Skip to main content Accessibility help
×
Home
Stochastic Equations in Infinite Dimensions
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1441
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.

Reviews

"...very fine...provides the first comprehensive synthesis of the semigroup approach to SPDE....The exposition is excellent and readable throughout, and should help bring the theory to a wider audience." Daniel L. Ocone, Stochastics and Stochastics Reports

"...this is an excellent book which covers a large part of stochastic evolution equations with clear proofs and a very interesting analysis of their properties...In my opinion this book will become an indispensable tool for everyone working on stochastic evolution equations and related areas." P. Kotelenez, Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.