References
Abou-Rjeili, A. , & Karypis, G. (2006). Multilevel algorithms for partitioning power-law graphs. In Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. doi: 10.1109/IPDPS.2006.1639360.
Alanis-Lobato, G., Mier, P., & Andrade-Navarro, M. A. (2016a). Efficient embedding of complex networks to hyperbolic space via their Laplacian. Sci. Rep., 6, 30108.
Alanis-Lobato, G., Mier, P., & Andrade-Navarro, M. A. (2016b, Nov. 15). Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Applied Network Science, 1(1), 10. doi: https://doi.org/10.1007/s41109-016-0013-0 Allard, A., & Serrano, M. Á. (2020). Navigable maps of structural brain networks across species. PLOS Computational Biology, 16(2), e1007584.
Allard, A., Serrano, M. Á., García-Pérez, G., & Boguñá, M. (2017). The geometric nature of weights in real complex networks. Nat. Commun., 8, 14103.
Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., & Vespignani, A. (2008). K-core decomposition of internet graphs: hierarchies, selfsimilarity and measurement biases. Networks and Heterogeneous Media, 3(2), 371–393.
Amaral, L. A. N. (2008). A truer measure of our ignorance. Proc. Natl. Acad. Sci. USA, 105(19), 6795–6796.
Amaral, L. A. N., Scala, A., Barthélemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proc. Natl. Acad. Sci. USA, 97(21), 11149–11152.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101(11), 3747–3752.
Barrat, A., Barthélemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.
Barthélemy, M. (2011). Spatial networks. Phys. Rep., 499(1–3), 1–101.
Bianconi, G. (2018). Multilayer networks: structure and function. Oxford: Oxford University Press.
Blasius, T., Friedrich, T., Krohmer, A. et al. (2018, Apr.). Efficient embedding of scale-free graphs in the hyperbolic plane. IEEE/ACM Trans. Netw., 26(2), 920–933. doi: https://doi.org/10.1109/TNET.2018.2810186 Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, É. (2008). Fast unfolding of communities in large networks. J. Stat. Mech., 2008(10), P10008.
Boguñá, M., & Krioukov, D. (2009). Navigating ultrasmall worlds in ultrashort time. Phys. Rev. Lett., 102(058701). (arXiv:0809.2995v1)
Boguñá, M., Krioukov, D., Almagro, P., & Serrano, M. Á. (2020, Apr.). Small worlds and clustering in spatial networks. Phys. Rev. Research, 2, 023040. doi: https://doi.org/10.1103/PhysRevResearch.2.023040 Boguñá, M., Krioukov, D. , & Claffy, K. (2009). Navigability of complex networks. Nat. Phys., 5(1), 74–80.
Boguñá, M., Pastor-Satorras, R., & Vespignani, A. (2004). Cut-offs and finite size effects in scale-free networks. Eur. Phys. J. B, 38(2), 205–209.
Bringmann, K., Keusch, R., Lengler, J., Maus, Y., & Molla, A. R. (2017). Greedy routing and the algorithmic small-world phenomenon. In PODC ’17: Proceedings of the ACM Symposium on Principles of Distributed Computing. doi: https://doi.org/10.1145/3087801.3087829 Caldarelli, G., Capocci, A., De Los Rios, P., & Muñoz, M. A. (2002, December). Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett., 89(25), 258702. doi: https://doi.org/10.1103/PhysRevLett.89.258702 Claffy, K., Hyun, Y., Keys, K., Fomenkov, M., & Krioukov, D. (2009). Internet mapping: From art to science. In 2009 Cybersecurity Applications Technology Conference for Homeland Security (pp. 205–211). New York: IEEE. doi: https://doi.org/10.1109/CATCH.2009.38 Cohen, R., & Havlin, S. (2003). Scale-free networks are ultrasmall. Phys. Rev. Lett., 90(5), 058701.
Colizza, V., Pastor-Satorras, R. , & Vespignani, A. (2007). Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys., 3, 276–282.
Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks: From biological nets to the Internet and WWW. Oxford: Oxford University Press.
Dorogovtsev, S. N., Mendes, J. F. F., & Samukhin, A. N. (2001). A. size-dependent degree distribution of a scale-free growing network. Phys. Rev. E, 63(6), 062101.
D’Souza, R., Borgs, C., Chayes, J., Berger, N., & Kleinberg, R. (2007). Emergence of tempered preferential attachment from optimization. PNAS, 104(15), 6112–6117.
Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Phys. Rev. Lett., 96(21), 218701.
García-Pérez, G., Allard, A., Serrano, M. Á., & Boguñá, M. (2019, Dec.). Mercator: uncovering faithful hyperbolic embeddings of complex networks. New Journal of Physics, 21(12), 123033. doi: https://doi.org/10.1088%2F1367-2630%2Fab57d2 García-Pérez, G., Boguñá, M., Allard, A., & Serrano, M. Á. (2016, Sept.). The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013. Sci. Rep., 6, 33441. doi: https://doi.org/10.1038/srep33441 Goh, K. I., Salvi, G., Kahng, B., & Kim, D. (2006). Skeleton and fractal scaling in complex networks. Phys. Rev. Lett., 96, 018701.
Guimerà, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities. Proc. Natl. Acad. Sci. USAs, 10(22), 7794–7799.
Gulyás, A., Bíró, J. J., Kőrösi, A., Rétvári, G., & Krioukov, D. (2015). Navigable networks as Nash equilibria of navigation games. Nat. Commun., 6(1), 7651. doi: https://doi.org/10.1038/ncomms8651 Kadanoff, Leo P. (2000). Statistical physics: Statics, dynamics and renormalization. Singapore: World Scientific.
Karypis, G., & Kumar, V. (1999). A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1), 359–392.
Kim, J. S., Goh, K. I., Hahng, B., & Kim, D. (2007). Fractality and self-similarity in scale-free networks. New J. Phys., 9, 177.
Kleineberg, K.-K., Boguñá, M., Serrano, M. Á., & Papadopoulos, F. (2016). Hidden geometric correlations in real multiplex networks. Nat. Phys., 12(11), 1076–1081.
Kleineberg, K.-K., Buzna, L., Papadopoulos, F., Boguñá, M., & Serrano, M. Á. (2017). Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks. Phys. Rev. Lett., 118, 218301.
Korman, A., & Peleg, D. (2006). Dynamic routing schemes for general graphs. In Bugliesi, M., Preneel, B., Sassone, V., & Wegener, I. (eds.), ICALP: Proceedings of Int. Colloquium on Automata, Languages and Programming (vol. 4051, pp. 619–630). Springer. doi: https://doi.org/10.1007/11786986_54 Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., & Boguñá, M. (2010). Hyperbolic geometry of complex networks. Phys. Rev. E, 82(3), 036106.
Krioukov, D., Papadopoulos, F., Vahdat, A., & Boguñá, M. (2009, Sep.). Curvature and temperature of complex networks. Phys. Rev. E, 80(3), 035101. Accessed at http://link.aps.org/doi/10.1103/PhysRevE.80.035101 doi: https://doi.org/10.1103/PhysRevE.80.035101 Kunegis, J. (2013). KONECT – The Koblenz Network Collection. In Proceedings of the International Conference on World Wide Web Companion (pp. 1343–1350). Accessed at http://konect.cc/ Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. (2009). Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1), 29–123. doi: https:http://doi.org/10.1080/15427951.2009.10129177 Mandelbrot, B. (1961). On the theory of word frequencies and on related Markovian models of discourse. In Proceedings of the Twelve Symposia in Applied Mathematics, Roman Jakobson Editor. Structure of Language and Its Mathematical Aspects, New York, USA (pp. 190–219). Providence, RI: American Mathematical Society.
Milo, R., Itzkovitz, S., Kashtan, N. et al. (2004, March). Superfamilies of evolved and designed networks. Science, 303(5663), 1538–1542.
Min, B., Yi, S. D., Lee, K.-M., & Goh, K.-I. (2014). Network robustness of multiplex networks with interlayer degree correlations. Phys. Rev. E, 89(4), 042811.
Muscoloni, A., & Cannistraci, C. V. (2018). A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities. New J. Phys., 20(5), 052002. doi: https://doi.org/10.1088/1367-2630/aac06f Muscoloni, A., & Cannistraci, C. V. (2019). Navigability evaluation of complex networks by greedy routing efficiency. Proc. Natl. Acad. Sci., 116(5), 1468–1469. doi: https://doi.org/10.1073/pnas.1817880116 Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017). Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature Communications, 8(1), 1615. https://doi.org/10.1038/s41467-017-01825-5 Newman, M. E. J. (2010). Networks: An introduction. Oxford: Oxford University Press.
Nicosia, V., & Latora, V. (2015). Measuring and modeling correlations in multiplex networks. Phys. Rev. E, 92, 032805.
Ortiz, E., Starnini, M., & Serrano, M. Á. (2017). Navigability of temporal networks in hyperbolic space. Sci. Rep., 7, 15054.
Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguñá, M., & Krioukov, D. (2012). Popularity versus similarity in growing networks. Nature, 489(7417), 537–540. doi: https://doi.org/10.1038/nature11459 Papadopoulos, F., Krioukov, D., Boguñá, M., & Vahdat, A. (2010). Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In 2010 Proceedings IEEE Infocom (pp. 1–9).
Papadopoulos, F., & Psounis, K. (2007, Oct.). Efficient identification of uncongested internet links for topology downscaling. SIG-COMM Comput. Commun. Rev., 37(5), 39–52. doi: https://doi.org/10.1145/1290168.1290173 Papadopoulos, F., Psounis, K., & Govindan, R. (2006, Dec.). Performance preserving topological downscaling of internet-like networks. IEEE Journal on Selected Areas in Communications, 24(12), 2313–2326. doi: https://doi.org/10.1109/JSAC.2006.884029 Pastor-Satorras, R., Smith, E., & Sole, R. V. (2003). Evolving protein interaction networks through gene duplication. J. Theor. Biol., 222(2), 199–210.
Radicchi, F., Ramasco, J. J., Barrat, A., & Fortunato, S. (2008, Oct.). Complex networks renormalization: Flows and fixed points. Phys. Rev. Lett., 101(14), 148701. doi: https://doi.org/10.1103/PhysRevLett.101.148701 Rozenfeld, H. D., Song, C., & Makse, H. A. (2010, Jan.). Small-world to fractal transition in complex networks: A renormalization group approach. Phys. Rev. Lett., 104(2), 025701. doi: https://doi.org/10.1103/PhysRevLett.104.025701. Sarveniazi, A. (2014). An actual survey of dimensionality reduction. American Journal of Computational Mathematics, 4(2), 55–72.
Serrà, J., Corral, A., Boguñá, M., Haro, M., & Arcos, J. L. (2012). Measuring the evolution of contemporary western popular music. Sci. Rep., 2. Accessed at www.nature.com/srep/2012/120726/srep00521/full/srep00521.html doi: https://doi.org/10.1038/srep00521 Serrano, M. Á., Boguñá, M., & Sagues, F. (2012). Uncovering the hidden geometry behind metabolic networks. Mol. BioSyst., 8(3), 843–850. doi: https://doi.org/10.1039/C2MB05306C Serrano, M. Á., Buzna, L., & Boguñá, M. (2015). Escaping the avalanche collapse in self-similar multiplexes. New J. Phys., 17, 053033.
Serrano, M. Á., Krioukov, D., & Boguñá, M. (2008). Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett., 100(7), 078701.
Song, C., Havlin, S., & Makse, H. A. (2005). Self-similarity of complex networks. Nature, 433(7024), 392–395.
Song, C., Havlin, S., & Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nat. Phys., 2(4), 275–281.
Stanley, H. E. (1971). Introduction to phase transitions and critical phenomena. Oxford: Oxford University Press.
Starnini, M., Ortiz, E., & Serrano, M. Á. (2019). Geometric randomization of real networks with prescribed degree sequence. New J. Phys., 21(5s), 053039.
Takemura, S.-y., Bharioke, A., Lu, Z. et al. (2013). A visual motion detection circuit suggested by drosophila connectomics. Nature, 500(7461), 175–181.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.
Wilson, K. G. (1975). The renormalization group: Critical phenomena and the kondo problem. Rev. Mod. Phys., 47(4), 773–840.
Yao, W. M., & Fahmy, S. (2011, June). Partitioning network testbed experiments. In 2011 31st International Conference on Distributed Computing Systems (pp. 299–309). doi: https://doi.org/10.1109/ICDCS.2011.22 Zheng, M., Allard, A., Hagmann, P., Alemán-Gómez, Y., & Serrano, M. Á. (2020). Geometric renormalization unravels self-similarity of the multiscale human connectome. Proc. Natl. Acad. Sci., 117(33), 20244–20253. doi: https://doi.org/10.1073/pnas.1922248117 Zheng, M., García-Pérez, G., Boguñá, & M., Serrano, M. Á. (2021). Scaling-up real networks by geometric branching growth. Proc. Natl. Acad. Sci., 118(21), e2018994118. doi: https://doi.org/10.1073/pnas.2018994118 Zuev, K., Boguñá, M., Bianconi, G., & Krioukov, D. (2015). Emergence of soft communities from geometric preferential attachment. Sci. Rep., 5, 9421. doi: https://doi.org/10.1038/srep09421