Skip to main content Accessibility help
×
  • Cited by 1
Publisher:
Cambridge University Press
Online publication date:
November 2015
Print publication year:
2015
Online ISBN:
9781316480687

Book description

The Woods Hole trace formula is a Lefschetz fixed-point theorem for coherent cohomology on algebraic varieties. It leads to a version of the sheaves-functions dictionary of Deligne, relating characteristic-p-valued functions on the rational points of varieties over finite fields to coherent modules equipped with a Frobenius structure. This book begins with a short introduction to the homological theory of crystals of Böckle and Pink with the aim of introducing the sheaves-functions dictionary as quickly as possible, illustrated with elementary examples and classical applications. Subsequently, the theory and results are expanded to include infinite coefficients, L-functions, and applications to special values of Goss L-functions and zeta functions. Based on lectures given at the Morningside Center in Beijing in 2013, this book serves as both an introduction to the Woods Hole trace formula and the sheaves-functions dictionary, and to some advanced applications on characteristic p zeta values.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] Abramovich, D. & Karu, K. & Matsuki, K. & Włodarczyk, J.Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), 531–572.
[2] Anderson, G.W.t-Motives, Duke Math. J. 53 (1986), 457–502.
[3] Anderson, G.W.An Elementary Approach to L-Functions mod p, J. Number Theory 80 (2000), 291–303.
[4] Anderson, G.W. & Thakur, D.S.Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990), 159–191.
[5] Artin, A. & Grothendieck, A. & Verdier, J.L.Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics 269, 270, 305, Springer, 1972.
[6] Atiyah, M.F. & Bott, R.A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245–250.
[7] Atiyah, M.F. & Bott, R.A Lefschetz Fixed Point Formula for Elliptic Complexes: I, Ann. of Math. 86 (1967), 374–407.
[8] Ax, J.Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261.
[9] Beauville, A. — Formules de points fixes en cohomologie cohérente, Séminaire de géométrie algébrique de Orsay, Presses de l'ENS, 1972.
[10] Berthelot, P. & Bloch, S. & Esnault, H.On Witt vector cohomology for singular varieties, Compos. Math. 143 (2007), 363–392.
[11] Böckle, G. & Pink, R.Cohomological Theory of Crystals over Function Fields. EMS Tracts in Mathematics, Vol. 9, European Mathematical Society, 2009.
[12] Chatzistamatiou, A. & Rülling, K.Higher direct images of the structure sheaf in positive characteristic, Algebra Number Theory 5 (2011), 693– 775.
[13] Chevalley, C.Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1936), 73–75.
[14] Dold, A. & Puppe, D.Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201–312
[15] Deligne, P.Cohomologie à support propre et construction du foncteur f!, In: Hartshorne, R., Residues and Duality, Lecture Notes in Mathematics 20, Springer, 1966.
[16] Deligne, P.Cohomologie étale (SGA 4 1/2). Lecture Notes in Mathematics 569, Springer-Verlag, 1977.
[17] Deuring, M.Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272.
[18] Donovan, P.The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969), 257–273.
[19] Emerton, M. & Kisin, M.The Riemann-Hilbert correspondence for unit F-crystals, Astérisque 293 (2004).
[20] Emerton, M. & Kisin, M.An introduction to the Riemann-Hilbert correspondence for unit F-crystals, In: Geometric aspects of Dwork theory, 677– 700, Walter de Gruyter, 2004.
[21] Fang, J.X.Special L-values of abelian t-modules, J. Number Theory 147 (2015), 300–325.
[22] Fulton, W.A fixed point formula for varieties over finite fields, Math. Scand. 42 (1978), 189–196.
[23] Gabriel, P.Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
[24] Goss, D.v-adic zeta functions, L-series and measures for function fields, Invent. Math. 55 (1979), 107–119.
[25] Goss, D.L-series of t-motives and Drinfeld modules, in The arithmetic of function fields (Columbus, OH, 1991), 313–402, Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, 1992.
[26] Grothendieck, A.Sur quelques points d'algèbre homologique. Tôhoku Math. J. 9 (1957), 119–221.
[27] Grothendieck, A.Cohomologie l-adique et Fonctions L (SGA 5). Lecture notes in Mathematics 589, Springer-Verlag, 1977.
[28] Grothendieck, A.Le langage des schémas, EGA I, Publ. Math. Inst. Hautes Études Sci. 4 (1960).
[29] Grothendieck, A.Étude cohomologique des faisceaux cohérents, EGA III, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 17 (1963).
[30] Hartshorne, R.Residues and duality, Lecture Notes in Mathematics 20, Springer, 1966.
[31] Hartshorne, R.Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
[32] Illusie, L.Complexe Cotangent et Déformations I, Lecture Notes in Mathematics 239, Springer-Verlag, 1971.
[33] Kato, K.Lectures on the approach to Iwasawa theory for Hasse-Weil Lfunctions via BdR I, in Arithmetic Algebraic Geometry, Trento, 1991, 50–163, Lecture Notes in Mathematics 1553, Springer, 1993.
[34] Katz, N.M.On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.
[35] Katz, N.M.p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III, 69–190. Lecture Notes in Mathematics 350, Springer, 1973.
[36] Köck, B.Computing the homology of Koszul complexes, Trans. Amer. Math. Soc. 353 (2001), 3115–3147.
[37] Kunz, E.Characterizations of Regular Local Rings of Characteristic p, Amer. J. Math. 91 (1969), 772–784.
[38] Lafforgue, V.Valeurs spéciales des fonctions L en caractéristique p, J. Number Theory 129 (2009), 2600–2634.
[39] Laumon, G.Transformation de Fourier, constantes d’équations fonctionnelles et conjectures de Weil, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 131–210.
[40] Lichtenbaum, S.Values of zeta-functions, étale cohomology, and algebraic K-theory, in Algebraic K-theory, II, pp. 489–501. Lecture Notes in Mathematics 342, Springer 1973.
[41] Lütkebohmert, W.On compactification of schemes, Manuscripta Math 80 (1993), 95–111.
[42] Milne, J.S. & Ramachandran, N.Integral motives and special values of zeta functions, J. Amer. Math. Soc. 17 (2004), 499–555.
[43] Nagata, M.A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89–102.
[44] Serre, J.P.Zeta and L-functions, in Arithmetical Algebraic Geometry, 82–91, Harper and Row, 1965.
[45] Stacks Projects Authors — Stacks Project, http://stacks.math. columbia.edu, 2014.
[46] Taelman, L.Special L-values of Drinfeld modules, Ann. of Math. 175 (2012), 369–391.
[47] Taguchi, Y. & Wan, D.L-functions of-sheaves and Drinfeld modules, J. Amer. Math. Soc. 9 (1996), 755–781.
[48] Thakur, D.S.On characteristic p zeta functions, Compositio Math. 99 (1995), 231–247.
[49] Tongring, N. & Penner, R.C. (eds) — Woods Hole mathematics. Perspectives in mathematics and physics. Series on Knots and Everything. World Scientific, 2004.
[50] Warning, E.Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg 11 (1936), 76–83.
[51] Weibel, C.An introduction to homological algebra. Cambridge Univ. Press, 1994.
[52] Włodarczyk, J.Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), 223–331.
[53] Yu, J.Transcendence and special zeta values in characteristic p, Ann. of Math. 134 (1991), 1–23.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.