Skip to main content Accessibility help
×
  • Cited by 72
Publisher:
Cambridge University Press
Online publication date:
September 2015
Print publication year:
2015
Online ISBN:
9781139548861

Book description

This authoritative treatment covers theory, optimal estimation and a range of practical applications. The first book on the subject, and written by leading researchers, this clear and rigorous work presents a comprehensive theory for both the stability boundary and the stability regions of a range of nonlinear dynamical systems including continuous, discrete, complex, two-time-scale and non-hyperbolic systems, illustrated with numerical examples. The authors also propose new concepts of quasi-stability region and of relevant stability regions and their complete characterisations. Optimal schemes for estimating stability regions of general nonlinear dynamical systems are also covered, and finally the authors describe and explain how the theory is applied in applications including direct methods for power system transient stability analysis, nonlinear optimisation for finding a set of high-quality optimal solutions, stabilisation of nonlinear systems, ecosystem dynamics, and immunisation problems.

Reviews

This book offers a comprehensive exposition of the theory, estimation methods, and applications of stability regions and stability boundaries for nonlinear dynamical systems. … All the proofs are given in a rigorous manner and various examples are presented for illustration. The book is written concisely and will provide very useful guidance for researchers and graduate students who are interested in dynamical systems and their applications.'

Vu Hoang Linh Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


Bibliography

[2]Abraham, R., Robbin, J., Transversal Mappings and Flows, Benjamin, New York, 1967 Google Scholar
[3]Ailon, A., Segev, R., Arogeti, S., “A simple velocity-free controller for attitude regulation of a spacecraft with delayed feedback”, IEEE Transactions on Automatic Control, v.49, n.1, pp.125130, Jan 2004 CrossRef | Google Scholar
[4]Alberto, L. F. C., Transient Stability Analysis: Studies of the BCU method; Damping Estimation Approach for Absolute Stability in SMIB Systems (In Portuguese), Escola de Eng. de São Carlos – Universidade de São Paulo, 1997 Google Scholar
[5]Alberto, L. F. C., Calliero, T. R., Martins, A., Bretas, N. G., “An invariance principle for nonlinear discrete autonomous dynamical systems”, IEEE Transactions on Automatic Control, v.52, n.4, pp.692697, Apr 2007 CrossRef | Google Scholar
[6]Alberto, L. F. C., Chiang, H. D., “Controlling unstable equilibrium point theory for stability assessment of two-time scale power system models”, IEEE Power and Energy Society General Meeting, Pittsburgh, PA, pp.19, 2008 CrossRef | Google Scholar
[7]Alberto, L. F. C., Chiang, H. D., “Uniform approach for stability analysis of fast subsystem of two-time-scale nonlinear systems”, International Journal of Bifurcation and Chaos, v.17, n.11, pp.41954203, 2007 CrossRef | Google Scholar
[8]Alberto, L. F. C., Chiang, H. D., “Characterization of stability region for general autonomous nonlinear dynamical systems”, IEEE Transactions on Automatic Control, v.57, pp.15641569, 2012 CrossRef | Google Scholar
[9]Amaral, F. M., Alberto, L. F. C., “Stability region bifurcations of nonlinear autonomous dynamical systems: type-zero saddle-node bifurcations”, International Journal of Robust and Nonlinear Control, v.21, n.6, pp.591612, 2011 CrossRef | Google Scholar
[10]Amaral, F. M., Alberto, L. F. C., “Type-zero saddle-node bifurcations and stability region estimation of nonlinear autonomous dynamical systems”, International Journal of Bifurcation and Chaos in Applied Science and Engineering, v.22, n.1, p.1250020 (16 pages), 2012 Google Scholar
[11]Amaral, F. M., Alberto, L. F. C., “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of saddle-node equilibrium points”, TEMA Tendências em Matemática Aplicada e Computacional, v.13, pp.143154, 2012 Google Scholar
[12]Amaral, F. M., Alberto, L. F. C., Bretas, N. G., “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of a type-zero saddle-node equilibrium point”, TEMA Tendências em Matemática Aplicada e Computacional, v.11, pp.111120, 2010 CrossRef | Google Scholar
[13]Amato, F., Cosentino, C., Merola, A., “On the region of attraction of nonlinear quadratic systems”, Automatica, v.43, pp.21192123, 2007 CrossRef | Google Scholar
[14]Anderson, B., Keller, J., “Discretization techniques in control systems”, Control and Dynamic Systems, v.66, pp.47112, 1994 Google Scholar
[15]Arnold, V., Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1977 Google Scholar
[16]Arrow, K. L., Hahn, F. H., General Competitive Analysis, Holden Day, San Francisco, CA, 1971 Google Scholar
[17]Artstein, Z., “Stability in the presence of singular perturbation”, Nonlinear Analysis, v.34, pp.817827, 1998 CrossRef | Google Scholar
[18]Aylett, P. D., “The energy integral-criterion of transient stability limits of power systems”, Proceedings of the IEEE, v.105, n.8, pp.527536, Sept 1958 Google Scholar
[19]Baer, S. M., Li, B. T., Smith, H. L., “Multiple limit cycles in the standard model of three species competition for three essential resources”, Journal of Mathematical Biology, v.52, n.6, pp.745760, Jun 2006 CrossRef | Google Scholar | PubMed
[20]Baillieul, J., Byrnes, C. I., “Geometric critical point analysis of lossless power system models”, IEEE Transactions on Circuits and Systems, v.29, pp.724737, 1982 CrossRef | Google Scholar
[21]Baker, J., “An algorithm for the location of transition states”, Journal of Computational Chemistry, v.7, n.4, pp.385395, 1986 CrossRef | Google Scholar
[22]Balu, N., Bertram, T., Bose, A., Brandwajn, V., Cauley, G., Curtice, D., Fouad, A., Fink, L., Lauby, M. G., Wollenberg, B., Wrubel, J. N., “On-line power system security analysis” (Invited paper), Proceedings of the IEEE, v.80, n.2, pp.262280, Feb 1992 CrossRef | Google Scholar
[23]Bergen, A. R., Hill, D. J., “A structure preserving model for power system stability analysis”, IEEE Transactions on Power Apparatus and Systems, v.100, pp.2535, 1981 CrossRef | Google Scholar
[24]Bhatia, N. P., Szego, G. P., Stability Theory of Dynamical Systems, Springer-Verlag, 1970 CrossRef | Google Scholar
[25]Blanchini, F., “Set invariance in control”, Automatica, v.35, pp.17471767, 1999 CrossRef | Google Scholar
[26]Bondi, P., Casalino, G., Gambardella, L., “On the iterative learning control theory for robotic manipulators”, IEEE Journal of Robotics and Automation, v.4, n.1, pp.1422, Feb 1998 CrossRef | Google Scholar
[27]Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, v.15, SIAM, Philadelphia, PA, 1994 CrossRef | Google Scholar
[28]Brave, Y., Heymann, M., “On stabilization of discrete-event processes”, International Journal on Control, v.51, n.5, pp.11011117, 1990 CrossRef | Google Scholar
[29]Bretas, N. G., Alberto, L. F. C., “Lyapunov function for power systems with transfer conductances: an extension of the invariance principle”, IEEE Transactions on Power Systems, v.18, n.2, pp.769777, May 2003 CrossRef | Google Scholar
[30]Brockett, R. W., Asymptotic stability and feedback stabilization. In Differential Geometric Control Theory, Brockett, R. W., Millmann, R. S., and Sussmann, H. J., Eds., Progress in Mathematics, Birkhauser, Boston, MA, 1983 Google Scholar
[31]Bronstein, I. U., Ya, A. K., Smooth Invariant Manifolds and Normal Forms, World Scientific, Singapore, 1994 CrossRef | Google Scholar
[32]Burridge, R. R., Rizzi, A. A., Koditschek, D. E., “Sequential composition of dynamically dexterous robot behaviors”, International Journal of Robotics Research, v.18, n.6, pp.534555, Jun 1999 CrossRef | Google Scholar
[33]Cabré, X., Fontich, E., de la Llave, R., “The parametrization method for invariant manifolds III. Overview and applications”, Journal of Differential Equations, v.218, n.2, pp.444515, 2005 CrossRef | Google Scholar
[34]Cai, D., “Multiple equilibria and bifurcations in an economic growth model with endogenous carrying capacity”, International Journal of Bifurcation and Chaos, v.20, n.11, pp.34613472, 2010 CrossRef | Google Scholar
[35]Chadalavada, V., Vittal, V., Ejebe, G. C., et al., “An on-line contingency filtering scheme for dynamic security assessment”, IEEE Transactions on Power Systems, v.12, n.1, pp.153161, Feb 1997 CrossRef | Google Scholar
[36]Chang, K. W., “Two problems in singular perturbations of differential equations”, Journal of the Australian Mathematical Society, pp.3350, 1969 CrossRef | Google Scholar
[37]Chen, Y., Chen, J., “Robust composite control for singularly perturbed systems with time-varying uncertainties”, Journal of Dynamic Systems Measurement and Control – Transactions of the ASME, v.117, n.4, pp.445452, Dec 1995 CrossRef | Google Scholar
[38]Chen, Y. K., Schinzinger, R., “Lyapunov stability of multimachine power systems using decomposition-aggregation method”, Proc. IEEE -PES Winter Meeting, paper A 80036–4, 1980 Google Scholar
[39]Chesi, G., “Estimating the domain of attraction for non-polynomial systems via lmi optimizations”, Automatica, v.45, n.6, pp.15361541, 2009 CrossRef | Google Scholar
[40]Chesi, G., Domain of Attraction, Analysis and Control via SOS Programming, Lecture Notes in Control and Information Sciences, v.415, Springer-Verlag, London, 2011 Google Scholar
[41]Chesi, G., Garulli, A., Tesi, A., Vicino, A., “LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems”, International Journal of Robust and Nonlinear Control, v.15, pp.3549, 2005 CrossRef | Google Scholar
[42]Chesi, G., Tesi, A., Vicino, A., “Computing optimal quadratic Lyapunov functions for polynomial nonlinear systems via LMIs”, IFAC 15th Triennial World Congress, Barcelona, Spain, 2002 Google Scholar
[43]Chiang, C. J., Stefanopoulou, A. G., Jankoviv, M., “Nonlinear observer-based control of load transitions in homogeneous charge compression ignition engines”, IEEE Transactions on Control Systems Technology, v.15, n.3, pp.438448, May 2007 CrossRef | Google Scholar
[44]Chiang, H. D., “Analytical results on the direct methods for power system transient stability analysis”, Control and Dynamic Systems: Advances in Theory and Application, v.43, pp.275334, Academic Press, New York, 1991 Google Scholar
[45]Chiang, H. D., Direct Methods for Stability Analysis of Electrical Power Systems: Theoretical Foundation, BCU Methodologies and Application, John Wiley & Sons, 2011 Google Scholar
[46]Chiang, H. D., The BCU method for direct stability analysis of electric power systems: pp. theory and applications, Systems Control Theory for Power Systems, IMA Volumes in Mathematics and Its Applications, v.64, pp.3994, Springer-Verlag, New York, 1995 CrossRef | Google Scholar
[47]Chiang, H. D., “Study of the existence of energy functions for power-systems with losses”, IEEE Transactions on Circuits and Systems, v.36, n.11, pp.14231429, Nov 1989 CrossRef | Google Scholar
[48]Chiang, H. D., Chen, J. H., Reddy, C. K., Trust-Tech-based global optimization methodology for nonlinear programming. In Lectures on Global Optimization, Pardalos, P. M. and Coleman, T. F., Eds., American Mathematical Society, 2009 Google Scholar
[49]Chiang, H. D., Chu, C.C., “A systematic search method for obtaining multiple local optimal solutions of nonlinear programming problems”, IEEE Transactions on Circuits and Systems: I, v.43, n.2, pp.99109, 1996 CrossRef | Google Scholar
[50]Chiang, H. D., Chu, C. C.. “Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system models with small transfer conductances”, IEEE Transactions on Circuits and Systems: I, v.42, n.5, pp.252265, May 1995 CrossRef | Google Scholar
[51]Chiang, H. D., Chu, C. C., Cauley, G., “Direct stability analysis of electric power systems using energy functions: theory, applications and perspectives”, Proceedings of the IEEE, v.38, n.11, pp.14971529, Nov 1995 CrossRef | Google Scholar
[52]Chiang, H. D., Conneen, T. P., Flueck, A.J., “Bifurcations and chaos in electric power systems: Numerical studies”, Journal of the Franklin Institute, v.331, n.6, pp.10011036, Nov1994 CrossRef | Google Scholar
[53]Chiang, H. D., Fekih-Ahmed, L., “Quasi-stability regions of nonlinear dynamical systems: optimal estimation”, IEEE Transactions on Circuits and Systems: I, v.43, n.82, pp.636642, Aug 1996 CrossRef | Google Scholar
[54]Chiang, H. D., Hirsch, M. W., Wu, F. F., “Stability region of nonlinear autonomous dynamical systems”, IEEE Transactions on Automatic Control, v.33, n.1, pp.1627, Jan 1988 CrossRef | Google Scholar
[55]Chiang, H. D., Ku, B. Y., Thorp, J. S., “A constructive method for direct analysis of transient stability”, IEEE Proc. 27th Conf. on Decision Control, Austin, TX, pp.684689 Dec 1988 Google Scholar
[56]Chiang, H. D., Lee, J., Trust-Tech paradigm for computing high-quality optimal solutions: method and theory. In Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, Lee, K. Y. and El-Sharkawi, M. A., Eds., pp.209234, Wiley-IEEE Press, 2008 CrossRef | Google Scholar
[57]Chiang, H. D., Liu, C. W., Varaiya, P. P., “Chaos in a simple power system”, IEEE Transactions on Power Systems, v.8, n.4, pp.14071417, Nov 1993 CrossRef | Google Scholar
[58]Chiang, H. D., Subramanian, A. K., “BCU dynamic security assessor for practical power system models”, IEEE PES Summer Meeting, Edmonton, Alberta, July 18–22, pp.287293, 1999 Google Scholar
[59]Chiang, H. D., Tada, Y., Li, H., Power system on-line transient stability assessment (invited chapter), Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, New York, 2007 Google Scholar
[60]Chiang, H. D., Thorp, J. S., “Stability regions of nonlinear systems: a constructive methodology”, IEEE Transactions on Automatic Control, v.34, n.12, pp.12291241, Dec 1989 CrossRef | Google Scholar
[61]Chiang, H. D., Wang, T., Neighboring local-optimal solutions and its applications. In Optimization in Science and Engineering, Springer, pp.6788, 2014 CrossRef | Google Scholar
[62]Chiang, H. D., Wang, B., Jiang, Q. Y., Applications of Trust-Tech methodology in optimal power flow of power systems. In Optimization in the Energy Industry, Springer, pp.297318, 2009 CrossRef | Google Scholar
[63]Chiang, H. D., Wang, C. S., Li, H., “Development of BCU classifiers for on-line dynamic contingency screening of electric power systems”, IEEE Transactions on Power Systems, v.14, n.2, pp.660666, May 1999 CrossRef | Google Scholar
[64]Chiang, H. D., Wu, F. F., Varaiya, P. P., “A BCU method for direct analysis of power system transient stability”, IEEE Transactions on Power Systems, v.8, n.3, pp.11941208, Aug 1994 CrossRef | Google Scholar
[65]Chiang, H. D., Wu, F. F., Varaya, P. P., “Foundations of direct methods for power system transient stability analysis”, IEEE Transactions on Circuits and Systems, v.34, n.2, pp.160173, Feb 1987 CrossRef | Google Scholar
[66]Chiang, H. D., Zheng, Y., Tada, Y., Okamoto, H., Koyanagi, K., Zhou, Y. C., “Development of on-line BCU dynamic contingency classifiers for practical power systems”, 14th Power System Computation Conference (PSCC), Spain, June 24–28, 2002 Google Scholar
[67]Chow, J. H., Time-Scale Modeling of Dynamic Networks with Applications to Power Systems, Springer-Verlag, Berlin, 1982 CrossRef | Google Scholar
[68]Chu, C. C., Chiang, H. D., “Constructing analytical energy functions for network-preserving power system models”, Circuits Systems and Signal Processing, v.24, n.4, pp.363383, 2005 CrossRef | Google Scholar
[69]Chua, L. O., Deng, A.-C., “Impasse points. Part I: numerical aspects”, International Journal of Circuit Theory and Applications, v.17, n.2, pp.213235, Apr 1989 CrossRef | Google Scholar
[70]Chua, L. O., Wu, C. W., Huang, A., Zhong, G., “A universal circuit for studying and generating chaos – part I: route to chaos”, IEEE Transactions on Circuits and Systems, v.40, n.10, pp.732744, Oct 1993 CrossRef | Google Scholar
[71]Ciliz, K., Harova, A., “Stability regions of recurrent type neural networks”, Electronic Letters, v.28, n.11, pp.10221024, May 1992 CrossRef | Google Scholar
[72]Cloosterman, M., van de Wouw, N., Heemels, W., Nijmeijer, H., “Stability of networked control systems with uncertain time-varying delays”, IEEE Transactions on Automatic Control, v.54, n.7, pp.15751580, Jul 2009 CrossRef | Google Scholar
[73]Conley, C. C., Isolated Invariant Sets and the Morse Index, American Mathematical Society, Providence, RI, 1978 CrossRef | Google Scholar
[74]Corless, M., Garofalo, F., Glielmo, L., “New results on composite control of singularly perturbed uncertain linear systems”, Automatica, v.29, n.2, pp.387400, Mar 1993 CrossRef | Google Scholar
[75]Corless, M., Glielmo, L., “On the exponential stability of singularly perturbed systems”, SIAM Journal on Control and Optimization, v.30, n.6, pp.13381360, Nov 1992 CrossRef | Google Scholar
[76]Coutinho, D. F., Bazanella, A. S., Trofino, A., Silva, A. S., “Stability analysis and control of a class of differential algebraic nonlinear systems”, International Journal of Robust and Nonlinear Control, v.14, n.16, pp.13011326, 2004 CrossRef | Google Scholar
[77]Coutinho, D. F., da Silva, J. M. Gomes Jr., “Computing estimates of the region of attraction for rational control systems with saturating actuators”, IET Control Theory and Applications, v.4, n.3, pp.315325, 2008 CrossRef | Google Scholar
[78]Coutinho, D. F., Souza, C. E., “Robust domain of attraction estimates for a class of uncertain discrete-time nonlinear systems”, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy, pp.185190, 2010 CrossRef | Google Scholar
[79]da Cruz, J. J., Geromel, J. G., “Decentralized control design for a class of nonlinear discrete time systems”, Proc. 25th Conf. on Decision and Control, Athens, Greece, pp.11821183, 1986 CrossRef | Google Scholar
[80]Davison, E. J., Kurak, E. M., “A computational method for determining quadratic Lyapunov functions for nonlinear systems”, Automatica, v.7, pp.627, 1971 CrossRef | Google Scholar
[81]Davy, R. J., Hiskens, I. A., “Lyapunov functions for multimachine power systems with dynamic loads”, IEEE Transactions on Circuits and Systems: I, v.44, n.9, pp.796812, Sept 1997 CrossRef | Google Scholar
[82]Dieudonne, J., Foundation of Modern Analysis, 2nd edn, Academic Press,New York, 1969 Google Scholar
[83]Djukanovic, M., Sobajic, D., Pao, Y.-H., “Neural-net based tangent hypersurfaces for transient security assessment of electric power systems”, International Journal of Electrical Power and Energy Systems, v.16, n.6, pp.399408, 1994 CrossRef | Google Scholar
[84]Dong, Y., Cheng, D., Oin, H., “Applications of a Lyapunov function with a homogeneous derivative”, IEE Proceedings Control Theory and Applications, v.150, n.3, pp.255260, May 2003 CrossRef | Google Scholar
[85]Ejebe, G. C., Jing, C., Gao, B., Waight, J. G. Pieper, G., Jamshidian, F., Hirsch, P., “On-line implementation of dynamic security assessment at Northern States power company”, IEEE PES Summer Meeting, Edmonton, Alberta, July 18–22, pp.270272, 1999 Google Scholar
[86]Ejebe, G. C., Tong, J., “Discussion of clarifications on the BCU method for transient stability analysis”, IEEE Transactions on Power Systems, v.10, n.1, pp.218219, Feb 1995 Google Scholar
[87]Elaiw, A. M., Xia, X., “HIV dynamics: analysis and robust multirate MPC-based treatment schedules”, Journal of Mathematical Analysis and Applications, v.359, n.1, pp.285301, Nov 2009 CrossRef | Google Scholar
[88]El-Kady, M. A., Tang, C. K., Carvalho, V. F., Fouad, A. A., Vittal, V., “Dynamic security assessment utilizing the transient energy function method”, IEEE Transactions on Power Systems, v.1, n.3, pp.284291, Aug 1986 CrossRef | Google Scholar
[89]Electric Power Research Institute, User’s Manual for DIRECT 4.0, EPRI TR-105886s, Electric Power Research Institute, Palo Alto, CA, Dec 1995 Google Scholar
[90]Ernst, D., Ruiz-Vega, D., Pavella, M., Hirsch, P., Sobajic, D., “A unified approach to transient stability contingency filtering, ranking and assessment”, IEEE Transactions on Power Systems, v.16, n.3, pp.435443, Aug 2001 CrossRef | Google Scholar
[91]Fairén, V., Velarde, M. G., “Dissipative structure in a nonlinear reaction–diffusion model with a forward inhibition; stability of secondary multiple steady states”, Reports on Mathematical Physics, v.16, n.3, pp.421432, 1979 CrossRef | Google Scholar
[92]Fallside, F., Patel, M. R., “Step-response behaviour of a speed-control system with a back-e.m.f. nonlinearity”, Proceedings of the IEEE, v.112, n.10, pp.19791984, Oct 1965 Google Scholar
[93]Fenichel, N., “Geometric singular perturbation theory for ordinary differential equations”, Journal of Differential Equations, v.31, pp.5398, 1979 CrossRef | Google Scholar
[94]Floudas, C. A., Pardalos, P. M., Recent Advances in Global Optimization, Princeton Series in Computer Science, Princeton, NJ, 1992 Google Scholar
[95]Fouad, A. A., Vittal, V., Power System Transient Stability Analysis: Using the Transient Energy Function Method, Prentice-Hall, Englewood Cliffs, NJ, 1991 Google Scholar
[96]Franks, J. H., Homology and Dynamical Systems, C.B.M.S. Regional Conf. Series in Mathematics, v.49, American Mathematical Society, Providence, RI, 1982 CrossRef | Google Scholar
[97]Genesio, R., Tartaglia, M., Vicino, A., “On the estimation of asymptotic stability regions: state of the art and new proposals”, IEEE Transactions on Automatic Control, v.30, pp.747755, Aug 1985 CrossRef | Google Scholar
[98]Genesio, R., Vicino, A., “Some results on the asymptotic stability of second-order nonlinear systems”, IEEE Transactions on Automatic Control, v.29, n.9, pp.857861, Sept 1984 CrossRef | Google Scholar
[99]Genesio, R., Vicino, A., “New techniques for constructing asymptotic stability regions for nonlinear systems”, IEEE Transactions on Circuits and Systems, v.31, pp.574581, Jun 1984 CrossRef | Google Scholar
[100]Glover, S. F., Modeling and Stability Analysis of Power Electronics Based Systems, PhD Thesis, Purdue University, 2003 Google Scholar
[101]da Silva, J. M. G., Tarbouriech, S., “Anti-windup design with guaranteed region of stability: an LMI-based approach”, IEEE Transactions on Automatic Control, v.50, n.1, pp.106111, Jan 2005 Google Scholar
[102]Gouveia, J. R. R. Jr., Amaral, F. M., Alberto, L. F. C., “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of a supercritical Hopf equilibrium point”, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, v.23, n.12, 1350196, 2013 Google Scholar
[103]Grammel, G., “Exponential stability of nonlinear singularly perturbed differential equations”, SIAM Journal on Control and Optimization, v.44, n.5, pp.17121724, 2005 CrossRef | Google Scholar
[104]Grizzle, J. W., Kang, J. M., “Discrete-time control design with positive semi-definite Lyapunov functions”, System and Control Letters, v.43, pp.287292, 2001 CrossRef | Google Scholar
[105]Grujic, L. T., “Uniform asymptotic stability of nonlinear singularly perturbed and large scale systems”, International Journal of Control, v.33, n.3, pp.481504, 1981 CrossRef | Google Scholar
[106]Grune, L., Wirth, F., “Computing control Lyapunov functions via a Zubov type algorithm”, Proc. 39th Conf. on Decision and Control, Sydney, Australia, Dec 2000 Google Scholar
[107]Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1993 Google Scholar
[108]Guckeinheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical System, and Bifurcations of Vector Fields, 1st edn., Springer-Verlag, New York, 1983 CrossRef | Google Scholar
[109]Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974 Google Scholar
[110]Gunther, N., Hoffman, G. W., “Qualitative dynamics of a network model of regulation of the immune system: a rationale for the IgM to IgG switch”, Journal of Theoretical Biology, v.94, pp.815855, 1982 CrossRef | Google Scholar | PubMed
[111]Hahn, W., Stability of Motion, Springer-Verlag, New York, 1967 CrossRef | Google Scholar
[112]Hale, J. K., Ordinary Differential Equations, Krieger, Huntington, NY, 1980 Google Scholar
[113]Hale, J. K., Introduction to Functional Differential Equations, Applied Mathematical Sciences, v.99, Springer-Verlag, 1993 CrossRef | Google Scholar
[114]Hale, J. K., Koçak, H., Dynamics and Bifurcations, Springer-Verlag, New York, 1991 CrossRef | Google Scholar
[115]Halsey, K. M., Glover, K.. “Analysis and synthesis on a generalized stability region”, IEEE Transactions on Automatic Control, v.50, n.7, pp.9971009, Jul 2005 CrossRef | Google Scholar
[116]Hartman, P., Ordinary Differential Equations, Wiley, New York, 1973 Google Scholar
[117]Hartman, P., Ordinary Differential Equations, 2nd edn., Classics in Applied Mathematics, SIAM, 1982 Google Scholar
[118]Hassan, M. A., Storey, C., “Numerical determination of domains of attraction for electrical power systems using the method of Zubov analysis”, International Journal of Control, v.34, pp.371381, 1981 CrossRef | Google Scholar
[119]Henkelman, G., Johannesson, G., Jonsson, H., Methods for finding saddle points and minimum energy paths. In Progress on Theoretical Chemistry and Physics, Schwartz, S. D., Ed., Kluwer Academic, pp.269300, 2000 Google Scholar
[120]Henrion, D., Tarbouriech, S., Garcia, G., “Output feedback robust stabilization of uncertain linear systems with saturating controls: an LMI approach”, IEEE Transactions on Automatic Control, v.44, n.11, pp.22302237, Nov 1999 CrossRef | Google Scholar
[121]Hill, D. J., Mareels, I. M. Y., “Stability theory for differential/algebraic systems with applications to power systems”, IEEE Transactions on Circuits and Systems, v.37, n.11, pp.14161423, Nov 1990 CrossRef | Google Scholar
[122]Hirsch, M. W.. Differential Topology, Springer-Verlag, New York, 1976 CrossRef | Google Scholar
[123]Hirsch, M. W., Pugh, C. C., Shub, M., “Invariant manifolds”, Bulletin of the American Mathematical Society, v.76, n.5, pp.10151019, 1970 CrossRef | Google Scholar
[124]Hirsch, M. W., Smale, S., Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974 Google Scholar
[125]Hiskens, I., Davy, R., “Lyapunov function analysis of power systems with dynamic loads”, Proceedings of the 35th IEEE Conference on Decision and Control, v.4, pp.38703875, Dec 1996 CrossRef | Google Scholar
[126]Hiskens, I., Hill, D., “Energy functions, transient stability and voltage behavior in power systems with nonlinear loads”, IEEE Transactions on Power Systems, v.4, n.4, pp.15251533, Oct 1989 CrossRef | Google Scholar
[127]Hopfield, J. J., “Neurons, dynamics and computation”, Physics Today, v.47, pp.4046, Feb 1994 CrossRef | Google Scholar
[128]Hsu, C. S., Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Applied Mathematical Sciences, v.64, Springer-Verlag, 1988 Google Scholar
[129]Hsu, P., Sastry, S., “The effect of discretized feedback in a closed loop system”, Proc. 26th Conf. on Decision Control, Los Angeles, CA, pp.15181523, 1987 CrossRef | Google Scholar
[130]Hu, X., “Techniques in the stability of discrete systems”, Control and Dynamic Systems, v.66, pp.153216, 1994 Google Scholar
[131]Hurewicz, W., Hallman, H., Dimension Theory, Princeton University Press, Princeton, NJ, 1948 Google Scholar
[132]IEEE Committee Report, “Transient stability test systems for direct methods”, IEEE Transactions on Power Systems, v.7, pp.3743, Feb 1992. CrossRef | Google Scholar
[133]Jadbabaie, A., Hauser, J., “On the stability of recending horizon control with a general terminal cost”, IEEE Transactions on Automatic Control, v.50, n.5, pp.674678, May 2005 CrossRef | Google Scholar
[134]Jardim, J. L., Neto, C. S., Kwasnicki, W. T., “Design features of a dynamic security assessment system”, IEEE Power System Conf. and Exhibition, New York, October 13–16, 2004 Google Scholar
[135]Jing, Z., Jia, Z., Gao, Y., “Research of the stability region in a power system”, IEEE Transactions on Circuits and Systems: I, v.50, n.2, pp.298304, Feb 2003 CrossRef | Google Scholar
[136]Jocic, L. B., “On the attractivity of imbedded systems”, Automatica, v.17, pp.853860, 1980 CrossRef | Google Scholar
[137]Johansen, T. A., “Computation of Lyapunov functions for smooth nonlinear systems using convex optimization”, Automatica, v.36, n.11, pp.16171626, Nov 2000 CrossRef | Google Scholar
[138]Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966 Google Scholar
[139]Kaufman, M., Thomas, R., “Model analysis of the bases of multistationarity in the humoral immune response”, Journal of Theoretical Biology, v.129, pp.141162, 1987 CrossRef | Google Scholar | PubMed
[140]Kellet, C. M., Teel, A. R., “Smooth-Lyapunov functions and robustness of stability for difference inclusions”, System and Control Letters, v.52, pp.395405, 2004 CrossRef | Google Scholar
[141]Khait, Y., Panin, A., Averyanov, A., “Search for stationary points of arbitrary index by augmented Hessian method”, International Journal of Quantum Chemistry, v.54, n.6, pp.329336, 1995 CrossRef | Google Scholar
[142]Khalil, H. K., Nonlinear Systems, 3rd edn., Prentice Hall, 2002 Google Scholar
[143]Kim, J., “On-line transient stability calculator”, Final Report RP2206–1, EPRI, Palo Alto, CA, March 1994 Google Scholar
[144]Klimushchev, A. I., Krasovskii, N. N., “Uniform asymptotic stability of systems of differential equations with a small parameter in the derivative terms”, Journal of Applied Mathematics and Mechanics, v.25, n.4, pp.680690, 1961 CrossRef | Google Scholar
[145]Koditschek, D. E., “Exact robot navigation by means of potential functions: some topological considerations”, Proceedings of the IEEE International Conference on Robotics and Automation, v.4, pp.16, 1987 Google Scholar
[146]Kokotovic, P., Singular Perturbation Techniques in Control Theory, Lecture Notes in Control and Information Sciences, v.90, pp.155, Springer, 1987 Google Scholar
[147]Kokotovic, P., Marino, R.On vanishing stability regions in nonlinear systems with high-gain feedback”, IEEE Transactions on Automatic Control, v.31, n.10, pp.967970, Oct 1986 CrossRef | Google Scholar
[148]Korobeinikov, A., “Stability of ecosystems: global properties of a general predator–prey model”, Mathematical Medicine and Biology, v.26, n.4, pp.309321, 2009 CrossRef | Google Scholar | PubMed
[149]Krasovskii, N. N., Problems of the Theory of Stability of Motion (In Russian, 1959), English translation, Stanford University Press, Stanford, CA, 1963 Google Scholar
[150]Krauskopf, B., Osinga, H. M., Doedel, E. J., Henderson, M. E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O., “A survey of methods for computing (un)stable manifolds of vector fields”, International Journal of Bifurcation and Chaos, v.15, n.3, pp.763791, 2005 CrossRef | Google Scholar
[151]Kundur, P., Power System Stability and Control, McGraw Hill, New York, 1994 Google Scholar
[152]Kuo, D.H., Bose, A., “A generation rescheduling method to increase the dynamics security of power systems”, IEEE Transactions on Power Systems, v.10, n.1, pp.6876, 1995. Google Scholar
[153]Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995 CrossRef | Google Scholar
[154]Langson, W., Allevne, A., “A stability result with application to nonlinear regulation”, Journal of Dynamic Systems Measurement and Control – Transactions of the ASME, v.124, n.3, pp.452445, Sept 2002 CrossRef | Google Scholar
[155]Laila, D. S., Lovera, M., Astolfi, A., “A discrete-time observer design for spacecraft attitude determination using an orthogonality-preserving algorithm”, Automatica, v.47, pp.975980, 2011 CrossRef | Google Scholar
[156]LaSalle, J. P., Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976 CrossRef | Google Scholar
[157]LaSalle, J. P., Stability Theory for Difference Equations, Studies in Ordinary Differential Equations, Studies in Mathematics, v.14, pp.131, Mathematical Association of America, Washington, DC, 1977 Google Scholar
[158]LaSalle, J. P., “Some extensions of Liapunov’s second method”, IRE Transactions on Circuit Theory, v.7, pp.520527, 1960 CrossRef | Google Scholar
[159]LaSalle, J. P., The Stability and Control of Discrete Processes, Springer-Verlag, New York, 1986 CrossRef | Google Scholar
[160]La Salle, J. P., Lefschetz, S., Stability by Lyapunov’s Direct Method, Academic Press, New York, 1961 Google Scholar
[161]Lee, J., Trajectory-based Methods for Global Optimization: Theory and Algorithms, PhD Dissertation, Department of Electrical Engineering, Cornell University, Ithaca, NY, 1999 Google Scholar
[162]Lee, J., Chiang, H. D., “A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems”, IEEE Transactions on Automatic Control, v.49, n.6, pp.888899, 2004 CrossRef | Google Scholar
[163]Lee, J., Chiang, H. D., “Theory of stability regions for a class of nonhyperbolic dynamical systems and its application to constraint satisfaction problems”, IEEE Transactions on Circuits and Systems: I, v.49, n.2, pp.196209, 2002 Google Scholar
[164]Levin, A., “An analytical method of estimating the domain of attraction for polynomial differential equations”, IEEE Transactions on Automatic Control, v.39, n.12, pp.24712475, Dec 1994 CrossRef | Google Scholar
[165]Lewis, A., “An investigation of the stability in the large for an autonomous second-order two degree-of-freedom system”, International Journal of Non-Linear Mechanics, v.37, n.2, pp.153169, Mar 2002 CrossRef | Google Scholar
[166]Liu, L., Tian, Y., Huang, X., A Method to Estimate the Basin of Attraction of the System with Impulse Effects: Application to Biped Robots, Intelligent Robotics and Applications, pp.953962, Springer, 2008 Google Scholar
[167]Llamas, A., De La, J. Lopez, R., Mili, L., Phadke, A. G., Thorp, J. S., “Clarifications on the BCU method for transient stability analysis”, IEEE Transactions Power Systems, v.10, n.1, pp.210219, Feb 1995 CrossRef | Google Scholar
[168]Loccufier, M., Noldus, E., “A new trajectory reversing method for estimating stability regions of autonomous nonlinear systems”, Nonlinear Dynamics, v.21, pp.265288, 2000 CrossRef | Google Scholar
[169]Luxemburg, L. A., Huang, G., “On the number of unstable equilibria of a class of nonlinear systems”, 26th IEEE Conf. on Decision Control, pp.889894, 1987. CrossRef | Google Scholar
[170]Luyckx, L., Loccufier, M., Noldus, E., “Computational methods in nonlinear stability analysis: stability boundary calculations”, Journal of Computational and Applied Mathematics, v.168, n.1–2, pp.289297, 2004 CrossRef | Google Scholar
[171]Mansour, Y., Vaahedi, E., Chang, A. Y., Corns, B. R., Garrett, B. W., Demaree, K., Athay, T., Cheung, K., “B.C.Hydro’s on-line transient stability assessment (TSA) model development, analysis and post-processing”, IEEE Transactions on Power Systems, v.10, n.1, pp.241253, Feb 1995 CrossRef | Google Scholar
[172]Magnusson, P. C., “Transient energy method of calculating stability”, AIEE Transactions, v.66, pp.747755, 1947 Google Scholar
[173]O’Malley, R. E. Jr. Singular Perturbation Methods for Ordinary Differential Equations, Applied Mathematical Series, v.89, Springer-Verlag, 1991 CrossRef | Google Scholar
[174]Marcus, C. M., Westervelt, R. M., “Dynamics of iterated-map neural networks”, Physics Review A, v.40, n.1, pp.501504, 1989 CrossRef | Google Scholar | PubMed
[175]Margolis, S. G., Vogt, W. G., “Control engineering applications of V. I. Zubov’s construction procedure for Lyapunov functions”, IEEE Transactions on Automatic Control, v.8, pp.104113, Apr 1963 CrossRef | Google Scholar
[176]May, R. M., Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973 Google Scholar | PubMed
[177]Mazumder, S. K., Nayfeh, A. H., Borojevic, D., “A nonlinear approach to the analysis of stability and dynamics of standalone and parallel dc-dc converters”, Proc. Applied Power Electronics Conference and Exposition, pp.784790, 2001 Google Scholar
[178]Mercede, F., Chow, J. C., Yan, H., Fishl, R., “A framework to predict voltage collapse in power systems”, IEEE Transactions on Power Systems, v.3, n.4, pp.18071813, Nov 1988 CrossRef | Google Scholar
[179]Meza, J. L., Santibanez, V., Campa, R., “An estimate of the domain of attraction for the PID regulator of manipulators”, International Journal of Robotics and Automation, v.22, n.3, pp.187195, 2007 CrossRef | Google Scholar
[180]Michel, A. N., Miller, R. K., Qualitative Analysis of Large Scale Dynamical Systems, Academic Press, New York, 1977 Google Scholar
[181]Michel, A. N., Miller, R. K., Nam, B. H., “Stability analysis of interconnected systems using computer generated Lyapunov functions”, IEEE Transactions on Circuits and Systems, v.29, pp.431440, Jul 1982 CrossRef | Google Scholar
[182]Michel, A. N., Sarabudla, N. R., Miller, R. K., “Stability analysis of complex dynamical systems: some computational methods”, Circuits, Systems and Signal Processing, v.l, pp.171202, 1982 CrossRef | Google Scholar
[183]Milani, B. E. A., “Contractive polyhedra for discrete time linear systems with saturating controls”, Proceedings of the 38th IEEE Conference on Decision and Control, pp.20392044, Dec 1999 Google Scholar
[184]Miller, R. K., Michel, A. N., Ordinary Differential Equations, Academic Press, New York, 1982 Google Scholar
[185]Milnor, J., “On the concept of attractor”, Communications in Mathematical Physics, v.99, pp.177195, 1985 CrossRef | Google Scholar
[186]Milnor, J., Topology from the Differential Viewpoint, University of Virginia Press, 1965 Google Scholar
[187]Min, Y., Chen, L., Hou, K., Song, Y., “The credible regions on the approximate stability boundaries of nonlinear dynamic systems”, IEEE Transactions on Automatic Control, v.52, n.8, pp.14861491, 2007 CrossRef | Google Scholar
[188]Mira, C., Fournier-Prunaret, D., Gardini, L., Kawakami, H., Cathala, J. C., “Basin bifurcations of two-dimensional noninvertible maps: fractalization of basins”, International Journal of Bifurcation and Chaos, v.4, n.2, pp.343381,1994 CrossRef | Google Scholar
[189]Miron, R., Fichthorn, K., “The step and slide method for finding saddle points on multidimensional potential surfaces”, Journal of Chemical Physics, v.115, n.19, pp.87428747, 2001 CrossRef | Google Scholar
[190]Mokhtari, S., et al., Analytical methods for contingency selection and ranking for dynamic security assessment, Final Report RP3103–3, EPRI, Palo Alto, CA, May 1994 Google Scholar
[191]Morse, M., The Calculus of Variations in the Large, American Mathematical Society, 1934 CrossRef | Google Scholar
[192]Munkres, J. R.. Topology – A First Course, Prentice- Hall, Englewood Cliffs, NJ, 1975 Google Scholar
[193]Munkres, J. R., Topology, 2nd edn., Prentice-Hall, 2000 Google Scholar
[194]Nicolaescu, L. I., An Invitation to Morse Theory, Springer, 2007 Google Scholar
[195]Noldus, E., Spriet, J., Verriest, E., Van Cauwenberghe, A., “A new Lyapunov technique for stability analysis of chemical reactors”, Automatica, v.10, n.6, pp.675680, Dec 1974 CrossRef | Google Scholar
[196]Ortega, R., Loria, A., Kelly, R., “A semiglobally stable output feedback PI2D regulator for robot manipulators”, IEEE Transactions on Automatic Control, v.40, n.8, pp.14321436, Aug 1995 CrossRef | Google Scholar
[197]Paganini, F., Lesieutre, B.C., A critical review of the theoretical foundations of the BCU method, Technical Report TR97-005, MIT Lab., Electromagnetic and Electrical Systems, July 1997 Google Scholar
[198]Paganini, F., Lesieutre, B.C., “Generic properties, one-parameter deformations, and the BCU method”, IEEE Transactions on Circuits and Systems: I, v.46, n.6, pp.760763, Jun 1999 CrossRef | Google Scholar
[199]Pai, M. A., Energy Function Analysis for Power System Stability, Kluwer Academic Publishers, Boston, MA, 1989 CrossRef | Google Scholar
[200]Palis, J., “On Morse–Smale dynamical systems”, Topology, v.8, pp.385405, 1969. CrossRef | Google Scholar
[201]Palis, J., de Melo, J. W., Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, New York, 1981 Google Scholar
[202]Palis, J., Melo, W., Introdução aos Sistemas Dinâmicos, Edgard Blucher, 1978 Google Scholar
[203]Peixoto, M. M., “On an approximation theorem of Kupka and Smale”, Journal of Differential Equations, v.3, n.2, pp.214227, Apr 1967 CrossRef | Google Scholar
[204]Peponides, G., Kokotovic, P. V., Chow, J. H., “Singular perturbations and time scales in nonlinear models of power systems”, IEEE Transactions on Circuits and Systems, v.29, n.11, pp. 758767, Nov 1982 CrossRef | Google Scholar
[205]Perko, L., Differential Equations and Dynamical Systems, Springer, New York, 1991 CrossRef | Google Scholar
[206]Peterman, R. M., “A simple mechanism that causes collapsing stability regions in exploited salmonid populations”, Journal of the Fisheries Research Board of Canada, v.34, pp.11301142, 1977 CrossRef | Google Scholar
[207]Praprost, K., Loparo, K. A., “A stability theory for constrained dynamic systems with applications to electric power systems”, IEEE Transactions on Automatic Control, v.41, n.11, pp.16051617, Nov 1996 CrossRef | Google Scholar
[208]Psiaki, M. L., Luh, Y. P., “Nonlinear system stability boundary approximation by polytopes in state-space”, International Journal of Control, v.57, n.1, pp.197224, Jan 1993 CrossRef | Google Scholar
[209]Pugh, C. C., “On a theorem of Hartman”, American Journal of Mathematics, v.91 n.2, pp.363367, 1969 CrossRef | Google Scholar
[210]Quapp, W., Hirsch, M., Imig, O., Heidrich, D., “Searching for saddle points of potential energy surfaces by following a reduced gradient”, Journal of Computational Chemistry, v.19, pp.10871100, 1998 CrossRef | Google Scholar
[211]Rabelo, M., Alberto, L. F. C., “An extension of the invariance principle for a class of differential equations with finite delay”, Advances in Difference Equations, article ID 496936, pp.14, 2010 CrossRef | Google Scholar
[212]Rahimi, F. A., Lauby, M. G., Wrubel, J. N., Lee, K. L., “Evaluation of the transient energy function method for on-line dynamic security assessment”, IEEE Transactions on Power Systems, v.8, n.2, pp.497507, May 1993 CrossRef | Google Scholar
[213]Reddy, C., Chiang, H. D., “Finding Saddle points using stability boundaries”, Proc. 2005 ACM Symp. on Applied Computing, pp.212213, 2005 CrossRef | Google Scholar
[214]Reddy, C., Chiang, H. D., “A stability boundary based method for finding saddle points on potential energy surfaces”, Journal of Computational Biology, v.13, n.3, pp.745766, Apr 2006 CrossRef | Google Scholar | PubMed
[215]Riverin, L., Valette, A., “Automation of security assessment for Hydro-Quebec’s power system in short-term and real-time modes”, International Conference on Large High Voltage Electric Systems CIGRE, pp.39103, 1998 Google Scholar
[216]Robinson, C., Dynamic Systems. Stability, Symbolic Dynamics and Chaos, 2nd edn., CRC Press, 1998 CrossRef | Google Scholar
[217]Rodriguez, H., Ortega, R., Escobar, G., Barabanov, N., “A robustly stable output feedback saturated controller for the boost DC-to-DC converter”, Systems and Control Letters, v.40, n.1, pp.18, 2000 CrossRef | Google Scholar
[218]Rodrigues, H. M., Alberto, L. F. C., Bretas, N. G., “On the invariance principle: generalizations and applications to synchronization”, IEEE Transactions on Circuits and Systems: I, v.47, n.5, pp.730739, May 2000 CrossRef | Google Scholar
[219]Rodrigues, H. M., Wu, J. H., Gabriel, L. R. A., “Uniform dissipativeness, robust synchronization and location of the attractor of parametrized nonautonomous discrete systems”, International Journal of Bifurcation and Chaos, v.21, n.2, pp.513526, 2011 CrossRef | Google Scholar
[220]Rudin, W., Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, 3rd edn., McGraw-Hill, 1976 Google Scholar
[221]Saberi, A., Khalil, H., “Quadratic-type Lyapunov functions for singularly perturbed systems”, IEEE Transactions on Automatic Control, v.29, n.6, pp.542550, Jun 1984 CrossRef | Google Scholar
[222]Saeki, M., Araki, M., “A new estimate of the stability regions of large-scale systems”, International Journal of Control, v.32, n.2, pp.257269, 1980 CrossRef | Google Scholar
[223]Sasaki, H., “An approximate incorporation of field flux decay into transient stability analysis of multimachine power systems by the second method of lyapunov”, IEEE Transactions on Power Apparatus and Systems, v.98, n.2, pp.473483, Mar–Apr 1979 CrossRef | Google Scholar
[224]Sauer, P. W., Pai, M. A., Power System Dynamics and Stability, Prentice-Hall, Englewood Cliffs, NJ 1998 Google Scholar
[225]Segel, L. A., “Multiple attractors in immunology: theory and experiment”, Biophysical Chemistry, v.72, pp.223230, 1998 CrossRef | Google Scholar | PubMed
[226]Shields, D. N., Storey, C., “The behavior of optimal Lyapunov functions”, International Journal of Control, v.21, n.4, pp.561573, 1975 CrossRef | Google Scholar
[227]Shim, H., Seo, J. H., “Non-linear output feedback stabilization on a bounded region of attraction”, International Journal of Control, v.73, n.5, pp.416426, Mar 2000 CrossRef | Google Scholar
[228]Shub, M., Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987 CrossRef | Google Scholar
[229]Siqueira, A. A. G., Terra, M. H., “Nonlinear H-infinity control applied to biped robots”, Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, Germany, Oct 2006 CrossRef | Google Scholar
[230]Shyu, K. K., Chen, S. R., “Estimation of asymptotic stability region and sliding domain of uncertain variable structure systems with bounded controllers”, Automatica, v.32, n.5, pp.797800, 1996 CrossRef | Google Scholar
[231]Siddiqee, M. W., “Transient stability of an a.c. generator by Lyapunov’s direct method”, International Journal of Control, v.8, n.2, pp.131144, 1968 CrossRef | Google Scholar
[232]Šiljak, D. D., Large-Scale Dynamic Systems: Stability and Structure, North-Holland, New York, 1978 Google Scholar
[233]Silva, F. H. J. R., Alberto, L. F. C., London, J. B. A. Jr., Bretas, N. G., “Smooth perturbation on a classical energy function for lossy power system stability analysis”, IEEE Transactions on Circuits and Systems: I, v.52, n.1, pp.222229, Jan 2005 CrossRef | Google Scholar
[234]Smale, S., “Differential dynamical systems”, Bulletin of the American Mathematical Society, v.73, pp.747817, 1967 CrossRef | Google Scholar
[235]Smith, K. T., Primer of Modern Analysis, Springer -Verlag, New York, 1983 CrossRef | Google Scholar
[236]Sotomayor, J., Generic bifurcations of dynamical systems. In Dynamical Systems, Peixoto, M. M., Ed., pp.549560, Academic Press, New York, 1973 CrossRef | Google Scholar
[237]Steward, G. W., Introduction to Matrix Computation, Academic Press, New York, 1973 Google Scholar
[238]Stott, B., “Power system dynamic response calculations”, Proceedings of the IEEE, v.67, pp.219241, 1979 CrossRef | Google Scholar
[239]Strang, G., Introduction to Linear Algebra, Wellesley-Cambridge Press, 1994 Google Scholar
[240]Susuki, Y., Hikihara, T., Chiang, H. D., “Stability boundaries analysis of electric power system with dc transmission based on differential-algebraic equation system”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, v.E87-A, n.9, pp.23392346, Sept 2004 Google Scholar
[241]Tada, Y., Chiang, H. D., “Design and implementation of on-line dynamic security assessment”, IEEJ Transactions on Electrical and Electronic Engineering, v.4, n.3, pp.313321, 2008 CrossRef | Google Scholar
[242]Tada, Y., Kurita, A., Zhou, Y. C., Koyanagi, K., Chiang, H. D., Zheng, Y., “BCU-guided time-domain method for energy margin calculation to improve BCU-DSA system”, IEEE/PES Transmission and Distribution Conference and Exhibition, 2002 Google Scholar
[243]Tada, Y., Takazawa, T., Chiang, H. D., Li, H., Tong, J., “Transient stability evaluation of a 12,000-bus power system data using TEPCO-BCU”, 15th Power System Computation Conference (PSCC), Belgium, Aug 2005 Google Scholar
[244]Tada, Y., Ono, A., Kurita, A., Takahara, Y., Shishido, T., Koyanagi, K., “Development of analysis function for separated power system data based on linear reduction techniques on integrated power system analysis package”, 15th Conference of the Electric Power Supply, Shanghai, China, Oct 2004 Google Scholar
[245]Takegaki, M., Arimoto, S., “A new feedback method for dynamic control of manipulators”, Journal of of Dynamic Systems, Measurement, and Control, v.103, n.2, pp.119125, Jun 1981 CrossRef | Google Scholar
[246]Takens, F., Constrained equations; a study of implicit differential equations and their discontinuous solutions. In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Lecture Notes in Mathematics, v.525, pp.143234, Springer, Berlin, 1976 CrossRef | Google Scholar
[247]Tan, W., Packard, A., “Stability region analysis using polynomial and composite polynomial Lyapunov function and sum-of-squares programming”, IEEE Transactions on Automatic Control, v.53, n.2, pp.565571, Mar 2008 CrossRef | Google Scholar
[248]Thom, R., Structural Stability and Morphogenesis, Benjamin, Reading, MA, 1975 Google Scholar
[249]Thomas, R. J., Thorp, J. S., “Towards a direct test for large scale electric power system instabilities”, IEEE Proc. 24th Conf. on Decision and Control, Fort Lauderdale, FL, pp.6569, Dec 1985 CrossRef | Google Scholar
[250]Tibken, B., “Estimation of the domain of attraction for polynomial systems via LMI’s”, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec 2000 Google Scholar
[251]Tong, J., Chiang, H. D., Conneen, T. P., “A sensitivity-based BCU method for fast derivation of stability limits in electric power systems”, IEEE Transactions on Power Systems, v.8, n.4, pp.14181437, 1993 CrossRef | Google Scholar
[252]Topcu, U., Packard, A., Seiler, P., Wheeler, T., “Stability region analysis using simulations and sum-of-squares programming”, Proceedings of the 2007 American Control Conference, New York, Jul 2007 CrossRef | Google Scholar
[253]Toussaint, G. J., Basar, T., “Achieving nonvanishing stability regions with high gain cheap control using H techniques: the second-order case”, Systems and Control Letters, v.44, n.2, pp.7989, Oct 2001 CrossRef | Google Scholar
[254]Tsolas, N., Arapostathis, A., Varaiya, P., “A structure preserving energy function for power system transient stability analysis”, IEEE Transactions on Circuits and Systems, v.32, n.10, pp.10411050, Oct 1985 CrossRef | Google Scholar
[255]Ushiki, S., “Analytic expressions of the unstable manifolds”, Proceedings of the Japan Academy, Series A, v.56, pp.239243, 1980 Google Scholar
[256]Vannelli, A., Vidyasagar, M., “Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems”, Automatica, v.21, n.1, pp.6980, 1985 CrossRef | Google Scholar
[257]Varaiya, P. P., Wu, F. F., Chen, R. L., “Direct methods for transient stability analysis of power systems: recent results”, Proceedings of the IEEE, v.73, pp.17031715, Dec 1985 CrossRef | Google Scholar
[258]Varghese, M., Thorp, J. S., “An analysis of truncated fractal growths in the stability boundaries of three-node swing equations”, IEEE Transactions on Circuits and Systems, v.35, pp.825834, 1988 CrossRef | Google Scholar
[259]Vasil’eva, A. B., Butuzov, V. F., Asymptotical Expansions of the Solutions of Singularly Perturbed Systems, Nauka, Moscow, 1973 Google Scholar
[260]Vasil’eva, A. B., Butuzov, V. F., Kalachev, L. V., The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, PA, 1995 CrossRef | Google Scholar
[261]Veliov, V., “A generalization of the Tikhonov theorem for singularly perturbed differential inclusions”, Journal of Dynamical and Control Systems, v.3, n.3, pp.291319, 1997 CrossRef | Google Scholar
[262]Venkatasubramanian, V., A Taxonomy of the Dynamics of Large Differential-Algebraic Systems such as the Power Systems, PhD Thesis, Washington University, Sever Institute of Technology, 1992 Google Scholar
[263]Venkatasubramanian, V., Ji, W., “Coexistence of four different attractors in a fundamental power system model”, IEEE Transactions on Circuits and Systems: I, v.46, n.3, pp.405409, Mar 1999 CrossRef | Google Scholar
[264]Venkatasubramanian, V., Schattler, H., Zaborsky, J., “Dynamic of large constrained nonlinear systems – a taxonomy theory”, Proceedings of the IEEE, v.83, n.11, pp.15301560, Nov 1995 CrossRef | Google Scholar
[265]Vidyasagar, M., Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1978 Google Scholar
[266]Vidyasagar, M., “New directions of research in nonlinear system theory”, Proceedings of the IEEE, v.74, pp.10601091, Aug 1986 CrossRef | Google Scholar
[267]Villafuerte, R., Mondié, S., “Estimate of the region of attraction for a class of nonlinear time delay systems: a leukemia post-transplantation dynamics example”, Proc. 46th IEEE Conference on Decision and Control, New Orleans, LA, pp.633638, Dec 2007 CrossRef | Google Scholar
[268]Villafuerte, R., Mondié, S., Niculescu, S. I., “Stability analysis and estimate of the region of attraction of a human respiratory model”, Proc. 47th IEEE Conference on Decison and Control, Mexico, pp.26442649, 2008 CrossRef | Google Scholar
[269]Vournas, C. D., Sakelladaridis, N., “Region of attraction in a power system with discrete ltcs”, IEEE Transactions on Circuits and Systems: I, v.53, n.7, pp.16101618, Jul 2006 CrossRef | Google Scholar
[270]Wada, N., et al., “Model predictive tracking control using a state-dependent gain-schedule feedback”, Proc. 2010 Int. Conf. on Modelling, Identification and Control, Japan, pp.418423, 2010 Google Scholar
[271]Wang, L., Morison, K., “Implementation of on-line security assessment”, IEEE Power and Energy Magazine, v.4, n.5, Sept/Oct 2006 Google Scholar
[272]Wang, W. X., Zhang, Y. B., Liu, C. Z., “Analysis of a discrete-time predator-prey system with allee effect”, Ecological Complexity, v.8, n.1, pp.8185, 2011 CrossRef | Google Scholar
[273]Weissenberger, S., “Stability regions of large-scale systems”, Automatica, v.9, pp.653663, 1973 CrossRef | Google Scholar
[274]Westervelt, E. R., Grizzle, J. W., de Wit, C. C., “Switching and PI control of walking motions of planar biped walkers”, IEEE Transactions on Automatic Control, v.48, n.2, pp.308312, Feb 2003 CrossRef | Google Scholar
[275]Westervelt, E. R., Grizzle, J. W., Koditschek, D. E., “Hybrid zero dynamics of planar biped walkers”, IEEE Transactions on Automatic Control, v.48, n.1, pp.4256, Jan 2003 CrossRef | Google Scholar
[276]Wiggins, S., Global Bifurcations and Chaos: Analytical Methods, Applied Mathematical Sciences, v.73, Springer-Verlag, New York, 1988 CrossRef | Google Scholar
[277]Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990 CrossRef | Google Scholar
[278]Wimmer, H. K., “Inertia theorem for matrices, controllability, and linear vibration”, Linear Algebra and its Applications, v.8, pp.337343, 1974 CrossRef | Google Scholar
[279]Xin, H., Gan, D., Huang, M., Wang, K., “Estimating the stability region of singular perturbation power systems with saturation nonlinearities: an LMI-based method”, IET Control Theory and Applications, v.4, n.3, pp.351361, 2010 CrossRef | Google Scholar
[280]Xin, H., Gan, D., Qiu, J., Qu, Z., “Methods for estimating stability regions with application to power systems”, European Transactions on Electric Power, v.17, n.2, pp.113133, Mar/Apr 2007 CrossRef | Google Scholar
[281]Xu, D., Li, S., Pu, Z., Guo, Q., “Domain of attraction of nonlinear discrete systems with delays”, Computers and Mathematics with Applications, v.38, pp.155162, 1999 CrossRef | Google Scholar
[282]Yee, H., Spalding, B. D., “Transient stability analysis of multi-machine systems by the method of hyperplanes”, IEEE Transactions on Power Apparatus and Systems, v.96, n.1, pp.276284, Jan 1977 CrossRef | Google Scholar
[283]Yu, T., Yu, J., Li, H., Lin, H., “Complex dynamics of industrial transferring in a credit-constrained economy”, Physics Procedia, v.3, n.5, pp.16771685, 2010 CrossRef | Google Scholar
[284]Yu, Y., Vongsuriya, K., “Nonlinear power system stability study by Lyapunov function and Zubov’s methodIEEE Transactions on Power Apparatus and Systems, v.86, pp.14801485, 1967 CrossRef | Google Scholar
[285]Zaborszky, J., Huang, G., Zheng, B., Leung, T. C., “On the phase portrait of a class of large nonlinear dynamic systems such as the power system”, IEEE Transactions on Automatic Control, v.33, n.1, pp.415, Jan 1988 CrossRef | Google Scholar
[286]Zadeh, L. A., Desoer, C. A., Linear System Theory – The State Space Approach, McGraw-Hill, New York, 1963 Google Scholar
[287]Zhong, J., et al., “New results on non-regular linearization of non-linear systems”, International Journal of Control, v.80, n.10, pp.16511664, 2007 CrossRef | Google Scholar
[288]Zou, Y., Yin, M. H., Chiang, H. D., “Theoretical foundation of the controlling UEP method for direct transient stability analysis of network-preserving power system models”, IEEE Transactions on Circuits and Systems, v.50, n.10, pp.13241336, Oct 2003 Google Scholar

Metrics

Usage data cannot currently be displayed.