guangzhi 2019. Fracture detection and fluid identification based on anisotropic Gassmann equation and linear-slip model. GEOPHYSICS, Vol. 84, Issue. 1, p. R99.

    Ramos, Matthew J Espinoza, D Nicolas Goldfarb, Eric J Tisato, Nicola Laubach, Stephen E and Torres-Verdín, Carlos 2019. Microstructural controls on elastic anisotropy of finely laminated Mancos Shale. Geophysical Journal International, Vol. 216, Issue. 2, p. 991.

    Orlander, Tobias Adamopoulou, Eirini Jerver Asmussen, Janus Marczyński, Adam Andrzej Milsch, Harald Pasquinelli, Lisa and Lykke Fabricius, Ida 2018. Thermal conductivity of sandstones from Biot’s coefficient. GEOPHYSICS, Vol. 83, Issue. 5, p. D173.

    ×

Book description

The Rock Physics Handbook addresses the relationships between geophysical observations and the underlying physical properties of rocks. It distills a vast quantity of background theory and laboratory results into a series of concise chapters that provide practical solutions to problems in geophysical data interpretation. This expanded second edition presents major new chapters on statistical rock physics and velocity-porosity-clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, borehole waves, models for fractured media, poroelastic models, and attenuation models. This new edition also provides an enhanced set of appendices with key empirical results, data tables, and an atlas of reservoir rock properties - extended to include carbonates, clays, gas hydrates, and heavy oils. Supported by a website hosting MATLAB® routines for implementing the various rock physics formulas, this book is a vital resource for advanced students and university faculty, as well as petroleum industry geophysicists and engineers.

Reviews

Reviews of the first edition:‘The Rock Physics Handbook … has stood on my shelf for many years as a succinct, readable volume both for reference and numerical recipes in rock physics and seismic wave propagation.’

Source: Surveys in Geophysics

‘… covers a wide range of topics and brings together most of the theoretical and laboratory work of rock physics which is necessary for the interpretation of seismic data … an excellent reference text.’

Source: Geological Magazine

‘… an invaluable single volume reference of material otherwise widely scattered in the literature.’

Source: Mineral Planning

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
Achenbach, J. D., 1984. Wave Propagation in Elastic Solids. Amsterdam: Elsevier Science Publication.
Aki, K. and Richards, P. G., 1980. Quantitative Seismology: Theory and Methods. San Francisco, CA: W. H. Freeman and Co.
Aleksandrov, K. S. and Ryzhova, T. V., 1961a. Elastic properties of rock-forming minerals II. Layered silicates. Bull. Acad. Sci. USSR, Geophys. Ser. English translation no. 12, 1165–1168.
Alexandrov, K. S. and Ryzhova, T. V., 1961b. The elastic properties of crystals. Sov. Phys. Crystallogr., 6, 228–252.
Alexandrov, K. S., Ryzhova, T. V., and Belikov, B. P., 1964. The elastic properties of pyroxenes. Sov. Phys. Crystallog., 8, 589–591.
Alkalifah, T. and Tsvankin, I., 1995. Velocity analysis for transversely isotropic media. Geophys., 60, 1550–1566.
Anderson, O. L. and Liebermann, R. C., 1966. Sound velocities in rocks and minerals. VESIAC State-of-the-Art Report No. 7885–4-x, University of Michigan.
Angel, Y. C. and Achenbach, J. D., 1985. Reflection and transmission of elastic waves by aperiodic array of cracks. J. Appl. Mech., 52, 33–41.
Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Mech. Eng., 146, 54–62.
Auld, B. A., 1990. Acoustic Fields and Waves in Solids, vols. 1, 2. Malabar, FL: Robert E. Krieger Publication Co.
Backus, G. E., 1962. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–4440.
Bakulin, A., 2003. Intrinsic and layer-induced vertical transverse isotropy. Geophys., 68, 1708–1713.
Bakulin, A. and Grechka, V., 2003. Effective anisotropy of layered media. Geophys., 68, 1817–1821.
Bakulin, A., Grechka, V., and Tsvankin, I., 2000. Estimation of fracture parameters from reflection seismic data – Part I: HTI model due to a single fracture set. Geophys., 65, 1788–1802.
Bakulin, V. and Bakulin, A., 1999. Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants. In 69th Annual International Meeting, SEG, Expanded Abstracts, pp. 1971–1974.
Banik, N. C., 1987. An effective anisotropy parameter in transversely isotropic media. Geophys., 52, 1654.
Banik, N. C., Lerche, I., and Shuey, R. T., 1985. Stratigraphic filtering, Part I: Derivation of the O'Doherty–Anstey formula. Geophys., 50, 2768–2774.
Bardis, S. C., Lumsden, A. C., and Barton, N. L., 1983. Fundamentals of rock joint deformation. Int. J. Rock Mech., 20, 249–268.
Bass, J. D., 1984. Elasticity of single-crystal orthoferrosilite. J. Geophys. Res., 89, 4359–4371.
Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophys., 57, 1396–1408.
Bear, J., 1972. Dynamics of Fluids in Porous Media. Mineola, NY: Dover Publications, Inc.
Belikov, B. P., Alexandrov, T. W., and Rysova, T. W., 1970. Elastic Properties of Rock Minerals and Rocks. Moscow: Nauka.
Beltzer, A. I., 1988. Acoustics of Solids. Berlin: Springer-Verlag.
Ben-Menahem, A. and Singh, S., 1981. Seismic Waves and Sources. New York: Springer-Verlag.
Beran, M. J., 1968. Statistical Continuum Theories. New York: Wiley Interscience.
Beran, M. J. and Molyneux, J., 1966. Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Quart. Appl. Math., 24, 107–118.
Berge, P. A., Fryer, G. J., and Wilkens, R. H., 1992. Velocity–porosity relationships in the upper oceanic crust: theoretical considerations. J. Geophys. Res., 97, 15 239–15 254.
Berge, P. A., Berryman, J. G., and Bonner, B. P., 1993. Influence of microstructure on rock elastic properties. Geophys. Res. Lett., 20, 2619–2622.
Bergmann, L., 1954. Der Ultraschall und seine Anwendung in Wissenschaft und Technik. Zurich: S. Hirzel.
Berlincourt, D., Jaffe, H., and Shiozawa, L. R., 1963. Electroelastic properties of the sulfides, selenides, and tellurides of Zn and Cd. Phys. Rev., 129, 1009–1017.
Bernal, J. D. and Mason, J., 1960. Coordination of randomly packed spheres. Nature, 188, 910–911.
Bernstein, B. T., 1963. Elastic constants of synthetic sapphire at 27 degrees Celsius. J. Appl. Phys., 34, 169–172.
Berryman, J. G., 1980a. Confirmation of Biot's theory. Appl. Phys Lett., 37, 382–384.
Berryman, J. G., 1980b. Long-wavelength propagation in composite elastic media. J. Acoust. Soc. Am., 68, 1809–1831.
Berryman, J. G., 1981. Elastic wave propagation in fluid-saturated porous media. J. Acoust. Soc. Am., 69, 416–424.
Berryman, J. G., 1983. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies. J. Acoust. Soc. Am., 74, 1805–1812.
Berryman, J. G., 1992a. Effective stress for transport properties of inhomogeneous porous rock. J. Geophys. Res., 97, 17 409–17 424.
Berryman, J. G., 1992b. Single-scattering approximations for coefficients in Biot's equations of poroelasticity. J. Acoust. Soc. Am., 91, 551–571.
Berryman, J. G., 1993. Effective stress rules for pore-fluid transport in rocks containing two minerals. Int. J. Rock Mech., 30, 1165–1168.
Berryman, J. G., 1995. Mixture theories for rock properties. In Rock Physics and Phase Relations: a Handbook of Physical Constants, ed. Ahrens, T. J.. Washington, DC: American Geophysical Union, pp. 205–228.
Berryman, J. G., 2008. Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies. Geophys., 73, D1–D10.
Berryman, J. G. and Milton, G. W., 1988. Microgeometry of random composites and porous media. J. Physics D, 21, 87–94.
Berryman, J. G. and Milton, G. W., 1991. Exact results for generalized Gassmann's equation in composite porous media with two constituents. Geophys., 56, 1950–1960.
Berryman, J. G., Pride, S. R., and Wang, H. F., 1992. A differential scheme for elastic properties of rocks with dry or saturated cracks. In Proc. 15th ASCE Engineering Mechanics Conference.
Berryman, J. G., Grechka, V. Y., and Berge, P., 1999. Analysis of Thomsen parameters for finely layered VTI media. Geophys. Prospect., 47, 959–978.
Bhalla, A. S., Cook, W. R., Hearmon, R. F. S., et al., 1984. Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals. In Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics, vol. 18 (supplement to vol. III/11), ed. Hellwege, K.-H. and Hellwege, A. M.. Berlin: Springer-Verlag.
Bhimasenacher, J., 1945. Elastic constants of calcite and sodium nitrate. Proc. Ind. Acad. Sci. A, 22, 199–207.
Bilodeaux, B., 1997. Shaley Sand Evaluation, course notes. Stanford University.
Biot, M. A., 1956. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range and II. Higher-frequency range. J. Acoust. Soc. Am., 28, 168–191.
Biot, M. A., 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33, 1482–1498.
Biot, M. A. and Willis, D. G., 1957. The elastic coefficients of the theory of consolidation. J. App. Mech., 24, 594–601.
Birch, F., 1960a. Elastic constants of rutile – a correction to a paper by R. K. Verma, “Elasticity of some high-density crystals.”J. Geophys. Res., 65, 3855–3856.
Birch, F., 1960b. The velocity of compressional waves in rocks to 10 kilobars. J. Geophys. Res., 65, 1083–1102.
Birch, F., 1961. The velocity of compressional waves in rocks to 10 kilobars, Part 2. J. Geophys. Res., 66, 2199–2224.
Birch, F., 1966. Compressibility; elastic constants. In Handbook of Physical Constants, ed. Clark, S. P., Geolog. Soc. Am., Memoir, vol. 97, pp. 97–174.
Bishop, C. M., 2006. Pattern Recognition and Machine Learning. New York: Springer-Verlag.
Blair, D. P., 1990. A direct comparison between vibrational resonance and pulse transmission data for assessment of seismic attenuation in rock. Geophys., 55, 51–60.
Blakslee, O. L., Proctor, D. G., Seldin, E. J., Sperce, G. B., and Werg, T., 1970. Elastic constants of compression-annealed pyrolitic graphite. J. Appl. Phys., 41, 3373–3382.
Blangy, J. P., 1992. Integrated Seismic Lithologic Interpretation: the Petrophysical Basis. Ph.D. dissertation, Stanford University.
Boggs, S., 2001. Principles of Sedimentology and Stratigraphy. Upper Saddle River, NJ: Prentice-Hall.
Born, M. and Wolf, E., 1980. Principles of Optics, 6th edn. Oxford: Pergamon Press.
Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophys. Prospecting, 9, 485–503.
Bourbié, T., Coussy, O., and Zinszner, B., 1987. Acoustics of Porous Media. Houston, TX: Gulf Publishing Co.
Bowers, G. L., 1995. Pore pressure estimation from velocity data: accounting for pore pressure mechanisms besides undercompaction. SPE Drilling and Completion (June), 89–95.
Boyse, W. E., 1986. Wave Propagation and Inversion in Slightly Inhomogeneous Media. Ph.D. dissertation, Stanford University.
Bracewell, R., 1965. The Fourier Transform and Its Application. New York: McGraw-Hill Book Co.
Bradford, I. D. R., Fuller, J., Thompson, P. J., and Walsgrove, T. R., 1998. Benefits of assessing the solids production risk in a North Sea reservoir using elastoplastic modeling: SPE/ISRM 47360. Papers presented at the SPE/ISRM Eurock '98, Trondheim, Norway, 8–10 July, pp. 261–269.
Bradley, W. B., 1979. Failure of inclined boreholes. J. Energy Resources Tech., Trans., ASME, 101, 232–239.
Brandt, H., 1955. A study of the speed of sound in porous granular media. J. Appl. Mech., 22, 479–486.
Bratli, R. K., Horsrud, P., and Risnes, R., 1983. Rock mechanics applied to the region near a wellbore. Proc. 5th Int. Congr. Rock Mechanics, F1–F17. Melbourne: International Society for Rock Mechanics.
Brevik, I., 1995. Chalk data, presented at workshop on effective media, Karlsruhe.
Brie, A., Pampuri, F., Marsala, A. F., and Meazza, O., 1995. Shear sonic interpretation in gas-bearing sands. SPE, 30595, 701–710.
Brisco, B., Pultz, T. J., Brown, R. J., et al., 1992. Soil moisture measurement using portable dielectric probes and time domain reflectometry. Water Resources Res., 28, 1339–1346.
Bristow, J. R., 1960. Microcracks, and the static and dynamic elastic constants of annealed heavily coldworked metals. Brit. J. Appl. Phys., 11, 81–85.
Brito Dos Santos, W. L., Ulrych, T. J., and Lima, O. A. L., 1988. A new approach for deriving pseudovelocity logs from resistivity logs. Geophys. Prospecting, 36, 83–91.
Brocher, T., 2005, Relations between elastic wavespeeds and density in the Earth's crust. Bull. Seismol. Soc. Amer., 95, 6, 2081–2092.
Brown, G. G., 1966. Unit Operations. New York: J. Wiley.
Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophys., 40, 608–616.
Brown, S. R. and Scholz, C. H., 1986. Closure of random elastic surfaces: I. Contact. J. Geophys. Res., 90, 5531–5545.
Bruggeman, D. A. G., 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys., Lpz, 24, 636–679.
Budiansky, B., 1965. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223–227.
Budiansky, B. and O'Connell, R. J., 1976. Elastic moduli of a cracked solid. Int. J. Solids Structures, 12, 81–97.
Cadoret, T., 1993. Effet de la Saturation Eau/Gaz sur les Propriétés Acoustiques des Roches. Ph.D. dissertation, University of Paris, VII.
Carcione, J. M., Ursin, B., and Nordskag, J. I., 2007. Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics, 72, E193–E204.
Carman, P. C., 1961. L'écoulement des Gaz á Travers les Milieux Poreux, Bibliothéque des Sciences et Techniques Nucléaires, Presses Universitaires de France, Paris.
Carmichael, R. S., 1989. Practical Handbook of Physical Properties of Rocks and Minerals. Boca Raton, FL: CRC Press.
Castagna, J. P., 1993. AVO analysis-tutorial and review. In Offset Dependent Reflectivity – Theory and Practice of AVO Analysis. ed. Castagna, J. P. and Backus, M.. Investigations in Geophysics, No. 8, Society of Exploration Geophysicists, Tulsa, Oklahoma, pp. 3–36.
Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophys., 50, 571–581.
Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993. Rock physics – The link between rock properties and AVO response. In Offset-Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M.. Investigations in Geophysics, No. 8, Society of Exploration Geophysicists, Tulsa, Oklahoma, pp. 135–171.
Chang, C., Zoback, M. D., and Khaksar, A., 2004. Rock strength and physical property measurements in sedimentary rocks. SRB Annual Report, vol. 96, paper G4.
Chapman, M., 2003. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys. Prosp., 51, 369–379.
Chapman, M., Zatsepin, S. V., and Crampin, S., 2002. Derivation of a microstructural poroelasticity model. Geophys. J. Int., 151, 427–451.
Chapman, M., Liu, E., and Li, X-Y., 2006. The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys. J. Int., 167, 89–105.
Chelam, E. V., 1961. Thesis, Indian Institute of Science, Bangalore.
Chen, W., 1995. AVO in Azimuthally Anisotropic Media: Fracture Detection Using P-wave Data and a Seismic Study of Naturally Fractured Tight Gas Reservoirs. Ph.D. dissertation, Stanford University.
Cheng, C. H., 1978. Seismic Velocities in Porous Rocks: Direct and Inverse Problems. Sc.D. thesis, MIT, Cambridge, Massachusetts.
Cheng, C. H., 1993. Crack models for a transversely anisotropic medium. J. Geophys. Res., 98, 675–684.
Choy, M. M., Cook, W. R., Hearmon, R. F. S., et al., 1979. Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals. In Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics, vol. 11 (revised and extended edition of vols. III/1 and III/2), ed. Kellwege, K.-H. and Hellwege, A. M.. Berlin: Springer-Verlag.
Christensen, N. I., 1972. Elastic properties of polycrystalline magnesium, iron, and manganese carbonates to 10 kilobars. J. Geophys. Res., 77, 369–372.
Christensen, N. I. and Wang, H. F., 1985. The influence of pore pressure and confining pressure on dynamic elastic properties of Berea Sandstone. Geophysics, 50, 207–213.
Christensen, N. I. and Mooney, W. D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100, 9761–9788.
Christensen, R. M., 1991. Mechanics of Composite Materials. Malabar, FL: Robert E. Krieger Publication Co.
Christensen, R. M., 2005. Mechanics of Composite Materials. New York: Dover Publications.
Ciz, R. and Shapiro, S., 2007. Generalization of Gassmann equations for porous media saturated with a solid material. Geophysics, 72, A75–A79.
Ciz, R., Siggins, A. F., Gurevich, B., and Dvorkin, J., 2008. Influence of microheterogeneity on effectives properties of rocks. Geophysics, 73, E7–E14.
Claerbout, J. F., 1985. Fundamentals of Geophysical Data Processing. Palo Alto, CA: Blackwell Scientific Publications.
Claerbout, J. F., 1992. Earth Sounding Analysis: Processing versus Inversion. Boston, MA: Blackwell Scientific Publications.
Clark, V. A., Tittmann, B. R., and Spencer, T. W., 1980. Effect of volatiles on attenuation (Q–1) and velocity in sedimentary rocks. J. Geophys. Res., 85, 5190.
Clavier, C., Coates, G., and Dumanoir, J., 1984. Theoretical and experimental bases for the dual-water model for interpretation of shaley sands. Soc. Pet. Eng. J., 24, 153–168.
Cleary, M. P., Chen, I.-W., and Lee, S.-M., 1980. Self-consistent techniques for heterogeneous media. Am. Soc. Civil Eng. J. Eng. Mech., 106, 861–887.
Cole, K. S. and Cole, R. H., 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys., 9, 341–351.
Connolly, P., 1998. Calibration and inversion of non-zero offset seismic. Soc. Expl. Geophys., 68th Annual Meeting, Expanded Abstracts. Tulsa, OK: Society of Exploration Geophysicists.
Connolly, P., 1999. Elastic impedance. The Leading Edge, 18, 438–452.
Corson, P. B., 1974. Correlation functions for predicting properties of heterogeneous materials. J. Appl. Phys., 45, 3159–3179.
Cruts, H. M. A., Groenenboom, J., Duijndam, A. J. W., and Fokkema, J. T., 1995. Experimental verification of stress-induced anisotropy. Expanded Abstracts, Soc. Expl. Geophys., 65th Annual International Meeting, pp. 894–897.
Cumberland, D. J. and Crawford, R. J., 1987. The packing of particles. In Handbook of Powder Technology, vol. 6. New York: Elsevier.
Dagan, G., 1993. Higher-order correction for effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. Transp. Posous Media, 12, 279–290.
Dandekar, D. P., 1968. Pressure dependence of the elastic constants of calcite. Phys. Rev., 172, 873.
Darcy, H., 1856. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont.
Debye, P., 1945. Polar Molecules. Mineola, NY: Dover.
Cruz, V. and Spanos, T. J. T., 1985. Seismic wave propagation in a porous medium. Geophysics, 50, 1556–1565.
Delameter, W. R., Hermann, G., Barnett, D. M., 1974. Weakening of an elastic solid by a rectangular array of cracks. J. Appl. Mech., 42, 74–80.
Dellinger, J. and Vernik, L., 1992. Do core sample measurements record group or phase velocity? Soc. Expl. Geophys. 62nd Annual International Meeting, Expanded Abstracts, pp. 662–665.
Dellinger, J., Vasicek, D., and Sondergeld, C., 1998. Kelvin notation for stabilizing elastic-constant inversion. Rev. IFP, 53, 709–719.
Denton, W. H., 1957. The packing and flow of spheres. AERE Report E/R 1095.
Desbrandes, R., 1985. Encyclopedia of Well Logging. Houston, TX: Gulf Publishing Company.
Digby, P. J., 1981. The effective elastic moduli of porous granular rocks. J. Appl. Mech., 48, 803–808.
Dix, C. H., 1955. Seismic velocities from surface measurements. Geophys., 20, 68–86.
Domenico, S. N., 1976. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophys., 41, 882–894.
Doraiswami, M. S., 1947. Elastic constants of magnetite, pyrite, and chromite. Proc. Ind. Acad. Sci., A, 25, 414–416.
Duda, R. O., Hart, P. E., and Stork, D. G., 2000. Pattern Classification. New York: John Wiley & Sons.
Duffaut, K., Alsos, T., Landrø, M., Rognø, H., and Al-Najjar, N. F., 2000. Shear-wave elastic impedance. Leading Edge, 19, 1222–1229.
Dullien, F. A. L., 1991. One and two phase flow in porous media and pore structure. In Physics of Granular Media, ed. Bideau, D. and Dodds, J.. New York: Science Publishers Inc., pp. 173–214.
Dullien, F. A. L., 1992. Porous Media: Fluid Transport and Pore Structure. San Diego, CA: Academic Press.
Dutta, N. C. and Odé, H., 1979. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model) – Part 1: Biot theory, Part II: Results. Geophys., 44, 1777–1805.
Dutta, N. C. and Seriff, A. J., 1979. On White's model of attenuation in rocks with partial gas saturation. Geophysics, 44, 1806–1812.
Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophys., 58, 524–533.
Dvorkin, J. and Nur, A., 1996. Elasticity of high-porosity sandstones: theory for two North Sea datasets. Geophys., 61, 1363–1370.
Dvorkin, J., Nolen-Hoeksema, R., and Nur, A., 1994. The squirt-flow mechanism: macroscopic description. Geophys., 59, 428–438.
Dvorkin, J., Mavko, G., and Nur, A., 1995. Squirt flow in fully saturated rocks. Geophys. 60, 97–107.
Dvorkin, J. P. and Mavko, G., 2006. Modeling attenuation in reservoir and nonreservoir rock. Leading Edge, 25, 194–197.
Eastwood, R. L. and Castagna, J. P., 1986. Interpretation of VP/VS ratios from sonic logs. In Shear Wave Exploration, Geophysical Developments, no. 1, ed. Danbom, S. H. and Domenico, S. N.. Tulsa, OK: Society of Exploration Geophysicists.
Eaton, B. A., 1975. The equation for geopressure prediction from well logs. Paper SPE 5544. Houston, TX: Society of Petroleum Engineers.
Eberhart-Phillips, D. M., 1989. Investigation of Crustal Structure and Active Tectonic Processes in the Coast Ranges, Central California. Ph.D. dissertation, Stanford University.
Efron, B. and Tibshirani, R. J., 1993. An Introduction to the Bootstrap. New York: Chapman and Hall.
Eimer, C., 1967. Stresses in multi-phase media. Arch. Mech. Stos., 19, 521.
Eimer, C., 1968. The boundary effect in elastic multiphase bodies. Arch. Mech. Stos., 20, 87.
Einspruch, N. G. and Manning, R. J., 1963. Elastic constants of compound semi-conductors ZnS, PbTe, GaSb. J. Acoust. Soc. Am., 35, 215–216.
Eissa, E. A. and Kazi, A., 1988. Relation between static and dynamic Young's moduli of rocks. Int. J. Rock Mech., 25, 479–482.
Ellis, D., Howard, J., Flaum, C., et al., 1988. Mineral logging parameters: Nuclear and acoustic. Tech. Rev., 36(1), 38–55.
Elmore, W. C. and Heald, M. A., 1985. Physics of Waves. Mineola, NY: Dover Publications, Inc.
Elrod, H. G., 1979. A general theory for laminar lubrication with Reynolds roughness. J. Lubr. Tech., 101, 8–14.
Endres, A. L. and Knight, R., 1992. A theoretical treatment of the effect of microscopic fluid distribution on the dielectric properties of partially saturated rocks. Geophys. Prospecting, 40, 307–324.
Epstein, P. S., 1941. On the absorption of sound waves in suspensions and emulsions. In Theodore Von Karmen Anniversary Volume, pp. 162–188.
Epstein, P. S. and Carhart, R. R., 1953. The absorption of sound in suspensions and emulsions: I. Water fog in air. J. Acoust. Soc. Am., 25, 553–565.
Eshelby, J. D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London A, 241, 376–396.
Fabricius, I. L., 2003. How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bull., 87, 1755–1778.
Faust, L. Y., 1953. A velocity function including lithologic variation. Geophys., 18, 271–288.
Finney, J. L., 1970. Random packings and the structure of simple liquids – I. The geometry of random close packing. Proc. Roy. Soc. London A, 319, 479–493.
Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., and Risnes, R., 2008. Petroleum Related Rock Mechanics. Amsterdam: Elsevier.
Florez, J.-M., 2005. Integrating Geology, Rock Physics, and Seismology for Reservoir Quality Prediction. Ph.D. dissertation, Stanford University.
Focke, J. W. and Munn, D., 1987. Cementation exponents (m) in Middle Eastern carbonate reservoirs. Soc. Pet. Eng., Form. Eval., 2, 155–167.
Folk, R. L. and Ward, W., 1957. Brazos river bar: a study in the significance of grain-size parameters. J. Sedim. Petrol., 27, 3–26.
,Formation Evaluation Data Handbook, 1982. Fort Worth, TX: Gearhart Industries, Inc.
Frazer, L. N., 1994. A pulse in a binary sediment. Geophys. J. Int., 118, 75–93.
Freyburg, , E., 1972. Der Untere und mittlere Buntsandstein SW-Thuringen in seinen gesteinstechnicschen Eigenschaften. Ber. Dte. Ges. Geol. Wiss. A, 176, 911–919.
Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition. Boston, MA: Academic Press.
Gammon, P. H., Kiefte, H., and Clouter, M. J., 1980. Elastic constants of ice by Brillouin spectroscopy. J. Glaciol., 25, 159–167.
Gangi, A. F. and Carlson, R. L., 1996. An asperity-deformation model for effective pressure. Tectonophysics, 256, 241–251.
Garcia, X. and Medina, E. A., 2006. Hysteresis effects studied by numerical simulations: cyclic loading-unloading of a realistic sand model. Geophysics, 71, F13–F20.
Gardner, G. H. F., 1962. Extensional waves in fluid-saturated porous cylinders. J. Acoust. Soc. Am., 34, 36–40.
Gardner, G. H. F., Gardner, L. W., and Gregory, A. R., 1974. Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophys., 39, 770–780.
Gassmann, F., 1951. Über die Elastizität poröser Medien. Vier. der Natur. Gesellschaft Zürich, 96, 1–23.
Geertsma, J., 1961. Velocity-log interpretation: the effect of rock bulk compressibility. Soc. Pet. Eng. J., 1, 235–248.
Geertsma, J. and Smit, D. C., 1961. Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophys., 26, 169–181.
Gelinsky, S. and Shapiro, S., 1997a. Poroelastic Backus averaging for anisotropic layered fluid- and gas-saturated sediments. Geophys., 62, 1867–1878.
Gelinsky, S. and Shapiro, S., 1997b. Dynamic equivalent medium model for thickly layered saturated sediments. Geophys. J. Int., 128, F1–F4.
Gelinsky, S., Shapiro, S., Muller, T., and Gurevich, B., 1998. Dynamic poroelasticity of thinly layered structures. Int. J. Solids Struct., 35, 4739–4751.
Gibiansky, L. V. and Torquato, S., 1996. Bounds on the effective moduli of cracked materials. J. Mech. Phys. Solids, 44, 233–242.
Gibson, R. L. and Toksöz, M. N., 1990. Permeability estimation from velocity anisotropy in fractured rock. J. Geophys. Res., 95, 15 643–15 656.
Glover, P. W. J., Hole, M. J., and Pous, J., 2000. A modified Archie's law for two conducting phases. Earth Planet. Sci. Lett., 180, 369–383.
Goddard, J. D., 1990. Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc. A, 430, 105–131.
Godfrey, J. J., Beaudoin, B. C., and Klemperer, S. L., 1997. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: implications for crustal growth at the North American continental margin. Geol. Soc. Amer. Bull., 109, 1536–1562.
Gold, N., Shapiro, S., Bojinski, S., and Muller, T. M., 2000. An approach to upscaling for seismic waves in statistically isotropic heterogeneous elastic media. Geophys., 65, 1837–1850.
Golubev, A. A. and Rabinovich, G. Y., 1976. Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Priklad. GeofizikaMoskva, 73, 109–116.
González, E. F. 2006. Physical and Quantitative Interpretation of Seismic Attributes for Rocks and Fluids Identification. Ph.D. dissertation, Stanford University.
Goodman, R. E. 1976. Methods of Geological Engineering in Discontinuous Rocks. New York: West Publishing.
Gorjainov, N. N. and Ljachowickij, F. M., 1979. Seismic Methods in Engineering Geology. Moscow: Nedra.
Graham, E. K. and Barsch, G. R., 1969. Elastic constants of single-crystal forsterite as a function of temperature and pressure. J. Geophys. Res., 74, 5949–5960.
Gray, D., Goodway, B., and Chen, T., 1999. Bridging the gap: AVO to detect changes in fundamental elastic constants. In Expanded Abstract, SEG International Meeting. Tulsa, OK: Society of Exploration Geophysicists.
Grechka, V. and Tsvankin, I., 1998. 3-D description of normal moveout in anisotropic inhomogeneous media. Geophys., 63, 1079–1092.
Greenberg, M. L. and Castagna, J. P., 1992. Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications. Geophys. Prospect., 40, 195–209.
Greenhalgh, S. A. and Emerson, D. W., 1986. Elastic properties of coal measure rock from the Sydney Basin, New South Wales. Expl. Geophys., 17, 157–163.
Greenwood, J. A. and Williamson, J., 1966. Contact of nominally flat surfaces. Proc. R. Soc., London A, 295, 300–319.
Gubernatis, J. E. and Krumhansl, J. A., 1975. Macroscopic engineering properties of polycrystalline materials: elastic properties. J. Appl. Phys., 46, 1875.
Guéguen, Y. and Palciauskas, V., 1994. Introduction to the Physics of Rocks. Princeton, NJ: Princeton University Press.
Gurevich, B., 2004. A simple derivation of the effective stress coefficient for seismic velocities in porous rocks. Geophys., 69, 393–397.
Gurevich, B. and Lopatnikov, S. L., 1995. Velocity and attenuation of elastic waves in finely layered porous rocks. Geophys. J. Int., 121, 933–947.
Gutierrez, M. A., Braunsdorf, N. R., and Couzens, B. A., 2006. Calibration and ranking of pore-pressure prediction models. Leading Edge, 25(12), 1516–1523.
Gvirtzman, H. and Roberts, P., 1991. Pore-scale spatial analysis of two immiscible fluids in porous media. Water Resources Res., 27, 1165–1176.
Hacikoylu, P., Dvorkin, J., and Mavko, G., 2006. Resistivity–velocity transforms revisited. Leading Edge, 25, 1006–1009.
Han, D.-H., 1986. Effects of Porosity and Clay Content on Acoustic Properties of Sandstones and Unconsolidated Sediments. Ph.D. dissertation, Stanford University.
Han, D.-H., Nur, A., and Morgan, D., 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophys., 51, 2093–2107.
Hanai, T., 1968. Electrical properties of emulsions. In Emulsion Science, ed. Sherman, P.. New York: Academic Press, pp. 353–478.
Hashin, Z. and Shtrikman, S., 1962. A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys., 33, 3125–3131.
Hashin, Z. and Shtrikman, S., 1963. A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Solids, 11, 127–140.
Hastie, T., Tibshirani, R., and Freidman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag.
Hearmon, R. F. S., 1946. The elastic constants of anistropic materials. Rev. Mod. Phys., 18, 409–440.
Hearmon, R. F. S., 1956. The elastic constants of anistropic materials II. Adv. Phys., 5, 323–382.
Hearmon, R. F. S., 1979. The elastic constants of crystals and other anisotropic materials. In Landolt–Börnstein Tables, III/11, ed. Hellwege, K. H. and Hellwege, A. M.. Berlin: Springer-Verlag, pp. 1–244.
Hearmon, R. F. S., 1984. The elastic constants of crystals and other anisotropic materials. In Landolt–Börnstein Tables, III/18, ed. Hellwege, K. H. and Hellwege, A. M.. Berlin: Springer-Verlag, pp. 1–154.
Helbig, K., 1994. Foundations of Anisotropy for Exploration Seismics. Tarrytown, NY: Pergamon.
Helbig, K., 1998. A formalism for the consistent description of non-linear elasticity of anisotropic media. Rev. Inst. Français Pétrole, 53, 693–708.
Helbig, K. and Schoenberg, M., 1987. Anomalous polarizations of elastic waves in transversely isotropic media. J. Acoust. Soc. Am., 81, 1235–1245.
Helgerud, M., B., 2001. Wave Speeds in Gas Hydrate and Sediments Containing Gas Hydrate: a Laboratory and Modeling Study, Ph.D. dissertation, Stanford University.
Hermance, J. F., 1979. The electrical conductivity of materials containing partial melt, a simple model from Archie's law. Geophys. Res. Lett., 6, 613–616.
Herrick, D. C., 1988. Conductivity models, pore geometry, and conduction mechanisms. Trans. Soc. Prof. Well Log Analysts, 29th Annual Logging Symposium, San Antonio, TX. Paper D.
Hicks, W. G. and Berry, J. E., 1956. Application of continuous velocity logs to determination of fluid saturation of reservoir rocks. Geophys., 21, 739.
Hill, R., 1952. The elastic behavior of crystalline aggregate. Proc. Phys. Soc., LondonA, 65, 349–354.
Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, 357–372.
Hill, R., 1965. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 13, 213–222.
Hilterman, F., 1989. Is AVO the seismic signature of rock properties?Expanded Abstracts, Soc. Expl. Geophys., 59th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, p. 559.
Hoffmann, R., Xu, X., Batzle, M., et al., 2005. Effective pressure or what is the effect of pressure? Leading Edge, December, 1256–1260.
Horsrud, P., 2001. Estimating mechanical properties of shale from empirical correlations. SPE Drilling Completion, 16, 68–73.
Hottman, C. E. and Johnson, R. K., 1965. Estimation of formation pressures from log derived shale properties. J. Petrol. Tech., 17, 717–722.
Hovem, J. M. and Ingram, G. D., 1979. Viscous attenuation of sound in saturated sand. J. Acoust. Soc. Am., 66, 1807–1812.
Hudson, J. A., 1980. Overall properties of a cracked solid. Math. Proc. Camb. Phil. Soc., 88, 371–384.
Hudson, J. A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astron. Soc., 64, 133–150.
Hudson, J. A., 1990. Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks. Geophys. J. Int. 102, 465–469.
Hudson, J. A. and Liu, E., 1999. Effective elastic properties of heavily faulted structures. Geophys., 64, 479–485.
Hudson, J. A., Liu, E., and Crampin, S., 1996. The mechanical properties of materials with interconnected cracks and pores. Geophys. J. Int., 124, 105–112.
Huffman, D. F. and Norwood, M. H., 1960. Specific heat and elastic constants of calcium fluoride at low temperatures. Phys. Rev., 117, 709–711.
Humbert, P. and Plicque, F., 1972. Propriétés élastiques de carbonate rhomboedriques monocristallins: calcite, magnésite, dolomie. C. R. Acad. Sci., Paris B, 275, 391–394.
Huntington, H. B., 1958. The elastic constants of crystals. In Solid State Physics, vol. 7, ed. Seitz, F. and Turnbull, D.. New York: Academic Press, pp. 213–351.
Jackson, J. D., 1975. Classical Electrodynamics, 2nd edn. New York: John Wiley and Sons.
Jackson, P. D., Taylor-Smith, D., and Stanford, P. N., 1978. Resistivity–porosity–particle shape relationships for marine sands. Geophys., 43, 1250–1262.
Jaeger, J., Cook, N. G., and Zimmerman, R., 2007. Fundamentals of Rock Mechanics, 4th edn. Malden, MA: Blackwell Ltd.
Jaeger, J. C. and Cook, N. G. W., 1969. Fundamentals of Rock Mechanics. London: Chapman and Hall Ltd.
Jakobsen, M., Hudson, J. A., Minshull, T. A., and Singh, S. C., 2000. Elastic properties of hydrate-bearing sediments using effective medium theory. J. Geophys. Res., 105, 561–577.
Jakobsen, M., Hudson, J. A., and Johansen, T. A., 2003a. T-matrix approach to shale acoustics. Geophys. J. Int., 154, 533–558.
Jakobsen, M., Johansen, T. A., and McCann, C., 2003b. The acoustic signature of fluid flow in a complex porous media. J. Appl. Geophys., 54, 219–246.
Jenkins, G. M. and Watts, D. G., 1968. Spectral Analysis and Its Applications. San Francisco, CA: Holden-Day.
Jenkins, J., Johnson, D., Ragione, L., and Makse, H., 2005. Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J. Mech. Phys. Solids, 53, 197–225.
Jílek, P., 2002a. Modeling and Inversion of Converted-wave Reflection Coefficients in Anisotropic Media: a Tool for Quantitative AVO Analysis. Ph.D. dissertation, Center for Wave Phenomena, Colorado School of Mines.
Jílek, P., 2002b. Converted PS-wave reflection coefficients in weakly anisotropic media. Pure Appl. Geophys., 159, 1527–1562.
Jizba, D. L., 1991. Mechanical and Acoustical Properties of Sandstones and Shales. Ph.D. dissertation, Stanford University.
Johnson, D. L. and Plona, T. J., 1982. Acoustic slow waves and the consolidation transition. J. Acoust. Soc. Am., 72, 556–565.
Johnson, D. L., Koplic, J., and Dashen, R., 1987. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176, 379–400.
Johnson, D. L., Schwartz, L. M., Elata, D., et al., 1998. Linear and nonlinear elasticity of granular media: stress-induced anisotropy of a random sphere pack. Trans. ASME, 65, 380–388.
Johnson, P. A. and Rasolofosaon, P. N. J., 1996. Nonlinear elasticity and stress-induced anisotropy in rock. J. Geophys. Res., 100(B2), 3113–3124.
Joshi, S. K. and Mitra, S. S., 1960. Debye characteristic temperature of solids. Proc. Phys. Soc., London, 76, 295–298.
Juhász, I., 1981. Normalised Qv – The key to shaley sand evaluation using the Waxman–Smits equation in the absence of core data. Trans. Soc. Prof. Well Log Analysts, 22nd Annual Logging Symposium, Paper Z.
Kachanov, M., 1992. Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev., 45, 304–335.
Kan, T. K. and Swan, H. W., 2001. Geopressure prediction from automatically derived seismic velocities. Geophys., 66, 1937–1946.
Katahara, K., 2004. Fluid substitution in laminated shaly sands. SEG Extended Abstracts 74th Annual Meeting. Tulsa, OK: Society of Exploration Geophysicists.
Keller, J. B., 1964. Stochastic equations and wave propagation in random media. Proc. Symp. Appl. Math., 16, 145–170.
Kelvin, W.Thomson, , Lord, , 1856. Phil. Trans. R. Soc., 166, 481.
Kendall, K. and Tabor, D., 1971. An ultrasonic study of the area of contact between stationary and sliding surfaces. Proc. R. Soc., London A, 323, 321–340.
Kennett, B. L. N., 1974. Reflections, rays and reverberations. Bull. Seismol. Soc. Am., 64, 1685–1696.
Kennett, B. L. N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.
King, M. S., 1983. Static and dynamic elastic properties of rocks from the Canadian Shield. Int. J. Rock Mech., 20, 237–241.
Kjartansson, E., 1979. Constant Q wave propagation and attenuation. J. Geophys. Res., 84, 4737–4748.
Klimentos, T. and McCann, C., 1990. Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones. Geophys., 55, 998–1014.
Knight, R. and Dvorkin, J., 1992. Seismic and electrial properties of sandstones at low saturations. J. Geophys. Res., 97, 17 425–17 432.
Knight, R. and Nolen-Hoeksema, R., 1990. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophys. Res. Lett., 17, 1529–1532.
Knight, R. J. and Nur, A., 1987. The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophys., 52, 644–654.
Knopoff, L., 1964. Q. Rev. Geophys., 2, 625–660.
Knott, C. G., 1899. Reflection and refraction of elastic waves, with seismological applications. Phil. Mag., London, 48(64–97), 567–569.
Koesoemadinata, A.P. and McMechan, G. A., 2001. Empirical estimation of viscoelastic seismic parameters from petrophysical properties of sandstone. Geophys., 66, 1457–1470.
Koesoemadinata, A. P. and McMechan, G. A., 2003. Correlations between seismic parameters, EM parameters, and petrophysical/petrological properties for sandstone and carbonate at low water saturations. Geophys., 68, 870–883.
Koga, I., Aruga, M., and Yoshinaka, Y., 1958. Theory of plane elastic waves in a piezoelectric crystalline medium and determination of elastic and piezo-electric constants of quartz. Phys. Rev., 109, 1467–1473.
Korringa, J., 1973. Theory of elastic constants of heterogeneous media. J. Math. Phys., 14, 509.
Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Analyst, 31, November, 355–369.
Krishnamurty, T. S. G., 1963. Fourth-order elastic coefficients in crystals. Acta Cryst. 16, 839–840.
Kröner, E., 1967. Elastic moduli of perfectly disordered composite materials. J. Mech. Phys. Solids, 15, 319.
Kröner, E., 1977. Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids, 25, 137.
Kröner, E., 1986. Statistical modeling. In Modeling Small Deformations of Polycrystals, ed. Gittus, J. and Zarka, J.. New York: Elsevier, pp. 229–291.
Kumazawa, M. and Anderson, O. L., 1969. Elastic moduli, pressure derivatives, and temperature derivative of single-crystal olivine and single-crystal forsterite. J. Geophys. Res., 74, 5961–5972.
Kuperman, W. A., 1975. Coherent components of specular reflection and transmission at a randomly rough two-fluid interface. J. Acoust. Soc. Am., 58, 365–370.
Kuster, G. T. and Toksöz, M. N., 1974. Velocity and attenuation of seismic waves in two-phase media. Geophys., 39, 587–618.
Lal, M., 1999. Shale stability: drilling fluid interaction and shale strength. SPE 54356, presented at SPE Latin American and Caribbean Petroleum Engineering Conference, Caracas, Venezuela, 21–23 April. Tulsa, OK: Society of Exploration Geophysicists.
Lamb, H., 1945. Hydrodynamics. Mineola, NY: Dover.
Landau, L. D. and Lifschitz, E. D., 1959. Theory of Elasticity. Tarrytown, NY: Pergamon.
Landauer, R., 1952. The electrical resistance of binary metallic mixtures. J. Appl. Phys., 23, 779–784.
Lashkaripour, G. R. and Dusseault, M. B., 1993. A statistical study on shale properties; relationship among principal shale properties. Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering, Canberra, Australia, Rotterdam: Balkema, pp. 195–200.
Lawn, B. R. and Wilshaw, T. R., 1975. Fracture of Brittle Solids. Cambridge: Cambridge University Press.
Lazarus, D., 1949. The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10 000 bars. Phys. Rev., 76, 545–553.
Levin, F. K., 1971. Apparent velocity from dipping interface reflections. Geophys., 36, 510–516.
Levin, F. K., 1979. Seismic velocities in transversely isotropic media. Geophys., 44, 918–936.
Liebermann, R. C. and Schreiber, E., 1968. Elastic constants of polycrystalline hematite as a function of pressure to 3 kilobars. J. Geophys. Res., 73, 6585–6590.
Liu, H. P., Anderson, D. L., and Kanamori, H., 1976. Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophys. J. R. Astron. Soc., 47, 41–58.
Lockner, D. A., Walsh, J. B., and Byerlee, J. D., 1977. Changes in velocity and attenuation during deformation of granite. J. Geophys. Res., 82, 5374–5378.
Log Interpretation Charts, 1984. Publication SMP-7006. Houston, TX: Schlumberger Ltd.
Lucet, N., 1989. Vitesse et Attenuation des Ondes Élastiques Soniques et Ultrasoniques dans les Roches sous Pression de Confinement. Ph.D. dissertation, University of Paris.
Lucet, N. and Zinszner, B., 1992. Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks. Geophys., 57, 1018–1026.
Ludwig, W. J., Nafe, J. E., and Drake, C. L., 1970. Seismic refraction. In The Sea, ed. Maxwell, A. E.. New York: Wiley-Interscience, vol. 4, pp. 53–84.
Makse, H. A., Gland, N., Johnson, D. L., and Schwartz, L. M., 1999. Why effective medium theory fails in granular materials. Phys. Rev. Lett., 83, 5070–5073.
Makse, H. A., Johnson, D. L., and Schwartz, L. M., 2000. Packing of compressible granular materials. Phys. Rev. Lett., 84, 4160–4163.
Makse, H. A., Gland, N., Johnson, D. L., and Schwartz, L. M., 2004. Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E, L70, 061302.1–061302.19.
Mallick, S., 2001. AVO and elastic impedance. Leading Edge, 20, 1094–1104.
Manegold, E. and Engelhardt, W., 1933. Uber Kapillar-Systeme, XII, Die Berechnung des Stoffgehaltes heterogener Gerutstrukturen. Koll. Z., 63(2), 149–154.
Marion, D., 1990. Acoustical, Mechanical and Transport Properties of Sediments and Granular Materials. Ph.D. dissertation, Stanford University.
Marion, D. and Nur, A., 1991. Pore-filling material and its effect on velocity in rocks. Geophys., 56, 225–230.
Marion, D., Nur, A., Yin, H., and Han, D., 1992. Compressional velocity and porosity in sand–clay mixtures. Geophys., 57, 554–563.
Marle, C. M., 1981. Multiphase Flow in Porous Media. Houston, TX: Gulf Publishing Company.
Marple, S. L., 1987. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall.
Mason, W. P., 1943. Quartz crystal applications. Bell Syst. Tech. J., 22, 178.
Mason, W. P., 1950. Piezoelectric Crystals and Their Application to Ultrasonics. New York: D. Van Nostrand Co., Inc.
Mavko, G., 1980. Velocity and attenuation in partially molten rocks. J. Geophys. Res., 85, 5173–5189.
Mavko, G. and Bandyopadhyay, K., 2008. Approximate fluid substitution in weakly anisotropic VTI rocks. Geophys., in press.
Mavko, G. and Jizba, D., 1991. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophys., 56, 1940–1949.
Mavko, G. and Mukerji, T., 1995. Pore space compressibility and Gassmann's relation. Geophys., 60, 1743–1749.
Mavko, G. and Nolen-Hoeksema, R., 1994. Estimating seismic velocities in partially saturated rocks. Geophys., 59, 252–258.
Mavko, G. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80, 1444–1448.
Mavko, G. and Nur, A., 1978. The effect of nonelliptical cracks on the compressibility of rocks. J. Geophys. Res., 83, 4459–4468.
Mavko, G. and Nur, A., 1997. The effect of a percolation threshold in the Kozeny–Carman relation. Geophys., 62, 1480–1482.
Mavko, G., Kjartansson, E., and Winkler, K., 1979. Seismic wave attenuation in rocks. Rev. Geophys., 17, 1155–1164.
Mavko, G., Chan, C., and Mukerji, T., 1995. Fluid substitution: estimating changes in VP without knowing VS. Geophys., 60, 1750–1755.
Mavko, G., Mukerji, T., and Godfrey, N., 1995. Predicting stress-induced velocity anisotropy in rocks. Geophys., 60, 1081–1087.
Mazáč, O., Císlerová, M., Kelly, W. E., Landa, I., and Venhodová, D., 1990. Determination of hydraulic conductivities by surface geoelectrical methods. In Geotechnical and Environmental Geophysics, vol. II., ed. Ward, S. H.. Tulsa, OK: Society of Exploration Geophysicists, pp. 125–131.
McCann, D. M. and Entwisle, D. C., 1992. Determination of Young's modulus of the rock mass from geophysical well logs. In Geological Applications of Wireline Logs II, ed. Hurst, A., Griffiths, C. M., and Worthington, P. F.. Geological Society Special Publication, vol. 65. London: Geological Society, pp. 317–325.
McCoy, J. J., 1970. On the displacement field in an elastic medium with random variations in material properties. In Recent Advances in Engineering Science, vol. 2, ed. Eringen, A. C.. New York: Gordon and Breach pp. 235–254.
McGeary, R. K., 1967. Mechanical packing of spherical particles. J. Am. Ceram. Soc., 44(10), 513–522.
McNally, G. H., 1987. Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration, 24, 381–395.
McSkimin, H. J. and Bond, W. L., 1972. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys., 43, 2944–2948.
McSkimin, H. J., Andreatch, P., and Thurston, R. N., 1965. Elastic moduli of quartz vs. hydrostatic pressure at 25 and 195.8 degrees Celsius. J. Appl. Phys., 36, 1632.
Meador, R. A. and Cox, P. T., 1975. Dielectric constant logging: a salinity independent estimation of formation water volume. Soc. Petrol. Eng., Paper 5504.
Mehrabadi, M. M. and Cowin, S., 1989. Eigentorsors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math., 43, 15–41.
Mehta, C. H., 1983. Scattering theory of wave propagation in a two-phase medium. Geophys., 48, 1359–1372.
Mese, A. and Dvorkin, J., 2000. Static and dynamic moduli, deformation, and failure in shaley sand. DOE report, unpublished.
Middya, T. R. and Basu, A. N., 1986. Self-consistent T-matrix solution for the effective elastic properties of noncubic polycrystals. J. Appl. Phys., 59, 2368–2375.
Milholland, P., Manghnani, M. H., Schlanger, S. O., and Sutton, G. H., 1980. Geoacoustic modeling of deep-sea carbonate sediments. J. Acoust. Soc. Am., 68, 1351–1360.
Militzer, H. and Stoll, R., 1973. Einige Beitrageder geophysics zur primadatenerfassung im Bergbau: neue Bergbautechnik. Lipzig, 3, 21–25.
Milton, G. W., 1981. Bounds on the electromagnetic, elastic and other properties of two-component composites. Phys. Rev. Lett., 46, 542–545.
Mindlin, R. D., 1949. Compliance of elastic bodies in contact. J. Appl. Mech., 16, 259–268.
Moos, D., Zoback, M. D., and Bailey, L., 1999. Feasibility study of the stability of openhole multilaterals, Cook Inlet, Alaska. Presentation at 1999 SPE Mid-Continent Operations Symposium, Oklahoma City, OK, 28–31 March, SPE 52186.
Mukerji, T. and Mavko, G., 1994. Pore fluid effects on seismic velocity in anisotropic rocks. Geophys., 59, 233–244.
Mukerji, T., Berryman, J. G., Mavko, G., and Berge, P. A., 1995a. Differential effective medium modeling of rock elastic moduli with critical porosity constraints. Geophys. Res. Lett., 22, 555–558.
Mukerji, T., Mavko, G., Mujica, D., and Lucet, N., 1995b. Scale-dependent seismic velocity in heterogeneous media. Geophys., 60, 1222–1233.
Mukerji, T., Jørstad, A., Mavko, G., and Granli, J. R., 1998. Near and far offset impedances: seismic attributes for identifying lithofacies and pore fluids. Geophy. Res. Lett., 25, 4557–4560.
Müller, G., Roth, M., and Korn, M., 1992. Seismic-wave traveltimes in random media. Geophys. J. Int., 110, 29–41.
Muller, T. M. and Gurevich, B., 2005a. A first-order statistical smoothing approximation for the coherent wave field in porous random media. J. Acoust. Soc. Am., 117, 1796–1805.
Muller, T. M. and Gurevich, B., 2005b. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves. J. Acoust. Soc. Amer., 117, 2732–2741.
Muller, T. M. and Gurevich, B., 2006. Effective hydraulic conductivity and diffusivity of randomly heterogeneous porous solids with compressible constituents. Appl. Phys. Lett., 88, 121924.
Muller, T. M., Lambert, G., and Gurevich, B., 2007. Dynamic permeability of porous rocks and its seismic signatures. Geophys., 72, E149–E158.
Mura, T., 1982. Micromechanics of Defects in Solids. The Hague: Kluwer.
Murnaghan, F. D., 1951. Finite Deformation of an Elastic Solid. New York: John Wiley.
Murphy, W. F., III, 1982. Effects of Microstructure and Pore Fluids on the Acoustic Properties of Granular Sedimentary Materials. Ph.D. dissertation, Stanford University.
Murphy, W. F., 1984. Acoustic measures of partial gas saturation in tight sandstones. J. Geophys. Res., 89, 11 549–11 559.
Murphy, W. F., Winkler, K. W., and Kleinberg, R. L., 1984. Contact microphysics and viscous relaxation in sandstones. In Physics and Chemistry of Porous Media, ed. Johnson, D. L. and Sen, P. N.. New York: American Institute of Physics, pp. 176–190.
Murphy, W. F., Schwartz, L. M., and Hornby, B., 1991. Interpretation physics of VP and VS in sedimentary rocks. Trans. SPWLA 32nd Ann. Logging Symp., 1–24.
Myer, L., 2000. Fractures as collections of cracks. Int. J. Rock Mech., 37, 231–243.
Nishizawa, O., 1982. Seismic velocity anisotropy in a medium containing oriented cracks – transversely isotropic case. J. Phys. Earth, 30, 331–347.
Nolet, G., 1987. Seismic wave propagation and seismic tomography. In Seismic Tomography, ed. Nolet, G.. Dordrecht: D. Reidel Publication Co., pp. 1–23.
Norris, A. N., 1985. A differential scheme for the effective moduli of composites. Mech. Mater., 4, 1–16.
Norris, A. N. and Johnson, D. L., 1997. Nonlinear elasticity of granular media. ASME J. Appl. Mech., 64, 39–49.
Norris, A. N., Sheng, P., and Callegari, A. J., 1985. Effective-medium theories for two-phase dielectric media. J. Appl. Phys., 57, 1990–1996.
Nur, A., 1971. Effects of stress on velocity anisotropy in rocks with cracks. J. Geophys. Res., 76, 2022–2034.
Nur, A. and Byerlee, J. D., 1971. An exact effective stress law for elastic deformation of rocks with fluids. J. Geophys. Res., 76, 6414–6419.
Nur, A. and Simmons, G., 1969a. Stress-induced velocity anisotropy in rocks: an experimental study. J. Geophys. Res., 74, 6667.
Nur, A. and Simmons, G., 1969b. The effect of viscosity of a fluid phase on velocity in low-porosity rocks. Earth Planet. Sci. Lett., 7, 99–108.
Nur, A., Marion, D., and Yin, H., 1991. Wave velocities in sediments. In Shear Waves in Marine Sediments, ed. Hovem, J. M., Richardson, M. D., and Stoll, R. D.. Dordrecht: Kluwer Academic Publishers, pp. 131–140.
Nur, A., Mavko, G., Dvorkin, J., and Gal, D., 1995. Critical porosity: the key to relating physical properties to porosity in rocks. In Proc. 65th Ann. Int. Meeting, Soc. Expl. Geophys., vol. 878. Tulsa, OK: Society of Exploration Geophysicists.
O'Connell, R. J. and Budiansky, B., 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79, 4626–4627.
O'Connell, R. J. and Budiansky, B., 1977. Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res., 82, 5719–5735.
O'Doherty, R. F. and Anstey, N. A., 1971. Reflections on amplitudes. Geophys. Prospect., 19, 430–458.
Ohno, I., Yamamoto, S., and Anderson, O. L., 1986. Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. J. Phys. Chem. Solids, 47, 1103–1108.
Olhoeft, G. R., 1979. Tables of room temperature electrical properties for selected rocks and minerals with dielectric permittivity statistics. US Geological Survey Open File Report 79–993.
Osborn, J. A., 1945. Demagnetizing factors of the general ellipsoid. Phys. Rev., 67, 351–357.
Ozkan, H. and Jamieson, J. C., 1978. Pressure dependence of the elastic constants of nonmetamict zircon. Phys. Chem. Minerals, 2, 215–224.
Paillet, F. L. and Cheng, C. H., 1991. Acoustic Waves in Boreholes. Boca Raton, FL: CRC Press, p. 264.
Papadakis, E. P., 1963. Attenuation of pure elastic modes in NaCl single crystals. J. Appl. Phys., 34, 1872–1876.
Paterson, M. S. and Weiss, L. E., 1961. Symmetry concepts in the structural analysis of deformed rocks. Geolog. Soc. Am. Bull., 72, 841.
Pedersen, B. K. and Nordal, K., 1999. Petrophysical evaluation of thin beds: a review of the Thomas–Stieber approach. Course 24034 Report, Norwegian University of Science and Technology.
Peselnick, L. and Robie, R. A., 1963. Elastic constants of calcite. J. Appl. Phys., 34, 2494–2495.
Pickett, G. R., 1963. Acoustic character logs and their applications in formation evaluation. J. Petrol. Technol., 15, 650–667.
Ponte-Castaneda, P. and Willis, J. R., 1995. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids, 43, 1919–1951.
Postma, G. W., 1955. Wave propagation in a stratified medium. Geophys., 20, 780–806.
Poupon, A. and Leveaux, J., 1971. Evaluation of water saturations in shaley formations. Trans. Soc. Prof. Well Log Analysts, 12th Annual Logging Symposium, Paper O.
Prasad, M. and Manghnani, M. H., 1997. Effects of pore and differential pressure on compressional wave velocity and quality factor in Berea and Michigan sandstones. Geophys., 62, 1163–1176.
Prioul, R. and Lebrat, T., 2004. Calibration of velocity–stress relationships under hydrostatic stress for their use under non-hydrostatic stress conditions. SEG Expanded Abstracts 74th International Meeting, October 2004.
Prioul, R., Bakulin, A., and Bakulin, V., 2004. Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: theory and laboratory verification. Geophys., 69, 415–425.
Pšenčík, I. and Martins, J. L., 2001. Weak contrast PP wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl. Geophys., 151, 699–718.
Pšenčík, I. and Vavryčuk, V., 1998. Weak contrast PP wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl. Geophys., 151, 699–718.
Pyrak-Nolte, L. J., Myer, L. R., and Cook, N. G. W., 1990. Transmission of seismic waves across single natural fractures. J. Geophys. Res., 95, 8617–8638.
Rafavich, F., Kendal, C. H. St. C., and Todd, T. P., 1984. The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophys., 49, 1622–1636.
Ransom, R. C., 1984. A contribution towards a better understanding of the modified Archie formation resistivity factor relationship. Log Analyst, 25, 7–15.
Rasolofosaon, P., 1998. Stress-induced seismic anisotropy revisited. Rev. Inst. Français Pétrole, 53, 679–692.
Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980. An improved sonic transit time-to-porosity transform. Trans. Soc. Prof. Well Log Analysts, 21st Annual Logging Symposium, Paper P.
Renshaw, C. E., 1995. On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res., 100, 24 629–24 636.
Resnick, J. R., Lerche, I., and Shuey, R. T., 1986. Reflection, transmission, and the generalized primary wave. Geophys. J. R. Astron. Soc., 87, 349–377.
Reuss, A., 1929. Berechnung der Fliessgrenzen von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Ang. Math. Mech., 9, 49–58.
Risnes, R., Bratli, R., and Horsrud, P., 1982. Sand stresses around a borehole. J. Soc. Petr. Eng. 22, 883–898.
Riznichenko, Y. V., 1949. On seismic quasi-anisotropy. Izv. Akad. Nauk SSSR, Geograf. Geofiz, 13, 518–544.
Rosenbaum, J. H., 1974. Synthetic microseismograms: logging in porous formations. Geophys., 39, 14–32.
Roth, M., Müller, G., and Sneider, R., 1993. Velocity shift in random media. Geophys. J. Int., 115, 552–563.
Rüger, A., 1995. P-wave reflection coefficients for transversely isotropic media with vertical and horizontal axis of symmetry. Expanded Abstracts, Soc. Expl. Geophys., 65th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, pp. 278–281.
Rüger, A., 1996. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Expanded Abstracts, Soc. Expl. Geophys., 66th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, pp. 1810–1813.
Rüger, A., 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophys., 62, 713–722.
Rüger, A., 2001. Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media. Tulsa, OK: Society of Exploration Geophysicists.
Rumpf, H. and Gupte, A. R., 1971. Einflüsse der Porosität und Korngrössenverteilung im Widerstandsgesetz der Porenströmung. Chem-Ing.-Tech., 43, 367–375.
Ryzhova, T. V., Aleksandrov, K. S., and Korobkova, V. M., 1966. The elastic properties of rock-forming minerals, V. Additional data on silicates. Bull. Acad. Sci. USSR, Earth Phys., no. 2, 111–113.
Rzhevsky, V. and Novick, G., 1971. The Physics of Rocks. Moscow: MIR Publishing.
Sahay, P. N., 1996. Elastodynamics of deformable porous media. Proc. R. Soc., LondonA, 452, 1517–1529.
Sahay, P. N., 2008. On Biot slow S-wave. Geophys., 72, N19–N33.
Sahay, P. N., Spanos, T. J. T., and Cruz, V., 2001. Seismic wave propagation in inhomogeneous and anisotropic porous media. Geophys. J. Int., 145, 209–222.
Sahimi, M., 1995. Flow and Transport in Porous Media and Fractured Rock, VCH Verlagsgesellschaft mbH, Weinheim, 482 pp.
Sarkar, D., Bakulin, A., and Kranz, R., 2003. Anisotropic inversion of seismic data for stressed media: theory and a physical modeling study on Berea sandstone. Geophys., 68, 690–704.
Sayers, C. M., 1988a. Inversion of ultrasonic wave velocity measurements to obtain the microcrack orientation distribution function in rocks. Ultrasonics, 26, 73–77.
Sayers, C. M., 1988b. Stress-induced ultrasonic wave velocity anisotropy in fractured rock. Ultrasonics, 26, 311–317.
Sayers, C. M., 1995. Stress-dependent seismic anisotropy of shales. Expanded Abstracts, Soc. Expl. Geophys., 65th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, pp. 902–905.
Sayers, C. M., 2004. Seismic anisotropy of shales: What determines the sign of Thomsen delta parameters?Expanded A&b Abstract, SEG 74th International Exposition. Tulsa, OK: Society of Exploration Geophysicists.
Sayers, C. M. and Kachanov, M., 1991. A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics. Int. J. Solids Struct., 12, 81–97.
Sayers, C. M. and Kachanov, M., 1995. Microcrack-induced elastic wave anisotropy of brittle rocks. J. Geophys. Res., 100, 4149–4156.
Sayers, C. M., Munster, J. G., and King, M. S., 1990. Stress-induced ultrasonic anisotropy in Berea sandstone. Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 27, 429–436.
Schlichting, H., 1951. Grenzschicht-Theorie. Karlsruhe: G. Braun.
Schlumberger, , 1989. Log Interpretation Principles/Applications. Houston, TX: Schlumberger Wireline & Testing.
Schlumberger, , 1991. Log Interpretation Principles/Applications. Houston, TX: Schlumberger Wireline & Testing.
Schmitt, D. P., 1989. Acoustic multipole logging in transversely isotropic poroelastic formations. J. Acoust. Soc. Am., 86, 2397–2421.
Schoenberg, M., 1980. Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Amer., 68, 1516–1521.
Schoenberg, M. and Douma, J., 1988. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys. Prospect., 36, 571–590.
Schoenberg, M. and Muir, F., 1989. A calculus for finely layered anisotropic media. Geophys., 54, 581–589.
Schoenberg, M. and Protázio, J., 1992. “Zoeppritz” rationalized and generalized to anisotropy. J. Seismic Explor., 1, 125–144.
Schön, J. H., 1996. Physical Properties of Rocks. Oxford: Elsevier.
Schwerdtner, W. M., Tou, J. C.-M., and Hertz, P. B., 1965. Elastic properties of single crystals of anhydrite. Can. J. Earth Sci., 2, 673–683.
Scott, G. D. and Kilgour, D. M., 1969. The density of random close packing of spheres. Brit. J. Appl. Phys. (J. Phys. D), 2(2), 863–866.
Segel, L. A., 1987. Mathematics Applied to Continuum Mechanics. Mineola, NY: Dover.
Sen, P. N. and Goode, P. A., 1988. Shaley sand conductivities at low and high salinities. Trans. Soc. Prof. Well Log Analysts, 29th Annual Logging Symposium, Paper F.
Sen, P. N., Scala, C., and Cohen, M. H., 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophys., 46, 781–795.
Seshagiri Rao, T., 1951. Elastic constants of barytes and celestite. Proc. Ind. Acad. Sci. A, 33, 251–256.
Shapiro, S. A. and Hubral, P., 1995. Frequency-dependent shear-wave splitting and velocity anisotropy due to elastic multilayering. J. Seismic Explor., 4, 151–168.
Shapiro, S. A. and Hubral, P., 1996. Elastic waves in thinly layered sediments: the equivalent medium and generalized O'Doherty–Anstey formulas. Geophys., 61, 1282–1300.
Shapiro, S. A. and Hubral, P., 1999. Elastic Waves in Random Media: Fundamentals of Seismic Stratigraphic Filtering. Berlin: Springer-Verlag.
Shapiro, S. A. and Zien, H., 1993. The O'Doherty–Anstey formula and localization of seismic waves. Geophys., 58, 736–740.
Shapiro, S. A., Hubral, P., and Zien, H., 1994. Frequency-dependent anisotropy of scalar waves in a multilayered medium. J. Seismic Explor., 3, 37–52.
Sharma, M. M. and Tutuncu, A. N., 1994. Grain contact adhesion hysteresis: a mechanism for attenuation of seismic waves. Geophys. Res. Lett., 21, 2323–2326.
Sharma, M. M., Garrouch, A., and Dunlap, H. F., 1991. Effects of wettability, pore geometry, and stress on electrical conduction in fluid-saturated rocks. Log Analyst, 32, 511–526.
Sharma, M. M., Tutuncu, A. N., and Podia, A. L., 1994. Grain contact adhesion hysteresis: a mechanism for attenuation of seismic waves in sedimentary granular media. In Extended Abstracts, Soc. Expl. Geophys., 64th Annual International Meeting, Los Angeles. Tulsa, OK: Society of Exploration Geophysicists, pp. 1077–1080.
Shen, L. C., 1985. Problems in dielectric-constant logging and possible routes to their solution. Log Analyst, 26, 14–25.
Sheriff, R. E., 1991. Encyclopedic Dictionary of Exploration Geophysics, 3rd edn. Tulsa, OK: Society of Exploration Geophysics.
Sherman, M. M., 1986. The calculation of porosity from dielectric constant measurements: a study using laboratory data. Log Analyst, Jan.–Feb., 15–24.
Sherman, M. M., 1988. A model for the frequency dependence of the dielectric permittivity of reservoir rocks. Log Analyst, Sept.–Oct., 358–369.
Shuey, R. T., 1985. A simplification of the Zoeppritz equations. Geophys., 50, 609–614.
Siggins, A. F. and Dewhurst, D. N., 2003. Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophys. Res. Lett., 30, 1089 doi:10.1029/2002GL016143.
Simandoux, P., 1963. Dielectric measurements on porous media: application to the measurement of water saturations: study of the behavior of argillaceous formations. Rev. Inst. Français Petrole, 18, supplementary issue, 193–215.
Simmons, G., 1965. Single crystal elastic constants and calculated aggregate properties. J. Grad. Res. Center, SMU, 34, 1–269.
Simmons, G. and Birch, F., 1963. Elastic constants of pyrite. J. Appl. Phys., 34, 2736–2738.
Skelt, C., 2004. Fluid substitution in laminated sands. Leading Edge, 23, 485–489.
Smith, G. C. and Gidlow, P. M., 1987. Weighted stacking for rock property estimation and detection of gas. Geophys. Prospect., 35, 993–1014.
Smith, W. O., Foote, P. D., and Busand, P. G., 1929. Packing of homogeneous spheres. Phys. Rev., 34(2), 1271–1274.
Sneddon, I. N. and Lowergrub, M., 1969. Crack Problems in the Classical Theory of Elasticity. New York: John Wiley and Sons.
Soga, N., 1967. Elastic constants of garnet under pressure and temperature. J. Geophys. Res., 72, 4227–4234.
Spangenburg, K. and Haussuhl, S., 1957. Die elastischen Konstanten der Alkalihalogenide. Z. Kristallogr., 109, 422–437.
Spanos, T. J. T., 2002. The Thermophysics of Porous Media. Boca Raton, FL: Chapman & Hall/CRC.
Spratt, R. S., Goins, N. R., and Fitch, T. J., 1993. Pseudo-shear – the analysis of AVO. In Offset Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M., Invest. Geophys., No. 8. Tulsa, OK: Society of Exploration Geophysicists, pp. 37–56.
Stoll, R. D., 1974. Acoustic waves in saturated sediments. In Physics of Sound in Marine Sediments, ed. Hampton, L. D.. New York: Plenum, pp. 19–39.
Stoll, R. D., 1977. Acoustic waves in ocean sediments. Geophys., 42, 715–725.
Stoll, R. D., 1989. Sediment Acoustics. Berlin: Springer-Verlag, p. 154.
Stoll, R. D. and Bryan, G. M., 1970. Wave attenuation in saturated sediments. J. Acoust. Soc. Am., 47, 1440–1447.
Stoner, E. C., 1945. The demagnetizing factors for ellipsoids. Philos. Mag., 36, 803–821.
Strandenes, S., 1991. Rock Physics Analysis of the Brent Group Reservoir in the Oseberg Field. Stanford Rockphysics and Borehole Geophysics Project, special volume.
Sumino, Y., Kumazawa, M., Nishizawa, O., and Pluschkell, W., 1980. The elastic constants of single-crystal Fe1−xO, MnO, and CoO, and the elasticity of stochiometric magnesiowustite. J. Phys. Earth, 28, 475–495.
Tang, X.-M. and Cheng, A., 2004. Quantitative Borehole Acoustic Methods. Amsterdam: Elsevier.
Tang, X.-M., Cheng, A., and Toksöz, M. N., 1991. Dynamic permeability and borehole Stoneley waves: a simplified Biot–Rosenbaum model. J. Acoust. Soc. Am., 90, 1632–1646.
Thomas, E. C. and Stieber, S. J., 1975. The distribution of shale in sandstones and its effect upon porosity. In Trans. 16th Annual Logging Symposium of the SPWLA, paper T.
Thomas, E. C. and Stieber, S. J., 1977. Log derived shale distributions in sandstone and its effect upon porosity, water saturation, and permeability. In Trans. 6th Formation Evaluation Symposium of the Canadian Well Logging Society.
Thomsen, L., 1986. Weak elastic anisotropy. Geophys., 51, 1954–1966.
Thomsen, L., 1993. Weak anisotropic reflections. In Offset Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M., Invest. Geophys., No. 8. Tulsa, OK: Society of Exploration Geophysicists, pp. 103–111.
Thomson, W., 1878. Mathematical theory of elasticity. Elasticity, Encyclopedia Britannica, 7, 819–825.
Timoshenko, S. P. and Goodier, J. N., 1934. Theory of Elasticity. New York: McGraw-Hill.
Tixier, M. P. and Alger, R. P., 1967. Log evaluation of non-metallic mineral deposits. Trans. SPWLA 8th Ann. Logging Symp., Denver, June 11–14, Paper R.
Todd, T. and Simmons, G., 1972. Effect of pore pressure on the velocity of compressional waves in low porosity rocks. J. Geophys. Res., 77, 3731–3743.
Topp, G. C., Davis, J. L., and Annan, A. P., 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resource Res., 16, 574–582.
Tosaya, C. A., 1982. Acoustical Properties of Clay-bearing Rocks. Ph.D. dissertation, Stanford University.
Tosaya, C. A. and Nur, A., 1982. Effects of diagenesis and clays on compressional velocities in rocks. Geophys. Res. Lett., 9, 5–8.
Truesdell, C., 1965. Problems of Nonlinear Elasticity. New York: Gordon and Breach.
Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophys., 62, 1292–1309.
Tsvankin, I., 2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. New York: Pergamon.
Tucker, M. E., 2001. Sedimentary Petrology, 3rd edn. Oxford: Blackwell Science.
Tutuncu, A. N., 1992. Velocity Dispersion and Attenuation of Acoustic Waves in Granular Sedimentary Media. Ph.D. dissertation, University of Texas, Austin.
Tutuncu, A. N. and Sharma, M. M., 1992. The influence of grain contact stiffness and frame moduli in sedimentary rocks. Geophys., 57, 1571–1582.
Urmos, J. and Wilkens, R. H., 1993. In situ velocities in pelagic carbonates: new insights from ocean drilling program leg 130, Ontong Java. J. Geophys. Res., 98(B5), 7903–7920.
Vaughan, M. T. and Guggenheim, , 1986. Elasticity of muscovite and its relationship to crustal structure. J. Geophys. Res., 91, 4657–4664.
Vavryčuk, V. and Pšenčik, I., 1998. PP-wave reflection coefficients in weakly anisotropic elastic media. Geophys., 63(6), 2129–2141.
Verma, R. K., 1960. Elasticity of some high-density crystals. J. Geophys. Res., 65, 757–766.
Vernik, L., Bruno, M., and Bovberg, C., 1993. Empirical relations between compressive strength and porosity of siliciclastic rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 30(7), 677–680.
Vernik, L., Fisher, D., and Bahret, S., 2002. Estimation of net-to-gross from P and S impedance in deepwater turbidites. Leading Edge, 21, 380–387.
Voigt, W., 1890. Bestimmung der Elastizitätskonstanten des brasilianischen Turmalines. Ann. Phys. Chem., 41, 712–729.
Voigt, W., 1907. Bestimmung der Elastizitätskonstanten von Eisenglanz. Ann. Phys., 24, 129–140.
Wachtman, J. B., Tefft, W. E., Lam, D. G., and Strinchfield, R. P., 1960. Elastic constants of synthetic single crystal corundum at room temperature. J. Res. Natl. Bur. Stand., 64A, 213–228.
Waddell, H., 1932. Volume, shape and roundness of rock particles. J. Geol. 40, 443–451.
Wadsworth, J., 1960. Experimental examination of local processes in packed beds of homogeneous spheres. Nat. Res. Council of Canada, Mech. Eng. Report MT-41 February.
Walls, J., Nur, A., and Dvorkin, J., 1991. A slug test method in reservoirs with pressure sensitive permeability. Proc. 1991 Coalbed Methane Symp., University of Alabama, Tuscaloosa, May 13–16, pp. 97–105.
Walsh, J. B., 1965. The effect of cracks on the compressibility of rock. J. Geophys. Res., 70, 381–389.
Walsh, J. B., 1969. A new analysis of attenuation in partially melted rock. J. Geophys. Res., 74, 4333.
Walsh, J. B., Brace, W. F., and England, A. W., 1965. Effect of porosity on compressibility of glass. J. Am. Ceramic Soc., 48, 605–608.
Walton, K., 1987. The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35, 213–226.
Wang, H. F., 2000. Theory of Linear Poroelasticity. Princeton, NJ: Princeton University Press.
Wang, Z., 2000a. Dynamic versus static properties of reservoir rocks, in seismic and acoustic velocities in reservoir rocks. SEG Geophysics Reprint Series, 19, 531–539.
Wang, Z., 2002. Seismic anisotropy in sedimentary rocks, Parts I and II. Geophys., 67, 1415–1440.
Wang, Z. and Nur, A., 1992. Seismic and Acoustic Velocities in Reservoir Rocks, vol. 2, Theoretical and Model Studies, Soc. Expl. Geophys., Geophysics Reprint Series. Tulsa, OK: Society of Exploration Geophysicists.
Wang, Z. and Nur, A. (eds.), 2000. Seismic and Acoustic Velocities in Reservoir Rocks, vol. 3, Recent Developments, Geophysics Reprint Series, no. 19. Tulsa, OK: Society of Exploration Geophysicists.
Ward, S. H. and Hohmann, G. W., 1987. Electromagnetic theory for geophysical applications. In Electromagnetic Methods in Applied Geophysics, vol. I, Theory, ed. Nabhigian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 131–311.
Watt, J. P., Davies, G. F., and O'Connell, R. J., 1976. The elastic properties of composite materials. Rev. Geophys. Space Phys., 14, 541–563.
Waxman, M. H. and Smits, L. J. M., 1968. Electrical conductivities in oil-bearing shaley sands. Soc. Petrol Eng. J., 8, 107–122.
Weidner, D. J. and Carleton, H. R., 1977. Elasticity of coesite. J. Geophys. Res., 82, 1334–1346.
Weidner, D. J. and Hamaya, N., 1983. Elastic properties of the olivine and spinel polymorphs of Mg2GeO4 and evaluation of elastic analogues. Phys. Earth Planetary Interiors, 33, 275–283.
Weidner, D. J., Bass, J. D., Ringwood, E., and Sinclair, W., 1982. The single-crystal elastic moduli of stishovite. J. Geophys. Res., 87, 4740–4746.
Weingarten, J. S. and Perkins, T. K., 1995. Prediction of sand production in wells: methods and Gulf of Mexico case study. J. Petrol. Tech., 596–600.
Whitcombe, D. N., 2002. Elastic impedance normalization. Geophys., 67, 59–61.
Whitcombe, D. N., Connolly, P. A., Reagan, R. L., and Redshaw, T. C., 2002. Extended elastic impedance for fluid and lithology prediction. Geophys., 67, 63–67.
White, J. E., 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophys., 40, 224–232.
White, J. E., 1983. Underground Sound: Application of Seismic Waves. New York: Elsevier.
White, J. E., 1986. Biot–Gardner theory of extensional waves in porous rods. Geophys., 51, 742–745.
Widmaier, M., Shapiro, S. A., and Hubral, P., 1996. AVO correction for a thinly layered reflector overburden. Geophys., 61, 520–528.
Wiggins, R., Kenny, G. S., and McClure, C. D., 1983. A method for determining and displaying the shear-velocity reflectivities of a geologic formation. European Patent Application 0113944.
Williams, D. M., 1990. The acoustic log hydrocarbon indicator. Soc. Prof. Well Log Analysts, 31st Ann. Logging Symp., Paper W.
Willis, J. R., 1977. Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 185–202.
Winkler, K., 1986. Estimates of velocity dispersion between seismic and ultrasonic frequencies. Geophys., 51, 183–189.
Winkler, K. W., 1983. Contact stiffness in granular porous materials: comparison between theory and experiment. Geophys. Res. Lett., 10, 1073–1076.
Winkler, K. W., 1985. Dispersion analysis of velocity and attenuation in Berea sandstone. J. Geophys. Res., 90, 6793–6800.
Winkler, K. W. and Murphy, W. F., III, 1995. Acoustic velocity and attenuation in porous rocks. In Rock Physics and Phase Relations, A Handbook of Physical Constants, AGU Reference Shelf 3. Washington, DC: American Geophysical Union.
Winkler, K. W. and Nur, A., 1979. Pore fluids and seismic attenuation in rocks. Geophys. Res. Lett., 6, 1–4.
Woeber, A. F., Katz, S., and Ahrens, T. J., 1963. Elasticity of selected rocks and minerals. Geophys., 28, 658–663.
Wong, S. W., Kenter, C. J., Schokkenbroek, H., Regteren, J., and Bordes, P. F., 1993. Optimising shale drilling in the Northern North Sea; borehole stability considerations. SPE paper 26736, Offshore Europe Conference, Aberdeen, 7–10 September.
Wood, A. W., 1955. A Textbook of Sound. New York: McMillan Co.
Worthington, P. F., 1985. Evolution of shaley sand concepts in reservoir evaluation. Log Analyst, 26, 23–40.
Wu, T. T., 1966. The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Solids Structures, 2, 1–8.
Wyllie, M. R. J. and Gregory, A. R., 1953. Formation factors of unconsolidated porous media: influence of particle shape and effect of cementation. Trans. Am. Inst. Mech. Eng., 198, 103–110.
Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophys., 21, 41–70.
Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F., 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophys., 23, 459–493.
Wyllie, M. R. J., Gardner, G. H. F., and Gregory, A. R., 1963. Studies of elastic wave attenuation in porous media. Geophys., 27, 569–589.
Xu, S. and White, R. E., 1994. A physical model for shear-wave velocity prediction. In Expanded Abstracts, 56th Eur. Assoc. Expl. Geoscientists Meet. Tech. Exhib., Vienna, p. 117.
Xu, S. and White, R. E., 1995. A new velocity model for clay–sand mixtures. Geophys. Prospect., 43, 91–118.
Yale, D. P. and Jameison, W. H., 1994. Static and dynamic rock mechanical properties in the Hugoton and Panoma fields. Kansas Society of Petroleum Engineers, Paper 27939. Society of Petroleum Engineers Mid-Continent Gas Symposium, Amarillo, TX, May.
Yamakawa, N., 1962. Scattering and attenuation of elastic waves. Geophys. Mag., Tokyo, 31, 63–103.
Yeganeh-Haeri, A., Weidner, D. J., and Ito, E., 1989. Single-crystal elastic moduli of magnesium metasilicate perovskite. In Perovskite: a Structure of Great Interest to Geophysics and Materials Science, Geophysics Monograph Series, vol. 45. Washington, D.C.: American Geophysical Union, pp. 13–25.
Yeganeh-Haeri, A., Weidner, D. J., and Parise, J. B., 1992. Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson's ratio. Science, 257, 650–652.
Yin, H., 1992. Acoustic Velocity and Attenuation of Rocks: Isotropy, Intrinsic Anisotropy, and Stress-Induced Anisotropy. Ph.D. dissertation, Stanford University.
Yoneda, A., 1990. Pressure derivatives of elastic constants of single crystal MgO, MgAl2O4. J. Phys. Earth, 38, 19–55.
Yoon, H. S. and Newnham, R. E., 1969. Elastic properties of fluorapatite. Amer. Mineralog., 54, 1193–1197.
Yoon, H. S. and Newnham, R. E., 1973. The elastic properties of beryl. Acta Cryst., A29, 507–509.
Young, H. D., 1962. Statistical Treatment of Experimental Data. New York: McGraw-Hill.
Yu, G., Vozoff, K., and Durney, W., 1993. The influence of confining pressure and water saturation on dynamic properties of some rare Permian coals. Geophys., 58, 30–38.
Zamora, M. and Poirier, J. P., 1990. Experimental study of acoustic anisotropy and birefringence in dry and saturated Fontainebleau sandstone. Geophys., 55, 1455–1465.
Zarembo, I. K. and Krasil'nikov, V. A., 1971. Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Usp., 13, 778–797.
Zeller, R. and Dederichs, P. H., 1973. Elastic constants of polycrystals. Phys. Stat. Sol. b, 55, 831.
Zener, C., 1948. Elasticity and Anelasticity of Metals. Chicago, IL: University of Chicago Press.
Zhao, Y. and Weidner, D. J., 1993. The single-crystal elastic moduli of neighborite. Phys. Chem. Minerals, 20, 419–424.
Zimmerman, R. W., 1984. The elastic moduli of a solid with spherical pores: new self-consistent method. Int. J. Rock Mech., Mining Sci. Geomech. Abstracts, 21, 339–343.
Zimmerman, R. W., 1986. Compressibility of two-dimensional cavities of various shapes. J. Appl. Mech. Trans. Am. Soc. Mech. Eng., 53, 500–504.
Zimmerman, R. W., 1991a. Compressibility of Sandstones. New York: Elsevier.
Zimmerman, R. W., 1991b. Elastic moduli of a solid containing spherical inclusions. Mech. Mater., 12, 17–24.
Zoback, M. D., 2007. Reservoir Geomechanics, Cambridge: Cambridge University Press.
Zoeppritz, K., 1919. Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves. Göttinger Nachr., I, 66–84.