Skip to main content Accessibility help
×
  • Cited by 1
Publisher:
Cambridge University Press
Online publication date:
November 2015
Print publication year:
2015
Online ISBN:
9781316480687

Book description

The Woods Hole trace formula is a Lefschetz fixed-point theorem for coherent cohomology on algebraic varieties. It leads to a version of the sheaves-functions dictionary of Deligne, relating characteristic-p-valued functions on the rational points of varieties over finite fields to coherent modules equipped with a Frobenius structure. This book begins with a short introduction to the homological theory of crystals of Böckle and Pink with the aim of introducing the sheaves-functions dictionary as quickly as possible, illustrated with elementary examples and classical applications. Subsequently, the theory and results are expanded to include infinite coefficients, L-functions, and applications to special values of Goss L-functions and zeta functions. Based on lectures given at the Morningside Center in Beijing in 2013, this book serves as both an introduction to the Woods Hole trace formula and the sheaves-functions dictionary, and to some advanced applications on characteristic p zeta values.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] Abramovich, D. & Karu, K. & Matsuki, K. & Włodarczyk, J.Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002 Google Scholar), 531–572.
[2] Anderson, G.W.t-Motives, Duke Math. J. 53 (1986 Google Scholar), 457–502.
[3] Anderson, G.W.An Elementary Approach to L-Functions mod p, J. Number Theory 80 (2000 Google Scholar), 291–303.
[4] Anderson, G.W. & Thakur, D.S.Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990 Google Scholar), 159–191.
[5] Artin, A. & Grothendieck, A. & Verdier, J.L.Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics 269, 270, 305, Springer, 1972 Google Scholar.
[6] Atiyah, M.F. & Bott, R.A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966 Google Scholar), 245–250.
[7] Atiyah, M.F. & Bott, R.A Lefschetz Fixed Point Formula for Elliptic Complexes: I, Ann. of Math. 86 (1967 Google Scholar), 374–407.
[8] Ax, J.Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964 Google Scholar), 255–261.
[9] Beauville, A. — Formules de points fixes en cohomologie cohérente, Séminaire de géométrie algébrique de Orsay, Presses de l'ENS, 1972 Google Scholar.
[10] Berthelot, P. & Bloch, S. & Esnault, H.On Witt vector cohomology for singular varieties, Compos. Math. 143 (2007 Google Scholar), 363–392.
[11] Böckle, G. & Pink, R.Cohomological Theory of Crystals over Function Fields. EMS Tracts in Mathematics, Vol. 9, European Mathematical Society, 2009 Google Scholar.
[12] Chatzistamatiou, A. & Rülling, K.Higher direct images of the structure sheaf in positive characteristic, Algebra Number Theory 5 (2011 Google Scholar), 693– 775.
[13] Chevalley, C.Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1936 Google Scholar), 73–75.
[14] Dold, A. & Puppe, D.Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961 Google Scholar), 201–312
[15] Deligne, P.Cohomologie à support propre et construction du foncteur f!, In: Hartshorne, R., Residues and Duality, Lecture Notes in Mathematics 20, Springer, 1966 Google Scholar.
[16] Deligne, P.Cohomologie étale (SGA 4 1/2). Lecture Notes in Mathematics 569, Springer-Verlag, 1977 Google Scholar.
[17] Deuring, M.Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941 Google Scholar), 197–272.
[18] Donovan, P.The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969 Google Scholar), 257–273.
[19] Emerton, M. & Kisin, M.The Riemann-Hilbert correspondence for unit F-crystals, Astérisque 293 (2004 Google Scholar).
[20] Emerton, M. & Kisin, M.An introduction to the Riemann-Hilbert correspondence for unit F-crystals, In: Geometric aspects of Dwork theory Google Scholar, 677– 700, Walter de Gruyter, 2004.
[21] Fang, J.X.Special L-values of abelian t-modules, J. Number Theory 147 (2015 Google Scholar), 300–325.
[22] Fulton, W.A fixed point formula for varieties over finite fields, Math. Scand. 42 (1978 Google Scholar), 189–196.
[23] Gabriel, P.Des catégories abéliennes, Bull. Soc. Math. France 90 (1962 Google Scholar), 323–448.
[24] Goss, D.v-adic zeta functions, L-series and measures for function fields, Invent. Math. 55 (1979 Google Scholar), 107–119.
[25] Goss, D.L-series of t-motives and Drinfeld modules, in The arithmetic of function fields (Columbus, OH, 1991), 313–402, Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, 1992 Google Scholar.
[26] Grothendieck, A.Sur quelques points d'algèbre homologique. Tôhoku Math. J. 9 Google Scholar (1957), 119–221.
[27] Grothendieck, A.Cohomologie l-adique et Fonctions L (SGA 5). Lecture notes in Mathematics 589, Springer-Verlag, 1977 Google Scholar.
[28] Grothendieck, A.Le langage des schémas, EGA I, Publ. Math. Inst. Hautes Études Sci. 4 (1960 Google Scholar).
[29] Grothendieck, A.Étude cohomologique des faisceaux cohérents, EGA III, Publ. Math. Inst. Hautes Études Sci. 11 (1961 Google Scholar), 17 (1963).
[30] Hartshorne, R.Residues and duality, Lecture Notes in Mathematics 20, Springer, 1966 Google Scholar.
[31] Hartshorne, R.Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977 Google Scholar.
[32] Illusie, L.Complexe Cotangent et Déformations I, Lecture Notes in Mathematics 239, Springer-Verlag, 1971 Google Scholar.
[33] Kato, K.Lectures on the approach to Iwasawa theory for Hasse-Weil Lfunctions via BdR I, in Arithmetic Algebraic Geometry, Trento, 1991, 50–163, Lecture Notes in Mathematics 1553, Springer, 1993 Google Scholar.
[34] Katz, N.M.On a theorem of Ax, Amer. J. Math. 93 (1971 Google Scholar), 485–499.
[35] Katz, N.M.p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III, 69–190. Lecture Notes in Mathematics 350, Springer, 1973 Google Scholar.
[36] Köck, B.Computing the homology of Koszul complexes, Trans. Amer. Math. Soc. 353 (2001 Google Scholar), 3115–3147.
[37] Kunz, E.Characterizations of Regular Local Rings of Characteristic p, Amer. J. Math. 91 (1969 Google Scholar), 772–784.
[38] Lafforgue, V.Valeurs spéciales des fonctions L en caractéristique p, J. Number Theory 129 (2009 Google Scholar), 2600–2634.
[39] Laumon, G.Transformation de Fourier, constantes d’équations fonctionnelles et conjectures de Weil, Publ. Math. Inst. Hautes Études Sci. 65 (1987 Google Scholar), 131–210.
[40] Lichtenbaum, S.Values of zeta-functions, étale cohomology, and algebraic K-theory, in Algebraic K-theory, II, pp. 489–501. Lecture Notes in Mathematics 342, Springer 1973 Google Scholar.
[41] Lütkebohmert, W.On compactification of schemes, Manuscripta Math 80 (1993 Google Scholar), 95–111.
[42] Milne, J.S. & Ramachandran, N.Integral motives and special values of zeta functions, J. Amer. Math. Soc. 17 (2004 Google Scholar), 499–555.
[43] Nagata, M.A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963 Google Scholar), 89–102.
[44] Serre, J.P.Zeta and L-functions, in Arithmetical Algebraic Geometry, 82–91, Harper and Row, 1965 Google Scholar.
[45] Stacks Projects Authors — Stacks Project, http://stacks.math. columbia.edu, 2014 Google Scholar.
[46] Taelman, L.Special L-values of Drinfeld modules, Ann. of Math. 175 (2012 Google Scholar), 369–391.
[47] Taguchi, Y. & Wan, D.L-functions of-sheaves and Drinfeld modules, J. Amer. Math. Soc. 9 (1996 Google Scholar), 755–781.
[48] Thakur, D.S.On characteristic p zeta functions, Compositio Math. 99 (1995 Google Scholar), 231–247.
[49] Tongring, N. & Penner, R.C. (eds) — Woods Hole mathematics. Perspectives in mathematics and physics. Series on Knots and Everything. World Scientific, 2004 Google Scholar.
[50] Warning, E.Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg 11 (1936 Google Scholar), 76–83.
[51] Weibel, C.An introduction to homological algebra. Cambridge Univ. Press, 1994 Google Scholar.
[52] Włodarczyk, J.Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003 Google Scholar), 223–331.
[53] Yu, J.Transcendence and special zeta values in characteristic p, Ann. of Math. 134 (1991 Google Scholar), 1–23.

Metrics

Altmetric attention score

1 reader on Mendeley

Full text views

Total number of HTML views: 0
Total number of PDF views: 1671 *
Loading metrics...

Book summary page views

Total views: 2460 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 3rd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.