Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
June 2023
Print publication year:
2023
Online ISBN:
9781009300599
Series:
Elements in the Philosophy of Physics

Book description

This Element presents the philosophy of special relativity, from the foundations of the theory in Newtonian mechanics, through its birth out of the ashes of nineteenth-century ether theory, through the various conceptual paradoxes which the theory presents, and finally arriving at some of its connections with Einstein's later theory of general relativity. It illustrates concepts such as inertial frames, force-free motion, dynamical versus geometrical understandings of physics, the standard hierarchy of classical spacetimes, and symmetries of a physical theory; it also discusses specific topics in the foundations of special relativity such as Einstein's 1905 derivation of the Lorentz transformations, the conventionality of simultaneity, the status of frame-dependent effects, and the twin paradox.

References

Acuña, P. (2016). Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 55, 112. https://doi.org/10.1016/j.shpsb.2016.04.002.
Anderson, R., Vetharaniam, I. & Stedman, G. (1998). Conventionality of synchronisation, gauge dependence and test theories of relativity. Physics Reports, 295(3), 93180. https://doi.org/10.1016/S0370-1573(97)00051-3.
Barbour, J. B. (1989). The discovery of dynamics: A study from a Machian point of view of the discovery and the structure of dynamical theories. New York: Oxford University Press.
Barrett, T. W. (2015). Spacetime structure. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 51, 3743. https://doi.org/10.1016/j.shpsb.2015.06.004.
Bell, J. S. (1992, Sep). George Francis FitzGerald. Physics World, 5(9), 31–5. https://doi.org/10.1088/2058-7058/5/9/24.
Bell, J. S. (2004). How to teach special relativity. In Speakable and unspeakable in quantum mechanics: Collected papers on quantum philosophy (2nd ed., pp. 6780). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511815676.011.
Belot, G. (2000). Geometry and motion. British Journal for the Philosophy of Science, 51(4), 561–95. https://doi.org/10.1093/bjps/51.4.561.
Berzi, V. & Gorini, V. (1969). Reciprocity principle and the Lorentz transformations. Journal of Mathematical Physics, 10, 1518–24. https://doi.org/10.1063/1.1665000.
Bridgman, P. W. (1967). A sophisticate’s primer of relativity. London: Routledge and Kegan Paul.
Brown, H. R. (1997). On the role of special relativity in general relativity. International Studies in the Philosophy of Science, 11(1), 6781. https://doi.org/10.1080/02698599708573551.
Brown, H. R. (2005). Physical relativity: Space-time structure from a dynamical perspective. Oxford: Oxford University Press.
Brown, H. R. & Pooley, O. (2001). The origin of the spacetime metric: Bell’s ‘Lorentzian pedagogy’ and its significance in general relativity. In Callender, C. & Huggett, N. (eds.), Physics meets philosophy at the Planck scale (256–72). Cambridge: Cambridge University Press.
Brown, H. R. & Pooley, O. (2004). Minkowski space-time: A glorious non-entity. In Dieks, D. (ed.), The ontology of spacetime (pp. 6789). Amsterdam: Elsevier.
Brown, H. R. & Read, J. (2016). Clarifying possible misconceptions in the foundations of general relativity. American Journal of Physics, 84, 327. https://doi.org/10.1119/1.4943264.
Brown, H. R. & Read, J. (2021). The dynamical approach to spacetime theories. In Knox, E. & Wilson, A. (eds.), The Routledge companion to philosophy of physics (pp. 7085). London: Routledge.
Cajori, F. (1934). Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world (A. Motte, trans.). Berkeley: University of California Press.
Chen, L. & Fritz, T. (2021). An algebraic approach to physical fields. Studies in History and Philosophy of Science Part A, 89(C), 188201. https://doi.org/10.1016/j.shpsa.2021.08.011.
Cheng, B. & Read, J. (2021). Why not a sound postulate? Foundations of Physics, 51(3), 120. https://doi.org/10.1007/s10701-021-00479-0.
Dasgupta, S. (2016). Symmetry as an epistemic notion. British Journal for the Philosophy of Science, 67(3), 837–78. https://doi.org/10.1093/bjps/axu049.
Debs, T. A. & Redhead, M. L. G. (1996). The twin ‘paradox’ and the conventionality of simultaneity. American Journal of Physics, 64, 384–92.
Dewar, N. (2019). Sophistication about symmetries. British Journal for the Philosophy of Science, 70(2), 485521. https://doi.org/10.1093/bjps/axx021.
Dewar, N. (2020). General-relativistic covariance. Foundations of Physics, 50(4), 294318. https://doi.org/10.1007/s10701-019-00256-0.
Dewar, N., Linnemann, N. & Read, J. (2022). The epistemology of spacetime. Philosophy Compass, 17(4). https://doi.org/10.1111/phc3.12821.
Earman, J. (1989). World enough and spacetime. Cambridge, MA: MIT Press.
Earman, J. & Friedman, M. (1973). The meaning and status of Newton’s law of inertia and the nature of gravitational forces. Philosophy of Science, 40(3), 329–59. https://doi.org/10.1086/288536.
Eddington, A. (1924). The mathematical theory of relativity. Cambridge: Cambridge University Press.
Eddington, A. (1966). Space, time and gravitation: An outline of the general theory of relativity. Cambridge: Cambridge University Press.
Einstein, A. (1905a, January). Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der Physik, 323(13), 639–41. https://doi.org/10.1002/andp.19053231314.
Einstein, A. (1905b, January). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 322(8), 549–60. https://doi.org/10.1002/andp.19053220806.
Einstein, A. (1905c, January). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322(6), 132–48. https://doi.org/10.1002/andp.19053220607.
Einstein, A. (1905d, January). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891921. https://doi.org/10.1002/andp.19053221004.
Einstein, A. (1907, January). Bemerkungen zu derNotiz von Hrn. Paul Ehrenfest: Die Translation deformierbarer Elektronen und der Flächensatz. Annalen der Physik, 328(6), 206–8. https://doi.org/10.1002/andp.19073280616.
Einstein, A. (1919). What is the theory of relativity? The Times. Friday, 28 November.
Einstein, A. (1921). Geometrie und erfahrung: Erweiterte fassung des festvortrages gehalten an der preussischen akademie der wissenschaften zu berlin am 27.januar 1921. Berlin: J. Springer.
Einstein, A. (1935). Elementary derivation of the equivalence of mass and energy. Bulletin of the American Mathematical Society, 41(4), 223–30.
Einstein, A. (1954). The fundamentals of theoretical physics. In Ideas and opinions (pp. 323–35). New York: Bonanza Books.
Einstein, A. (1969). Autobiographical notes. In Schilpp, P. A. (ed.), Albert Einstein: Philosopher-scientist (Vol. 1, pp. 194). Chicago, IL: Open Court.
Einstein, A. (1995). Letter to Arnold Sommerfield, January 14, 1908 Klein, M. J. (, Knox, A. J. & Schulmann, R., eds.). Princeton, NJ: Princeton University Press.
Fine, K. (2005). Tense and reality. In Modality and tense: Philosophical papers. Oxford: Oxford University Press.
FitzGerald, G. F. (1889). The ether and the Earth’s atmosphere. Science, 13, 390.
Friedman, M. (1974). Explanation and scientific understanding. Journal of Philosophy, 71(1), 519.
Friedman, M. (1983). Foundations of space-time theories. Princeton, NJ: Princeton University Press.
Galilei, G. (1967). Dialogues concerning the two chief world systems (S. Drake, trans.). Berkeley: University of California Press.
Giovanelli, M. (2014). ‘But one must not legalize the mentioned sin’: Phenomenological vs. dynamical treatments of rods and clocks in Einstein’s thought. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 48(1), 2044. https://doi.org/10.1016/j.shpsb.2014.08.012.
Giovanelli, M. (2021). Nothing but coincidences: The point-coincidence and Einstein’s struggle with the meaning of coordinates in physics. European Journal for Philosophy of Science, 11(2), 164. https://doi.org/10.1007/s13194-020-00332-7.
Griffiths, D. J. (2013). Introduction to electrodynamics (4th ed.). Boston, MA: Pearson.
Grünbaum, A. (2001). David Malament and the conventionality of simultaneity: A reply. Foundations of Physics, 40(9–10), 1285–97. https://doi.org/10.1007/s10701-009-9328-3.
Heras, J. A. (1994, October). Electromagnetism in Euclidean four space: A discussion between God and the Devil. American Journal of Physics, 62(10), 914–16. https://doi.org/10.1119/1.17681.
Hertz, H. (1894). Die prinzipien der mechanik. Leipzig: J. A. Barth.
Huggett, N. (2000). Reflections on parity nonconservation. Philosophy of Science, 67(2), 219–41. https://doi.org/10.1086/392773.
Huggett, N. (2006). The regularity account of relational spacetime. Mind, 115(457), 4173. https://doi.org/10.1093/mind/fzl041.
Huggett, N. (2009). Essay review: Physical relativity and understanding space-time. Philosophy of Science, 76(3), 404–22. https://doi.org/10.1086/649814.
Huggett, N., Hoefer, C. & Read, J. (2022). Absolute and relational space and motion: Post-Newtonian theories. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Spring 2022 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2022/entries/spacetime-theories.
Jackson, J. D. (1998). Classical electrodynamics (3rd ed.). New York: Wiley.
Jammer, M. (2006). Concepts of simultaneity: From antiquity to Einstein and beyond. Baltimore, MD: Johns Hopkins University Press.
Janis, A. (2018). Conventionality of simultaneity. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy (Fall 2018 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2018/entries/spacetime-convensimul.
Janssen, M. (2009). Drawing the line between kinematics and dynamics in special relativity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 40(1), 2652. https://doi.org/10.1016/j.shpsb.2008.06.004.
Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In Kitcher, P. & Salmon, W. (eds.), Minnesota studies in the philosophy of science (Vol.13, pp. 410503). Minneapolis: University of Minnesota Press.
Knox, E. (2013). Effective spacetime geometry. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 346–56. https://doi.org/10.1016/j.shpsb.2013.04.002.
Knox, E. (2014). Newtonian spacetime structure in light of the equivalence principle. British Journal for the Philosophy of Science, 65(4), 863–80. https://doi.org/10.1093/bjps/axt037.
Lange, M. (2007). Laws and meta-laws of nature: Conservation laws and symmetries. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(3), 457–81. https://doi.org/10.1016/j.shpsb.2006.08.003.
Larmor, J. (1900). Aether and matter. Cambridge: Cambridge University Press.
Lehmkuhl, D. (2014). Why Einstein did not believe that general relativity geometrizes gravity. Studies in History and Philosophy of Modern Physics, 46, 316–26.
Lehmkuhl, D. (2021). The equivalence principle(s). In Knox, E. & Wilson, A. (eds.), The Routledge companion to philosophy of physics (pp. 125–44). London: Routledge.
Linnemann, N. & Read, J. (2021). Constructive Axiomatics in Spacetime Physics Part I: Walkthrough to the Ehlers–Pirani–Schild Axiomatisation. (Unpublished manuscript.)
Linnemann, N. & Salimkhani, K. (2021). The Constructivist’s Programme and the Problem of Pregeometry. (Unpublished manuscript.)
Lipman, M. A. (2020). On the fragmentalist interpretation of special relativity. Philosophical Studies, 177(1), 2137. https://doi.org/10.1007/s11098-018-1178-4.
Lorentz, H. A. (1892). De relative beweging van de aarde en den aether. Koninklijke Akademie van Wetenschappen te Amsterdam, Wis-en Natuurkundige Afdeeling, Versalagen der Zittingen, 1, 74–9. (Reprinted in English translation, ‘The relative motion of the Earth and the ether’. In Zeeman, P. and Fokker, A. D. (eds.), Collected papers, pp. 219–23, The Hague: Nijhjoff, 1937.)
Lorentz, H. A. (1895). Versuch einer thoerie der electrischen und optischen erscheinungen in bewegten körpern. Leiden: Brill.
Luminet, J.-P. (2011). Time, topology, and the twin paradox. In Callender, C. (ed.), The Oxford handbook of philosophy of time (pp. 528–45). Oxford: Oxford University Press.
Malament, D. (1977). Causal theories of time and the conventionality of simultaneity. Noûs, 11(3), 293300. https://doi.org/10.2307/2214766.
Malament, D. (2012). Topics in the foundations of general relativity and Newtonian gravitation theory. Chicago, IL: University of Chicago Press.
Martens, N. C. M. & Read, J. (2020). Sophistry about symmetries? Synthese, 199(1–2), 315–44. https://doi.org/10.1007/s11229-020-02658-4.
Maudlin, T. (2012). Philosophy of physics: Space and time. Princeton, NJ: Princeton University Press.
Menon, T. (2019). Algebraic fields and the dynamical approach to physical geometry. Philosophy of Science, 86(5), 1273–83. https://doi.org/10.1086/705508.
Mercati, F. (2018). Shape dynamics: Relativity and relationalism. Oxford: Oxford University Press.
Michelson, A. A., & Morley, E. (1887). On the relative motion of the Earth and the luminiferous ether. American Journal of Science, 34(203), 333–45.
Miller, A. I. (1981). Albert Einstein’s special theory of relativity. Reading: Addison–Wesley.
Minkowski, H. (1909). Raum und zeit. Physikalische Zeitschrift, 10, 104–11.
Myrvold, W. C. (2019). How could relativity be anything other than physical? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 67, 137–43. https://doi.org/10.1016/j.shpsb.2017.05.007.
Norton, J. D. (1992). Philosophy of space and time. In Introduction to the philosophy of science (pp. 179231). Englewood Cliffs, NJ: Prentice-Hall.
Norton, J. D. (1993). General covariance and the foundations of general relativity: Eight decades of dispute. Reports on Progress in Physics, 56(7), 791858.
Norton, J. D. (2008). Why constructive relativity fails. British Journal for the Philosophy of Science, 59(4), 821–34. https://doi.org/10.1093/bjps/axn046.
Norton, J. D. (2018). Einstein for Everyone. Pittsburg, PA: Nullarbor Press.
Norton, J. D. (2022). The hole argument. In Zalta, E. N. & Nodelman, U. (eds.), The Stanford encyclopedia of philosophy (Winter 2022 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2022/entries/spacetime-holearg.
Pais, A. (1982). Subtle Is the Lord: The Science and the Life of Albert Einstein. New York: Oxford University Press.
Pauli, W. (2000). Relativitätstheorie. Berlin: Springer. (Originally published by B. G. Teubner in 1921; new annotation by Domenico Giulini.)
Pelissetto, A. & Testa, M. (2015). Getting the Lorentz transformations without requiring an invariant speed. American Journal of Physics, 83, 338–40.
Pitts, J. B. (2012). The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors fit into tensor calculus, and of a tetrad is surplus structure. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43(1), 124. https://doi.org/10.1016/j.shpsb.2011.11.001.
Pooley, O. (2013). Substantivalist and relationist approaches to spacetime. In Batterman, R. (ed.), The Oxford handbook of philosophy of physics (pp. 522–86). Oxford: Oxford University Press.
Pooley, O. (2021). The hole argument. In Knox, E. & Wilson, A. (eds.), The Routledge companion to philosophy of physics. London: Routledge.
Quine, W. V. O. (1951). Two dogmas of empiricism. Philosophical Review, 60(1), 2043.
Quine, W. V. O. (1966). The ways of paradox. New York: Random House.
Read, J. (2020a). Explanation, geometry, and conspiracy in relativity theory. In Beisbart, T. S. C. & Wuthrich, C. (eds.), Thinking about space and time: 100 years of applying and interpreting general relativity (Vol.15, pp. 173206). Basel: Birkhäuser.
Read, J. (2020b). Geometrical constructivism and modal relationalism: Further aspects of the dynamical/geometrical debate. International Studies in the Philosophy of Science, 33(1), 2341. https://doi.org/10.1080/02698595.2020.1813530.
Read, J. (2022). Geometric objects and perspectivalism. In Read, J. & Teh, N. J. (eds.), The philosophy and physics of Noether’s theorems (pp. 257–73). Cambridge: Cambridge University Press.
Read, J. (2023). Background independence in classical and quantum gravity. Oxford: Oxford University Press.
Read, J., Brown, H. R. & Lehmkuhl, D. (2018). Two miracles of general relativity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 64, 1425. https://doi.org/10.1016/j.shpsb.2018.03.001.
Read, J. & Cheng, B. (2022). Euclidean spacetime functionalism. Synthese, 200(6), 122. https://doi.org/10.1007/s11229-022-03951-0.
Reichenbach, H. (1958). The philosophy of space and time. Berkeley: University of California Press.
Reichenbach, H. (1969). Axiomatization of the theory of relativity. Berkeley: University of California Press.
Rigden, J. S. (1987). Editorial: High thoughts about Newton’s first law. American Journal of Physics, 55(4), 297. https://doi.org/10.1119/1.15191.
Ryckman, T. (2017). Einstein. London: Routledge.
Salmon, W. C. (1977). The philosophical significance of the one-way speed of light. Noûs, 11(3), 253–92.
Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.
Saunders, S. (2013). Rethinking Newton’s Principia. Philosophy of Science, 80, 2248.
Stevens, S. (2020). Regularity relationalism and the constructivist project. British Journal for the Philosophy of Science, 71(1), 353–72.
Todd, S. L. & Menicucci, N. C. (2017). Sound clocks and sonic relativity. Foundations of Physics, 47, 1267–93.
Todd, S. L., Pantaleoni, G., Baccetti, V. & Menicucci, N. C. (2021). Particle scattering in analogue-gravity models. Physical Review D, 104 (064035).
Torretti, R. (1983). Relativity and geometry. New York: Pergamon.
Naval Observatory, US. (2022). Introduction to calendars. https://aa.usno.navy.mil/faq/calendars.
Van Camp, W. (2011). Principle theories, constructive theories, and explanations in modern physics. Studies in History and Philosophy of Modern Physics, 42, 2331.
von Ignatowsky, W. (1911). Das relativitätsprinzip. Archiv der Mathematik und Physik, 17, 124.
Wallace, D. (2019). Who’s afraid of coordinate systems? An essay on representation of spacetime structure. Studies in History and Philosophy of Modern Physics, 67, 125–36.
Wallace, D. (2020). Fundamental and emergent geometry in Newtonian physics. British Journal for the Philosophy of Science, 71(1), 132.
Weatherall, J. O. (2018). A brief comment on Maxwell(/Newton)[–Huygens] spacetime. Studies in History and Philosophy of Modern Physics, 63, 34–8.
Weatherall, J. O. (2021). Two dogmas of dynamicism. Synthese, 199, 253–75.
Weeks, J. R. (2001). The twin paradox in a closed universe. American Mathematical Monthly, 108(7), 585–90.
Winnie, J. (1970). Special Relativity without One-Way Velocity Assumptions: Part I. Philosophy of Science, 37, 8199.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.