[1] Abramovich, D. & Karu, K. & Matsuki, K. & Włodarczyk, J. — Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), 531–572.
[2] Anderson, G.W. — t-Motives, Duke Math. J. 53 (1986), 457–502.
[3] Anderson, G.W. — An Elementary Approach to L-Functions mod p, J. Number Theory 80 (2000), 291–303.
[4] Anderson, G.W. & Thakur, D.S. — Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990), 159–191.
[5] Artin, A. & Grothendieck, A. & Verdier, J.L. — Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics 269, 270, 305, Springer, 1972.
[6] Atiyah, M.F. & Bott, R. — A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245–250.
[7] Atiyah, M.F. & Bott, R. — A Lefschetz Fixed Point Formula for Elliptic Complexes: I, Ann. of Math. 86 (1967), 374–407.
[8] Ax, J. — Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261.
[9] Beauville, A. — Formules de points fixes en cohomologie cohérente, Séminaire de géométrie algébrique de Orsay, Presses de l'ENS, 1972.
[10] Berthelot, P. & Bloch, S. & Esnault, H. — On Witt vector cohomology for singular varieties, Compos. Math. 143 (2007), 363–392.
[11] Böckle, G. & Pink, R. — Cohomological Theory of Crystals over Function Fields. EMS Tracts in Mathematics, Vol. 9, European Mathematical Society, 2009.
[12] Chatzistamatiou, A. & Rülling, K. — Higher direct images of the structure sheaf in positive characteristic, Algebra Number Theory 5 (2011), 693– 775.
[13] Chevalley, C. — Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1936), 73–75.
[14] Dold, A. & Puppe, D. — Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201–312
[15] Deligne, P. — Cohomologie à support propre et construction du foncteur f!, In: Hartshorne, R., Residues and Duality, Lecture Notes in Mathematics 20, Springer, 1966.
[16] Deligne, P. — Cohomologie étale (SGA 4 1/2). Lecture Notes in Mathematics 569, Springer-Verlag, 1977.
[17] Deuring, M. — Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272.
[18] Donovan, P. — The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969), 257–273.
[19] Emerton, M. & Kisin, M. — The Riemann-Hilbert correspondence for unit F-crystals, Astérisque 293 (2004).
[20] Emerton, M. & Kisin, M. — An introduction to the Riemann-Hilbert correspondence for unit F-crystals, In: Geometric aspects of Dwork theory, 677– 700, Walter de Gruyter, 2004.
[21] Fang, J.X. — Special L-values of abelian t-modules, J. Number Theory 147 (2015), 300–325.
[22] Fulton, W. — A fixed point formula for varieties over finite fields, Math. Scand. 42 (1978), 189–196.
[23] Gabriel, P. — Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
[24] Goss, D. — v-adic zeta functions, L-series and measures for function fields, Invent. Math. 55 (1979), 107–119.
[25] Goss, D. — L-series of t-motives and Drinfeld modules, in The arithmetic of function fields (Columbus, OH, 1991), 313–402, Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, 1992.
[26] Grothendieck, A. — Sur quelques points d'algèbre homologique. Tôhoku Math. J. 9 (1957), 119–221.
[27] Grothendieck, A.—Cohomologie l-adique et Fonctions L (SGA 5). Lecture notes in Mathematics 589, Springer-Verlag, 1977.
[28] Grothendieck, A. — Le langage des schémas, EGA I, Publ. Math. Inst. Hautes Études Sci. 4 (1960).
[29] Grothendieck, A. — Étude cohomologique des faisceaux cohérents, EGA III, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 17 (1963).
[30] Hartshorne, R. — Residues and duality, Lecture Notes in Mathematics 20, Springer, 1966.
[31] Hartshorne, R. — Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
[32] Illusie, L.—Complexe Cotangent et Déformations I, Lecture Notes in Mathematics 239, Springer-Verlag, 1971.
[33] Kato, K. — Lectures on the approach to Iwasawa theory for Hasse-Weil Lfunctions via BdR I, in Arithmetic Algebraic Geometry, Trento, 1991, 50–163, Lecture Notes in Mathematics 1553, Springer, 1993.
[34] Katz, N.M. — On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.
[35] Katz, N.M. — p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III, 69–190. Lecture Notes in Mathematics 350, Springer, 1973.
[36] Köck, B. — Computing the homology of Koszul complexes, Trans. Amer. Math. Soc. 353 (2001), 3115–3147.
[37] Kunz, E. — Characterizations of Regular Local Rings of Characteristic p, Amer. J. Math. 91 (1969), 772–784.
[38] Lafforgue, V. — Valeurs spéciales des fonctions L en caractéristique p, J. Number Theory 129 (2009), 2600–2634.
[39] Laumon, G. — Transformation de Fourier, constantes d’équations fonctionnelles et conjectures de Weil, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 131–210.
[40] Lichtenbaum, S.—Values of zeta-functions, étale cohomology, and algebraic K-theory, in Algebraic K-theory, II, pp. 489–501. Lecture Notes in Mathematics 342, Springer 1973.
[41] Lütkebohmert, W. — On compactification of schemes, Manuscripta Math 80 (1993), 95–111.
[42] Milne, J.S. & Ramachandran, N. — Integral motives and special values of zeta functions, J. Amer. Math. Soc. 17 (2004), 499–555.
[43] Nagata, M. — A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89–102.
[44] Serre, J.P. — Zeta and L-functions, in Arithmetical Algebraic Geometry, 82–91, Harper and Row, 1965.
[45] Stacks Projects Authors — Stacks Project, http://stacks.math. columbia.edu, 2014.
[46] Taelman, L. — Special L-values of Drinfeld modules, Ann. of Math. 175 (2012), 369–391.
[47] Taguchi, Y. & Wan, D. — L-functions of-sheaves and Drinfeld modules, J. Amer. Math. Soc. 9 (1996), 755–781.
[48] Thakur, D.S. — On characteristic p zeta functions, Compositio Math. 99 (1995), 231–247.
[49] Tongring, N. & Penner, R.C. (eds) — Woods Hole mathematics. Perspectives in mathematics and physics. Series on Knots and Everything. World Scientific, 2004.
[50] Warning, E. — Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg 11 (1936), 76–83.
[51] Weibel, C. — An introduction to homological algebra. Cambridge Univ. Press, 1994.
[52] Włodarczyk, J. — Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), 223–331.
[53] Yu, J.Transcendence and special zeta values in characteristic p, Ann. of Math. 134 (1991), 1–23.