Skip to main content
×
×
Home
Secure Multiparty Computation and Secret Sharing
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 46
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Nateghizad, Majid Veugen, Thijs Erkin, Zekeriya and Lagendijk, Reginald L. 2018. Secure Equality Testing Protocols in the Two-Party Setting. p. 1.

    Bitar, Rawad and Rouayheb, Salim El 2018. Staircase Codes for Secret Sharing With Optimal Communication and Read Overheads. IEEE Transactions on Information Theory, Vol. 64, Issue. 2, p. 933.

    Cascudo, Ignacio Cramer, Ronald Xing, Chaoping and Yuan, Chen 2018. Advances in Cryptology – CRYPTO 2018. Vol. 10993, Issue. , p. 395.

    Damgård, Ivan Orlandi, Claudio and Simkin, Mark 2018. Advances in Cryptology – CRYPTO 2018. Vol. 10992, Issue. , p. 799.

    Lyu, Lingjuan Nandakumar, Karthik Rubinstein, Ben Jin, Jiong Bedo, Justin and Palaniswami, Marimuthu 2018. PPFA: Privacy Preserving Fog-Enabled Aggregation in Smart Grid. IEEE Transactions on Industrial Informatics, Vol. 14, Issue. 8, p. 3733.

    Ravindrakumar, Vaishakh Panda, Parthasarathi Karamchandani, Nikhil and Prabhakaran, Vinod M. 2018. Private Coded Caching. IEEE Transactions on Information Forensics and Security, Vol. 13, Issue. 3, p. 685.

    Zare-Garizy, Tirazheh Fridgen, Gilbert and Wederhake, Lars 2018. A Privacy Preserving Approach to Collaborative Systemic Risk Identification: The Use-Case of Supply Chain Networks. Security and Communication Networks, Vol. 2018, Issue. , p. 1.

    Taigel, Fabian Tueno, Anselme K. and Pibernik, Richard 2018. Privacy-preserving condition-based forecasting using machine learning. Journal of Business Economics, Vol. 88, Issue. 5, p. 563.

    Mandal, Avikarsha Armknecht, Frederik and Zenner, Erik 2018. Secure IT Systems. Vol. 11252, Issue. , p. 3.

    Aguirre, Alejandro Barthe, Gilles Birkedal, Lars Bizjak, Aleš Gaboardi, Marco and Garg, Deepak 2018. Programming Languages and Systems. Vol. 10801, Issue. , p. 214.

    Narayanan, Varun and Prabahakaran, Vinod M. 2018. Theory of Cryptography. Vol. 11239, Issue. , p. 389.

    Xu, Lei Jiang, Chunxiao Qian, Yi and Ren, Yong 2018. Data Privacy Games. p. 151.

    Cheraghchi, Mahdi 2018. Nearly optimal robust secret sharing. Designs, Codes and Cryptography,

    Hand, David J. 2018. Statistical challenges of administrative and transaction data. Journal of the Royal Statistical Society: Series A (Statistics in Society), Vol. 181, Issue. 3, p. 555.

    CACM Staff 2018. Predicting failure of the university. Communications of the ACM, Vol. 61, Issue. 4, p. 8.

    Yang, Heecheol Shin, Wonjae and Lee, Jungwoo 2018. Private Information Retrieval for Secure Distributed Storage Systems. IEEE Transactions on Information Forensics and Security, Vol. 13, Issue. 12, p. 2953.

    Zewail, Ahmed A. and Yener, Aylin 2018. Cache-aided combination networks with secrecy guarantees. p. 1.

    Martinez-Penas, Umberto 2018. Communication Efficient and Strongly Secure Secret Sharing Schemes Based on Algebraic Geometry Codes. IEEE Transactions on Information Theory, Vol. 64, Issue. 6, p. 4191.

    Hie, Brian Cho, Hyunghoon and Berger, Bonnie 2018. Realizing private and practical pharmacological collaboration. Science, Vol. 362, Issue. 6412, p. 347.

    von Maltitz, Marcel and Carle, Georg 2018. Leveraging Secure Multiparty Computation in the Internet of Things. p. 508.

    ×

Book description

In a data-driven society, individuals and companies encounter numerous situations where private information is an important resource. How can parties handle confidential data if they do not trust everyone involved? This text is the first to present a comprehensive treatment of unconditionally secure techniques for multiparty computation (MPC) and secret sharing. In a secure MPC, each party possesses some private data, while secret sharing provides a way for one party to spread information on a secret such that all parties together hold full information, yet no single party has all the information. The authors present basic feasibility results from the last 30 years, generalizations to arbitrary access structures using linear secret sharing, some recent techniques for efficiency improvements, and a general treatment of the theory of secret sharing, focusing on asymptotic results with interesting applications related to MPC.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
1. M. F., Atiyah and I. G., Macdonald.Introduction to Commutative Algebra. Addison-Wesley, Reading,MA, 1969.
2. Simeon, Ball.On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc., 14:733–48, 2012.
3. Boaz, Barak, Ran, Canetti, Jesper, Buus Nielsen, and Rafael, Pass. Universally composable protocols with relaxed setup assumptions. In FOCS, pp. 186–95. IEEE Computer Society, Washington DC, 2004.
4. Alp, Bassa and Peter, Beelen. The Hasse-Witt invariant in some towers of function fields over finite fields. Bull. Brazil. Math. Soc., 41:4:567–82, 2010.
5. Alp, Bassa, Peter, Beelen, Arnaldo, Garcia, and Henning, Stichtenoth. Towers of function fields over non-prime finite fields. Acta Arith., 164:163–79, 2014.
6. Alp, Bassa, Arnaldo, Garcia, and Henning, Stichtenoth. A new tower over cubic finite fields. Moscow Math. J., 8(3):401–18, September 2008.
7. Donald, Beaver.Efficient multiparty protocols using circuit randomization. In Joan, Feigenbaum, ed., Advances in Cryptology: CRYPTO '91, vol. 576 of Lecture Notes in Computer Science, pp. 420–32. Springer-Verlag, Berlin, 1991.
8. Donald, Beaver.Foundations of secure interactive computing. In Joan, Feigenbaum, ed., Advances in Cryptology: CRYPTO '91, vol. 576 of Lecture Notes in Computer Science, pp. 377–91. Springer-Verlag, Berlin, 1991.
9. Donald, Beaver and Silvio, Micali and Phillip, Rogaway. The Round Complexity of Secure Protocols (Extended Abstract). In Harriet, Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13–17, 1990, Baltimore, Maryland, USA, pp. 503–513, 1990.
10. Zuzana, Beerliová–Trubíniová and Martin, Hirt. Perfectly-secure mpc with linear communication com- plexity. In Ran, Canetti, ed. Theory of Cryptography, Fifth Theory of Cryptography Conference, vol. 4948 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008, pp. 213–30.
11. Amos, Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Department of Computer Science, Technion, 1996.
12. Amos, Beimel.Secret-sharing schemes: A survey. In Yeow, Meng Chee, Zhenbo, Guo, San, Ling, Fengjing, Shao, Yuansheng, Tang, Huaxiong, Wang, and Chaoping, Xing, eds., IWCC, Vol. 6639 of Lecture Notes in Computer Science, pp. 11–46. Springer-Verlag, Berlin, 2011.
13. Amos, Beimel, Aner, Ben-Efraim, Carles, Padró, and Ilya, Tyomkin. Multi-linear secret-sharing schemes. In Yehuda, Lindell, ed., TCC, Vol. 8349 of Lecture Notes in Computer Science, pp. 394–418. Springer-Verlag, Berlin, 2014.
14. Michael, Ben-Or, Shafi, Goldwasser, and Avi, Wigderson. Completeness theorems for noncryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC'88), ACM, New York, 1988, pp. 1–10.
15. Eli, Ben-Sasson, Serge, Fehr, and Rafail, Ostrovsky. Near-linear unconditionally secure multiparty computation with a dishonest minority. Advances in Cryptology–CRYPTO 2012, pp. 663–680. Springer Berlin Heidelberg, 2012.
16. Eli, Ben-Sasson, Ariel, Gabizon, Yohay, Kaplan, Swastik, Kopparty, and Shubhangi, Saraf. A new family of locally correctable codes based on degree-lifted algebraic geometry codes. In Dan, Boneh, Tim, Roughgarden, and Joan, Feigenbaum, eds. Symposium on Theory of Computing Conference(STOC'88). ACM, New York, 2013, pp. 833–42.
17. Eli, Ben-Sasson, Yohay, Kaplan, Swastik, Kopparty, Or, Meir, and Henning, Stichtenoth. Constant rate PCPs for Circuit-SAT with sublinear query complexity. In FOCS, pp. 320–9. IEEE Computer Society, Washington, DC, 2013.
18. Josh, Cohen Benaloh and Jerry, Leichter.Generalized secret sharing and monotone functions. In Shafi, Goldwasser, ed., CRYPTO, vol. 403 of Lecture Notes in Computer Science, pp. 27–35. Springer-Verlag, Berlin, 1988.
19. Rikke, Bendlin, Ivan, Damgård, Claudio, Orlandi, and Sarah, Zakarias. Semi-homomorphic encryption and multiparty computation. In Kenneth, G. Paterson, ed. Advances in Cryptology: EUROCRYPT 2011, 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, vol. 6632 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2011, pp. 169–88.
20. Michael, Bertilsson and Ingemar, Ingemarsson. A construction of practical secret sharing schemes using linear block codes. In Jennifer, Seberry and Yuliang, Zheng, eds., AUSCRYPT, vol. 718 of Lecture Notes in Computer Science, pp. 67–79. Springer-Verlag, Berlin, 1992.
21. J., Bezerra, A., Garcia, and H., Stichtenoth. An explicit tower of function fields over cubic finite fields and Zink's lower bound. J. Reine Angew. Math., 589:159–199, December 2005.
22. G. R., Blakley. Safeguarding cryptographic keys. Proceedings of the 1979 AFIPS National Computer Conference, AFIPS Conference Proceedings, vol. 48, AFIPS Press, 1979, pp. 313–317. AFIPS is “http://en.wikipedia.org/wiki/American Federation of Information Processing Societies”
23. G. R., Blakley and C., Meadows. Security of ramp schemes. In G. R., Blakley and David, Chaum, eds., CRYPTO, vol. 196 of Lecture Notes in Computer Science, pp. 242–68. Springer, Berlin, 1984.
24. G. R., Blakley and G. A., Kabatianski. Ideal perfect threshold schemes and MDS codes. In Proceedings of IEEE International Symposium on Information Theory, p. 488. IEEE, New York, 1995.
25. Carlo, Blundo, Alfredo, De Santis, and Ugo, Vaccaro. Efficient sharing of many secrets. In Patrice, Enjalbert, Alain, Finkel, and Klaus, W. Wagner, eds., STACS, vol. 665 of Lecture Notes in Computer Science, pp. 692–703. Springer-Verlag, Berlin, 1993.
26. Carlo, Blundo, Alfredo, De Santis, and Ugo, Vaccaro.On secret sharing schemes. Inf. Process. Lett., 65(1):25–32, 1998.
27. Peter, Bogetoft, Dan, Lund Christensen, Ivan, Damgård, Martin, Geisler, Thomas, P. Jakobsen, Mikkel, Krøigaard, Janus, Dam Nielsen, Jesper, Buus Nielsen, Kurt, Nielsen, Jakob, Pagter, Michael, I.Schwartzbach, and Tomas, Toft. Secure multiparty computation goes live. In Roger, Dingledine and Philippe, Golle, eds., Financial Cryptography, vol. 5628 of Lecture Notes in Computer Science, pp. 325–43. Springer-Verlag, Berlin, 2009.
28. G., Bracha.An ο(log n) expected rounds randomized Byzantine generals protocol. J. ACM, 34(4): 910–l20, 1987.
29. Ernie, Brickell.Some ideal secret sharing schemes. J. Combin. Math. Combin. Comput., 9:105–13, 1989.
30. Nader, H.Bshouty.Multilinear complexity is equivalent to optimal tester size. Electronic Colloquium on Computational Complexity (ECCC), 20:11, 2013.
31. Peter, Bürgisser, Michael, Clausen, and Amin, Shokrollahi. Algebraic Complexity Theory. [Grundlehrender mathematischen Wissenschaften]. Springer, Berlin, 1997.
32. K. A., Bush.Orthogonal arrays of index unity. Ann. Math. Stat., 23:426–34, 1952.
33. Ran, Canetti.Universally composable security: A new paradigm for cryptographic protocols. In 42nd Annual Symposium on Foundations of Computer Science, pp. 136–45. IEEE, New York, 2001. Full version available on the eprint archive.
34. Ran, Canetti, Yevgeniy, Dodis, Rafael, Pass, and Shabsi, Walfish. Universally composable security with global setup. In Salil, P. Vadhan, ed., TCC, vol. 4392 of Lecture Notes in Computer Science, pp. 61–85. Springer-Verlag, Berlin, 2007.
35. Ran, Canetti, Uri, Feige, Oded, Goldreich, and Moni, Naor.Adaptively secure multi-party computation. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 639–48, ACM, New York, 1996.
36. Ran, Canetti, Eyal, Kushilevitz, and Yehuda, Lindell.On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology, 19(2):135–67, 2006.
37. Ran, Canetti, Yehuda, Lindell, Rafail, Ostrovsky, and Amit, Sahai. Universally composable two-partyand multi-party secure computation. In Proceedings of the Thirty-Fourth Annual ACM Symposium on the Theory of Computing, pp. 494–503, ACM, New York, 2002.
38. Ignacio, Cascudo, Hao, Chen, Ronald, Cramer, and Chaoping, Xing.Asymptotically good ideal linear secret sharing with strong multiplication over any fixed finite field. In Shai, Halevi, ed., CRYPTO, vol. 5677 of Lecture Notes in Computer Science, pp. 466–86. Springer-Verlag, Berlin, 2009.
39. Ignacio, Cascudo, Ronald, Cramer, Diego, Mirandola, Carles, Padrò, and Chaoping, Xing.On secret sharing with nonlinear product reconstruction. SIAM Journal on Discrete Mathematics, 2015.
40. Ignacio, Cascudo, Ronald, Cramer, Diego, Mirandola, and Gilles, Zémor.Squares of Random Linear Codes. IEEE Transactions on Information Theory, 61(3):1159–1173, 2015.
41. Ignacio, Cascudo, Ronald, Cramer, and Chaoping, Xing.The torsion-limit for algebraic function fields and its application to arithmetic secret sharing. In Phillip, Rogaway, ed. Advances in Cryptology: CRYPTO 2011, 31st Annual Cryptology Conference, vol. 6841 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2011, pp. 685–705. Early versions had been widely circulated since November 2009.
42. Ignacio, Cascudo, Ronald, Cramer, and Chaoping, Xing.The arithmetic codex. IACR Cryptology ePrint Archive, 2012:388, 2012. A five-page summary also appeared in Proceedings of IEEE Information Theory Workshop (ITW). IEEE, New York, 2012.
43. Ignacio, Cascudo, Ronald, Cramer, and Chaoping, Xing.Bounds on the threshold gap in secret sharing and its applications. IEEE Transactions on Information Theory, 59(9):5600–12, 2013.
44. Ignacio, Cascudo, Ronald, Cramer, and Chaoping, Xing.Torsion limits and Riemann-Roch systems for function fields and applications. IEEE Transactions in Information Theory, 60(7):3871–88, 2014.
45. Ignacio, Cascudo, Ronald, Cramer, Chaoping, Xing, and An, Yang.Asymptotic bound for multiplication complexity in the extensions of small finite fields. IEEE Transactions on Information Theory, 58(7):4930–, 2012.
46. David, Chaum, Claude, Crépeau, and Ivan, Damgård.Multiparty unconditionally secure protocols (extended abstract). In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC'88), ACM, New York, 1988, pp. 11–19.
47. David, Chaum, Ivan, Damgård, and Jeroen, van de Graaf.Multiparty computations ensuring privacy of each party's input and correctness of the result. In Carl, Pomerance, ed., Advances in Cryptology: CRYPTO '87, Vol. 293 of Lecture Notes in Computer Science, pp. 87–119, Springer-Verlag, Berlin, 1987.
48. Hao, Chen and Ronald, Cramer.Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In Cynthia, Dwork, ed., CRYPTO, vol. 4117 of Lecture Notes in Computer Science, pp. 521–36. Springer-Verlag, Berlin, 2006.
49. Hao, Chen, Ronald, Cramer, Robbert, de Haan, and Ignacio, Cascudo Pueyo.Strongly multiplicative ramp schemes from high degree rational points on curves. In Nigel, P. Smart, ed., EUROCRYPT, vol. 4965 of Lecture Notes in Computer Science, pp. 451–70. Springer-Verlag, Berlin, 2008.
50. Hao, Chen, Ronald, Cramer, Shafi, Goldwasser, Robbert, de Haan, and Vinod, Vaikuntanathan.Secure computation from random error correcting codes. In Moni, Naor, ed. Advances in Cryptology: EUROCRYPT 2007, 26th Annual International Conference on the Theory and Applications of Cryptographic Techniques, vol. 4515 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2007, pp. 291–310.
51. D. V., Chudnovsky and G. V., Chudnovsky.Algebraic complexities and algebraic curves over finite fields. J. Complexity, 1988:285–316, 1988.
52. Gil, Cohen, Ivan, Bjerre Damgård, Yuval, Ishai, Jonas, Kölker, Peter, Bro Miltersen, Ran, Raz, and Ron, D. Rothblum.Efficient multiparty protocols via log-depth threshold formulae (extended abstract). In Ran, Canetti and Juan, A. Garay, eds., CRYPTO(2), vol. 8043 of Lecture Notes in Computer Science, pp. 185–202. Springer-Verlag, Berlin, 2013.
53. Henri, Cohen.A Course in Computational Algebraic Number Theory, vol. 138 of GTM. Springer-Verlag, Berlin, 1993.
54. Alain, Couvreur, Philippe, Gaborit, Valérie, Gauthier–Umaña, Ayoub, Otmani, and Jean–Pierre, Tillich.Distinguisher-based attacks on public–key cryptosystems using Reed–Solomon codes. Designs, Codes and Cryptography, 2013:1–26, 2013.
55. Alain, Couvreur, Ayoub, Otmani, and Jean-Pierre, Tillich.Polynomial time attack on wild mceliece over quadratic extensions. In Phong, Q. Nguyen and Elisabeth, Oswald, eds., EUROCRYPT, vol. 8441 of Lecture Notes in Computer Science, pp. 17–39. Springer-Verlag, Berlin, 2014.
56. Thomas, Cover and Joy, Thomas.Elements of Information Theory. Wiley, New York, 1991.
57. Ronald, Cramer.The arithmetic codex: Theory and applications. In Kenneth, G. Paterson, ed. Advances in Cryptology: EUROCRYPT 2011, 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, vol. 6632 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2011, p. 1. Abstract of invited talk.
58. Ronald, Cramer, Ivan, Damgård, and Jesper, Buus Nielsen.Multiparty computation from threshold homomorphic encryption. In Advances in Cryptology: EUROCRYPT 2001, vol. 2045 of Lecture Notes in Computer Science, pp. 280–300. Springer-Verlag, Berlin, 2001.
59. Ronald, Cramer, Ivan, Damgård, and Stefan, Dziembowski.On the complexity of verifiable secret sharing and multiparty computation. In Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of Computing, pp. 325–34, ACM, New York, 2000.
60. Ronald, Cramer, Ivan, Damgård, Stefand, Dziembowski, Martin, Hirt, and Tal, Rabin.Efficient multiparty computations secure against an adaptive adversary. In Jacques, Stern, ed., Advances in Cryptology: EUROCRYPT '99, vol. 1592 of Lecture Notes in Computer Science, pp. 311–26. Springer-Verlag, Berlin, 1999.
61. Ronald, Cramer, Ivan, Damgård, and Ueli, M. Maurer.General secure multi-party computation from any linear secret-sharing scheme. In Bart, Preneel, ed., EUROCRYPT, vol. 1807 of Lecture Notes in Computer Science, pp. 316–34. Springer-Verlag, Berlin, 2000.
62. Ronald, Cramer, Ivan, Damgård, and Valerio, Pastro.On the amortized complexity of zero knowledge protocols for multiplicative relations. In Adam, Smith, ed., ICITS, vol. 7412 of Lecture Notes in Computer Science, pp. 62–79. Springer-Verlag, Berlin, 2012.
63. Ronald, Cramer, Vanesa, Daza, Ignacio, Gracia, Jorge, Jiménez Urroz, Gregor, Leander, Jaume, Martí Farré, and Carles, Padró.On codes, matroids, and secure multiparty computation from linear secretsharing schemes. IEEE Transactions on Information Theory, 54(6):2644–57, 2008. Preliminary version in CRYPTO 2005.
64. Ronald, Cramer and Serge, Fehr. The mathematical theory of information and its applications to privacy amplification (and more). Course notes, Mathematical Institute, Leiden University, version 2.0, 2011. Available from www.cwi.nl/crypto/docs.html.
65. Ronald, Cramer and Serge, Fehr.Optimal black-box secret sharing over arbitrary abelian groups. In Moti, Yung, ed., CRYPTO, vol. 2442 of Lecture Notes in Computer Science, pp. 272–87. Springer-Verlag, Berlin, 2002.
66. Ronald, Cramer, Serge, Fehr, and Martijn, Stam.Black-box secret sharing from primitive sets in algebraic number fields. In Victor, Shoup, ed., CRYPTO, vol. 3621 of Lecture Notes in Computer Science, pp. 344–60. Springer-Verlag, Berlin, 2005.
67. Ronald, Cramer, Carles, Padró, and Chaoping, Xing.Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model. In Proceedings of 12th IACR TCC 2015, Springer LNCS, vol. 9014, pp. 481–501, 2015.
68. Ivan, Damgård, Matthias, Fitzi, Eike, Kiltz, Jesper, Buus Nielsen, and Tomas, Toft.Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In Shai, Halevi and Tal, Rabin, eds., TCC, vol. 3876 of Lecture Notes in Computer Science, pp. 285–304. Springer-Verlag, Berlin, 2006.
69. Ivan, Damgård, Yuval, Ishai, and Mikkel, Krøigaard.Perfectly secure multiparty computation and the computational overhead of cryptography. In Henri, Gilbert, ed., EUROCRYPT, vol. 6110 of Lecture Notes in Computer Science, pp. 445–65. Springer-Verlag, Berlin, 2010.
70. Ivan, Damgård, Yuval, Ishai, Mikkel, Krøigaard, Jesper, Buus Nielsen, and Adam, Smith.Scalable multiparty computation with nearly optimal work and resilience. In David, Wagner, ed. AdvancesCryptology: CRYPTO 2008, 28th Annual International Cryptology Conference, vol. 5157 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008, pp. 241–61.
71. Ivan, Damgård and Jesper, Buus Nielsen.Improved noncommitting encryption schemes based on ageneral complexity assumption. In Mihir, Bellare, ed., Advances in Cryptology: CRYPTO 2000, vol. 1880 of Lecture Notes in Computer Science, pp. 432–50. Springer-Verlag, Berlin, 2000.
72. Ivan, Damgård and Jesper, Buus Nielsen.Universally composable efficient multiparty computationfrom threshold homomorphic encryption. In D., Boneh, ed., Advances in Cryptology: CRYPTO 2003, vol. 2729 of Lecture Notes in Computer Science, pp. 247–64. Springer-Verlag, Berlin, 2003.
73. Ivan, Damgård and Jesper, Buus Nielsen.Scalable and unconditionally secure multiparty computation. In Alfred, Menezes, ed., CRYPTO, vol. 4622 of Lecture Notes in Computer Science, pp. 572–90. Springer-Verlag, Berlin, 2007.
74. Ivan, Damgård and Jesper, Buus Nielsen.Adaptive versus static security in the UC model. In Sherman, S. M. Chow, Joseph, K. Liu, Lucas, Chi Kwong Hui, and Siu-Ming, Yiu, eds., Provable Security: 8th International Conference, ProvSec 2014, vol. 8782 of Lecture Notes in Computer Science, pp. 10–28. Springer-Verlag, Berlin, 2014.
75. Ivan, Damgård, Valerio, Pastro, Nigel, Smart, and Sarah, Zakarias. Multiparty computation from somewhat homomorphic encryption. Cryptology ePrint Archive, 2011:535, 2011.
76. Ivan, Damgård and Rune, Thorbek.Linear integer secret sharing and distributed exponentiation. In Moti, Yung, Yevgeniy, Dodis, Aggelos, Kiayias, and Tal, Malkin, eds., Public Key Cryptography, vol. 3958 of Lecture Notes in Computer Science, pp. 75–90. Springer-Verlag, Berlin, 2006.
77. Ivan, Damgård and Rune, Thorbek.Noninteractive proofs for integer multiplication. In Moni, Naor, ed. Advances in Cryptology: EUROCRYPT 2007, 26th Annual International Conference on the Theory and Applications of Cryptographic Techniques, vol. 4515 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2007, pp. 412–29.
78. Ivan, Damgård and Sarah, Zakarias.Constant-overhead secure computation of boolean circuits using preprocessing. Theory of Cryptography, pp. 621–41. Springer Berlin Heidelberg, 2013.
79. Yvo, Desmedt.Society and group oriented cryptography: A new concept. In Carl, Pomerance, ed., CRYPTO, vol. 293 of Lecture Notes in Computer Science, pp. 120–7. Springer-Verlag, Berlin, 1987.
80. Yvo, Desmedt and Yair, Frankel.Threshold cryptosystems. In Gilles, Brassard, ed., CRYPTO, vol. 435 of Lecture Notes in Computer Science, pp. 307–15. Springer-Verlag, Berlin, 1989.
81. Yvo, Desmedt and Yair, Frankel.Perfect homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM J. Discrete Math., 7(4):667–79, 1994.
82. Marten, van Dijk.Secret key sharing and secret key generation. Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1997.
83. Yevgeniy, Dodis, Amit, Sahai, and Adam, Smith.On perfect and adaptive security in exposure-resilient cryptography. In Birgit, Pfitzmann, ed., EUROCRYPT, vol. 2045 of Lecture Notes in Computer Science, pp. 301–24. Springer-Verlag, Berlin, 2001.
84. Danny, Dolev, Ruediger, Reischuk, and H., Raymond Strong.Early stopping in Byzantine agreement. ACM Transactions on Programming Languages and Systems, 37(4):720–41, 1990.
85. Danny, Dolev and Raymond, H. Strong.Polynomial algorithms for multiple processor agreement. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 401–7, ACM, New York, 1982.
86. Iwan, Duursma.Algebraic geometry codes: general theory. In D., Ruano, E., Martínez–Moro, and C., Munuera, eds., Advances in Algebraic Geometry Codes, pp. 1–48. World Scientific, New York, 2008.
87. Iwan, Duursma and Ralf, Kötter.Error-locating pairs for cyclic codes. IEEE Transactions on Information Theory, 40(4):1108–21, 1994.
88. Iwan, Duursma and Kit-Ho, Mak.On lower bounds for the Ihara constants A(2) and A(3). Compositio Mathematica, 149(7):1108–28, 2013.
89. Iwan, Duursma and Seungkook, Park.Coset bounds for algebraic geometric codes. Finite Fields and Their Applications, 16(1):36–55, 2010.
90. Iwan, Duursma and Jiashun, Shen.Multiplicative secret sharing schemes from Reed-Muller type codes. In ISIT, pp. 264–8. IEEE, New York, 2012.
91. Matthias, Fitzi, Martin, Hirt, and Ueli M., Maurer.Trading correctness for privacy in unconditional multi-party computation (extended abstract). In Hugo, Krawczyk, ed., CRYPTO, vol. 1462 of Lecture Notes in Computer Science, pp. 121–36. Springer–Verlag, Berlin, 1998.
92. Matthias, Fitzi and Ueli M., Maurer.Efficient Byzantine agreement secure against general adversaries. In Shay, Kutten, ed., DISC, vol. 1499 of Lecture Notes in Computer Science, pp. 134–48. Springer-Verlag, Berlin, 1998.
93. Matthew, K. Franklin and Moti, Yung.Communication complexity of secure computation (extended abstract). In S., Rao Kosaraju, Mike, Fellows, Avi, Wigderson, and John A., Ellis, ed., STOC, pp. 699–710. ACM, New York, 1992.
94. A., Garcia, H., Stichtenoth, and M., Thomas.On towers and composita of towers of function fields over finite fields. Finite Fields and Their Applications, 3:257–74, 1997.
95. Arnaldo, Garcia and Henning, Stichtenoth.A tower of Artin–Schreier extensions of function fields attaining the Drinfeld–Vlǎdut bound. Invent. Math., 1995:211–22, 1995.
96. Arnaldo, Garcia and Henning, Stichtenoth.On the asymptotic behavior of some towers of function fields over finite fields. J. Number Theory, 61:248–73, 1996.
97. Arnaldo, Garcia and Henning, Stichtenoth, eds. Topics in Geometry, Coding Theory and Cryptography. Springer, New York, 2007.
98. Gerard, van|der Geer and Marcel, van der Vlugt.An asymptotically good tower of curves over the field with eight elements. Bulletin of the London Mathematical Society, 34(3):291–300, 2002.
99. Craig, Gentry.Fully homomorphic encryption using ideal lattices. In Michael, Mitzenmacher, ed., STOC, pp. 169–78. ACM, New York, 2009.
100. Oded, Goldreich, Silvio, Micali, and Avi, Wigderson.How to play any mental game or a completeness theorem for protocols with honest majority. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–29, ACM, New York, 1987.
101. V. D., Goppa.Codes on algebraic curves. Soviet Math. Dokl, 24:170–2, 1981.
102. Ron, Graham, Martin, Grötschel, and Laszlo, Lovász, editors. Handbook of Combinatorics. MIT Press, Cambridge, MA, 1995.
103. Venkatesan, Guruswami and Madhu, Sudan.Improved decoding of Reed-Solomon and algebraicgeometry codes. IEEE Transactions on Information Theory, 45(6):1757–67, 1999.
104. Venkatesan, Guruswami and Chaoping, Xing.List decoding Reed-Solomon, algebraic-geometric, and Gabidulin subcodes up to the Singleton bound. In Dan, Boneh, Tim, Roughgarden, and Joan, Feigenbaum, eds. Symposium on Theory of Computing Conference (STOC'13). ACM, New York, 2013, pp. 843–52.
105. G. H., Hardy and E. M., Wright.An Introduction to the Theory of Numbers. Oxford University Press, 1979.
106. Danny, Harnik, Yuval, Ishai, Eyal, Kushilevitz, and Jesper, Buus Nielsen.OT-combiners via secure computation. In Ran, Canetti, ed. Theory of Cryptography, Fifth Theory of Cryptography Conference, vol. 4948 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008, pp. 393–411.
107. Martin, Hirt and Ueli, Maurer.Player simulation and general adversary structures in perfect multiparty computation. Journal of Cryptology, 13(1):31–60, 2000.
108. Paul, G. Hoel, Sidney, C. Port, and Charles, J. Stone.Introduction to Probability Theory. Houghton Mifflin, Boston, 1971.
109. Dennis, Hofheinz and Victor, Shoup.Gnuc: A new universal composability framework. Journal of Cryptology, 1–86, 2013.
110. W. C., Huffman and V., Pless.Fundamentals of Error Correcting Codes. Cambridge University Press, 2003.
111. Y., Ihara.Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Tokyo, 3:721–4, 1981.
112. Yuval, Ishai, Joe, Kilian, Kobbi, Nissim, and Erez, Petrank.Extending oblivious transfers efficiently. In Dan, Boheh, ed., Advances in Cryptology: CRYPTO 2003, vol. 2729 of Lecture Notes in Computer Science, pp. 145–61. Springer-Verlag, Berlin, 2003.
113. Yuval, Ishai, Eyal, Kushilevitz, Rafail, Ostrovsky, Manoj, Prabhakaran, Amit, Sahai, and Jürg, Wullschleger.Constant-rate oblivious transfer from noisy channels. In Phillip, Rogaway, ed. Advances in Cryptology: CRYPTO 2011, 31st Annual Cryptology Conference, vol. 6841 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2011, pp. 667–84.
114. Yuval, Ishai, Eyal, Kushilevitz, Rafail, Ostrovsky, and Amit, Sahai. Extracting Correlations, FOCS, pp. 261–270, 2009. http://doi.ieeecomputersociety.org/10.1109/FOCS.2009.56
115. Yuval, Ishai, Manoj, Prabhakaran, and Amit, Sahai.Founding cryptography on oblivious transfer – efficiently. In David, Wagner, ed. Advances in Cryptology: CRYPTO 2008, 28th Annual International Cryptology Conference, vol. 5157 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008, pp. 572–91.
116. M., Ito, A., Saito, and T., Nishizeki.Secret sharing schemes realizing general access structures. In Proc. IEEE GlobeCom '87, pp. 99–102, IEEE, New York, 1987.
117. Wen-Ai, Jackson and Keith, Martin.A combinatorial interpretation of ramp schemes. Australasian Journal of Combinatorics, 14:51–60, 1996.
118. Yuval, Ishai, Eyal, Kushilevitz, Rafail, Ostrovsky, and Amit, Sahai.Zero-knowledge from secure multiparty computation. STOC, pp. 21–30, 2007. http://doi.acm.org/10.1145/1250790.1250794,SIAM J. Comput., 39(3):1121–52 2009.
119. Mauricio, Karchmer and Avi, Wigderson.On span programs. In Structure in Complexity Theory Conference, pp. 102–11, 1993.
120. Ehud, D. Karnin, J.W., Greene, and Martin, E. Hellman.On secret sharing systems. IEEE Transactions on Information Theory, 29(1):35–41, 1983.
121. Joe, Kilian.Founding cryptography on oblivious transfer. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC'88), ACM, New York, 1988, pp. 20–31.
122. Kötter, R.A unified description of an error locating procedure for linear codes. In Proceedings of Algebraic and Combinatorial Coding Theory, Voneshta Voda, pp. 113–17, 1992.
123. Tsit-Yuen, Lam.Introduction to Quadratic Forms over Fields. American Mathematical Society, Washington, DC, 2005.
124. Leslie, Lamport, Robert, Shostak, and Marshall, Pease.The Byzantine generals problem. ACM Transactions on Programming Languages and Systems, 4(3):381–401, 1982.
125. Serge, Lang.Algebraic Number Theory. Springer, New York, 1994.
126. Serge, Lang.Algebra, Graduate Texts in Mathematics. Springer, New York, 2002.
127. Serge, Lang.Undergraduate Algebra. Springer, New York, 2002.
128. H. W., Lenstra,Jr. Euclidean number fields of large degree. Invent. Math., 38:237–54, 1977.
129. H. W., Lenstra,Jr. On a problem of Garcia, Stichtenoth, and Thomas. Finite Fields and Their Applications, 8:166–70, 2002.
130. H. W., Lenstra,Jr. Galois Theory for Schemes, 2008; available at: websites.math.leidenuniv.nl/algebra/.
131. Yehuda, Lindell and Benny, Pinkas.A proof of security of Yao's protocol for two-party computation. J. Cryptology, 22(2):161–88, 2009.
132. J. H., van Lint.Introduction to Coding Theory, 3rd, ed., Graduate Texts in Mathematics. Springer, New York, 1999.
133. J. H., van Lint and R. M., Wilson.On the minimum distance of cyclic codes. IEEE Transactions on Information Theory, 32(1):23–40, 1986.
134. J. H., van Lint and R. M., Wilson.A Course in Combinatorics, 2nd ed. Cambridge University Press, 2001.
135. Irene, Marquez Corbella and Ruud, Pellikaan. Error-correcting pairs for a public-key cryptosystem. CoRR, abs/1205.3647, 2012.
136. John, Martin.Introduction to Languages and the Theory of Computation. McGraw-Hill, New York, 2003.
137. Keith, Martin.Discrete structures in the theory of secret sharing. Ph.D. thesis, University of London, 1991.
138. Keith, Martin.New secret sharing schemes from old. J. Combin. Math. Combin. Comput., 14:65–77, 1993.
139. Jim, Massey. Minimal codewords and secret sharing. In Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, pp. 269–79, Institutionen för informationsteori, Tekniska högsk. Lund, Sweden, 1993.
140. Jim, Massey.Some applications of coding theory in cryptography. Codes and Ciphers: Cryptography and Coding IV, pp. 33–47, 1995.
141. Ueli, Maurer.Constructive cryptography: a new paradigm for security definitions and proofs. In Sebastian, Mödersheim and Catuscia, Palamidessi, eds., TOSCA, vol. 6993 of Lecture Notes in Computer Science, pp. 33–56. Springer-Verlag, Berlin, 2011.
142. Robert, J. McEliece and Dilip, V. Sarwate.On sharing secrets and Reed-Solomon codes. Commun. ACM, 24(9):583–4, 1981.
143. F. J., McWilliams and N. J. A., Sloane.The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977.
144. Silvio, Micali and Phillip, Rogaway.Secure computation. In Joan, Feigenbaum, ed., Advances in Cryptology: CRYPTO '91, Vol. 576 of Lecture Notes in Computer Science, pp. 392–404. Springer-Verlag, Berlin, 1991.
145. Diego, Mirandola and Gilles, Zémor. Schur products of linear codes: a study of parameters. Master*#x0027;s thesis, Univ. Bordeaux, 2012.
146. Carlos, Moreno.Algebraic Curves over Finite Fields. Cambridge Tracts in Mathematics. Cambridge University Press, 1991.
147. Jürgen, Neukirch.Algebraic Number Theory. Graduate Texts in Mathematics. Springer, New York, 1999.
148. Harald, Niederreiter and Chaoping, Xing.Rational Points on Curves over Finite Fields. Cambridge University Press, 2001.
149. Jesper, Buus Nielsen.On protocol security in the cryptographic model. Dissertation Series DS-03-8, BRICS, Department of Computer Science, University of Aarhus, August 2003.
150. Jesper, Buus Nielsen, Peter, Sebastian Nordholt, Claudio, Orlandi, and Sai, Sheshank Burra.A newapproach to practical active-secure two-party computation. In Reihaneh, Safavi-Naini and Ran, Canetti, eds., CRYPTO, vol. 7417 of Lecture Notes in Computer Science, pp. 681–700. Springer-Verlag, Berlin, 2012.
151. Francesco, Noseda, Gilvan, Oliveira, and Luciane, Quoos.Bases for Riemann-Roch spaces of one-point divisors on an optimal tower of function fields. IEEE Transactions on Information Theory, 58(5):2589–98, 2012.
152. Wakaha, Ogata and Kaoru, Kurosawa.Some basic properties of general nonperfect secret sharing schemes. J. UCS, 4(8):690–704, 1998.
153. Carles, Padró. Lecture notes in secret sharing. Eprint 2012/674, available at: eprint.iacr.org, 2012.
154. Pascal, Paillier.Public-key cryptosystems based on composite degree residue classes. In Jacques, Stern, ed., Advances in Cryptology: EUROCRYPT '99, vol. 1592 of Lecture Notes in Computer Science, pp. 223–38. Springer-Verlag, Berlin, 1999.
155. Ruud, Pellikaan.On decoding by error location and dependent sets of error positions. Discrete Mathematics, 106–7:369–81, 1992.
156. Birgit, Pfitzmann, Matthias, Schunter, and Michael, Waidner.Secure reactive systems. Technical Report RZ 3206, IBM Research, Zürich, May 2000.
157. Tal, Rabin and Michael, Ben-Or.Verifiable secret sharing and multiparty protocols with honest majority. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM, New York, 1989.
158. Hugues, Randriambololona.Hecke operators with odd determinant and binary frameproof codes beyond the probabilistic bound?IEEE Information Theory Workshop (ITW 2010), pp. 1–5. IEEE, New York, 2010.
159. Hugues, Randriambololona.Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method. J. Complexity, 28(4):489–517, 2012.
160. Hugues, Randriambololona.Asymptotically good binary linear codes with asymptotically good self-intersection spans. IEEE Transactions on Information Theory, 59(5):3038–45, 2013.
161. Hugues, Randriambololona. On products and powers of linear codes under componentwise multiplication. arXiv preprint arXiv:1312.0022, 2013.
162. Michael, Rosen.Number Theory in Function Fields. Graduate Texts in Mathematics. Springer, New York, 2002.
163. Joseph, J Rotman.An Introduction to the Theory of Groups, vol. 148. Springer, New York, 1995.
164. S., Ballet and R., Rolland.On the bilinear complexity of the multiplication in finite fields. In Arithmetic, Geometry and Coding Theory (AGCT 2003), Séminaires et Congrès 11, Société Mathématique de France, pp. 179–88, 2005.
165. Pierre, Samuel.Algebraic Theory of Numbers. Hermann, Paris, 1970.
166. Jean-Pierre, Serre. Rational points on curves over finite fields. Notes of lectures at Harvard University, 1985.
167. Adi, Shamir.How to share a secret. Communications of the ACM, 22(11):612–13, 1979.
168. Victor, Shoup.A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2005.
169. Igor, Shparlinski, Michael, Tsfasman, and Serge, Vlãdut.Curves with many points and multiplication in finite fields. Lecture Notes in Mathematics, 1518:145–69, 1992.
170. Kenneth W., Shum, Ilia, Aleshnikov, P., Vijay Kumar, Henning, Stichtenoth, and Vinay, Deolalikar.A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound. IEEE Transactions on Information Theory, 47(6):2225–41, 2001.
171. G., Simmons, W.-A., Jackson, and K., Martin.The geometry of shared secret schemes. Bull. Inst. Combin. Appl., 1:71–88, 1991.
172. Henning, Stichtenoth.Algebraic Function Fields and Codes, 2nd ed. Graduate Texts in Mathematics. Springer, New York, 2008.
173. Douglas, R. Stinson.Decomposition constructions for secret-sharing schemes. IEEE Transactions on Information Theory, 40(1):118–25, 1994.
174. Douglas, R Stinson.Cryptography: Theory and Practice. CRC Press, Boca Raton, FL, 2005.
175. Madhu, Sudan.Decoding of Reed-Solomon codes beyond the error-correction bound. J. Complexity, 13(1):180–93, 1997.
176. M., Tsfasman, S., Vlǎduţ, and Th., Zink.Modular curves, Shimura curves, and Goppa codes, better than Varshamov Gilbert bound. Math. Nachr., 1982:21–8, 1982.
177. Michael, Tsfasman, Serge, Vlãduţ, and Dmitry, Nogin.Algebraic Geometric Codes: Basic Notions, vol. 139 of Mathematical Surveys and Monographs. American Mathematical Society, Washington, DC, 2007.
178. Leslie, G. Valiant.Short monotone formulae for the majority function. J. Algorithms, 5(3):363–6, 1984.
179. S., Vlǎduţ.An exhaustion bound for algebraic-geometric modular code. Probl. Inf. Transm, 23:22–34, 1987.
180. Andrew, Chi-Chih Yao.How to generate and exchange secrets (extended abstract). In 27th Annual Symposium on Foundations of Computer Science, pp. 162–7. IEEE, New York, 1986.
181. Th., Zink.Degeneration of Shimura surfaces and a problem in coding theory. In Lothar, Budach, ed., FCT, vol. 199 of Lecture Notes in Computer Science, pp. 503–11. Springer-Verlag, Berlin, 1985.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed