Skip to main content Accessibility help
×
  • Cited by 1644
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      December 2009
      August 2006
      ISBN:
      9780511617799
      9780521546539
      Dimensions:
      Weight & Pages:
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.5kg, 378 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

    Reviews

    '… excellent …'

    Source: Fish and Fisheries

    '… well suited to its intended readership.'

    Source: Biometrics

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    References
    Aarssen, L. W. & Schamp, B. S. (2002). Predicting distributions of species richness and species size in regional floras: Applying the species pool hypothesis to the habitat templet model. Perspectives in Plant Ecology, Evolution and Systematics, 5, 3–12
    Abelson, R. P. (1995). Statistics as Principled Argument. Hillsdale, NJ: Lawrence Erlbaum Publishers
    Abrams, P. A. (1995). Monotonic or unimodal diversity – productivity gradients: what does competition theory predict? Ecology, 76, 2019–2027
    Agrawal, R.,Imielienski, T., & Swami, A. (1993). In: Mining association rules between sets of items in large databases. Proceedings of Conference on Management of Data. New York:ACM Press
    Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control AC, 19, 716–723
    Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P., & Band, S. R. (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65, 759–791
    Andersen, J. A. (1995). An Introduction to Neural Networks. Cambridge, MA: MIT Press
    Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management, 64, 912–923
    Bacon, F. (1620). Novum Organum. London: Bonham Norton and John Bill
    Baldwin, H. Q. (2005). Effects of fire on home range size, site fidelity, and habitat associations of grassland birds overwintering in southeast Texas. M. S. thesis, Louisiana State University, Baton Rouge
    Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418
    Bezdek, J. C. & Pal, N. (1992). Fuzzy Models for Pattern Recognition. New York: IEEE Press
    Blalock, H. M. (1964). Causal Inferences in Nonexperimental Research. Chapel Hill, NC: University of North Carolina Press
    Bollen, K. A. (1984). Multiple indicators: internal consistency or no necessary relationship. Quality and Quantity, 18, 377–385
    Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: John Wiley & Sons
    Bollen, K. A. (1996). An alternative 2SLS estimator for latent variable models. Psychometrika, 61, 109–121
    Bollen, K. A. (1998). Path analysis. pp. 3280–3284. In: Encyclopedia of Biostatistics. Armitage, P. and Colton, T. (eds.). New York: John Wiley & Sons
    Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605–634
    Bollen, K. A. & Lennox, R. (1991). Conventional wisdom on measurement: a structural equation perspective. Psychological Bulletin, 110, 305–314
    Bollen, K. A. & Long, J. S. (eds.) (1993). TestingStructural Equation Models. Newbury Park, CA: Sage Publications
    Bollen, K. A. & Stine, R. (1992). Bootstrapping goodness of fit measures in structural equation models. Sociological Methods and Research, 21, 205–229
    Bollen, K. A. & Ting, K. (2000). A tetrad test for causal indicators. Psychological Methods, 5, 3–22
    Borgelt, C. & Kruse, R. (2002). Graphical Models. New York: John Wiley & Sons
    Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC). Psychometrika, 52, 345–370
    Brewer, J. S. & Grace, J. B. (1990). Vegetation structure of an oligohaline tidal marsh. Vegetatio, 90, 93–107
    Browne, M. W. & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24, 445–455
    Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference. Second Edition. New York: Springer Verlag
    Byrne, B. M. (1994). Structural Equation Modeling EQS and EQS/Windows. Thousand Oaks, CA: Sage Publications
    Byrne, B. M. (1998). Structural Equation Modeling with LISREL, PRELIS, and SIMPLIS. Mahway, NJ: Lawrence Erlbaum Associates
    Byrne, B. M. (2001). Structural Equation Modeling with AMOS. Mahway, NJ: Lawrence Erlbaum Associates
    Campbell, D. R., Waser, N. M., Price, M. V., Lynch, E. A., & Mitchell, R. J. (1991). A mechanistic analysis of phenotypic selection: pollen export and corolla width in Ipomopsis aggregata. Evolution, 43, 1444–1455
    Casella, B. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167–174
    Congdon, P. (2001). Bayesian Statistical Modeling. Chichester: Wiley Publishers
    Congdon, P. (2003). Applied Bayesian Modeling. Chichester: Wiley Publishers
    Cottingham, K. L., Lennon, J. T., & Brown, B. L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology, 3, 145–152
    Cudeck, R., Toit, Du S. H. C., & Sörbom, D. (eds.) (2001). Structural Equation Modeling: Present and Future. Lincolnwood, IL: SSI Scientific Software International
    Dasarathy, B. V. (1990). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. Los Alamitos, CA: IEEE Computer Science Press
    Diamantopoulous, A. & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38, 269–277
    Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (1999). An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. Mahwah, NJ: Lawrence Erlbaum Associates
    Edwards, J. R. (2001). Multidimensional constructs in organizational behavior research: an integrative analytical framework. Organizational Research Methods, 4, 144–192
    Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6, 56–83
    Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Edinburgh, UK: Oliver and Boyd
    Fornell, C., ed. (1982). A Second Generation of Multivariate Analyses: Volumes 1 and II. New York: Praeger Publishers.
    Gadgil, M. & Solbrig, O. T. (1972). The concept of r- and K-selection: evidence from wild flowers and some theoretical considerations. American Naturalist, 106, 14–31
    Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian Data Analysis. Boca Raton: Chapman & Hall
    Glymour, B., Scheines, R., Spirtes, R., & Kelly, K. (1987). Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling. Orlando, FL: Academic Press
    Goldberger, A. S. & Duncan, O. D. (1973). Structural Equation Models in the Social Sciences. New York: Seminar Press
    Good, I. J. (1983). Good Thinking. Minneapolis: University of Minnesota Press
    Gough, L. & Grace, J. B. (1999). Predicting effects of environmental change on plant species density: experimental evaluations in a coastal wetland. Ecology, 80, 882–890
    Gough, L., Grace, J. B., & Taylor, K. L. (1994). The relationship between species richness and community biomass: the importance of environmental variables. Oikos, 70, 271–279
    Grace, J. B. (1991). A clarification of the debate between Grime and Tilman. Functional Ecology, 5, 503–507
    Grace, J. B. (1999). The factors controlling species density in herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics, 2, 1–28
    Grace, J. B. (2001). The roles of community biomass and species pools in the regulation of plant diversity. Oikos, 92, 191–207
    Grace, J. B. (2003a). Comparing groups using structural equations. chapter 11, pp. 281– 296. In: Pugesek, B. H., Tomer, A., & Eye, A. (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
    Grace, J. B. (2003b). Examining the relationship between environmental variables and ordination axes using latent variables and structural equation modeling. chapter 7, pp. 171–193. In: Pugesek, B. H., Tomer, A., & Eye, A. (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
    Grace, J. B. & Bollen, K. A. (2005). Interpreting the results from multiple regression and structural equation models. Bulletin of the Ecological Society of America, 86, 283–295
    Grace, J. B. & Guntenspergen, G. R. (1999). The effects of landscape position on plant species density: evidence of past environmental effects in a coastal wetland. Ecoscience, 6, 381–391
    Grace, J. B. & Jutila, H. (1999). The relationship between species density and community biomass in grazed and ungrazed coastal meadows. Oikos, 85, 398–408
    Grace, J. B. & Keeley, J. E. (2006). A structural equation model analysis of postfire plant diversity in California shrublands. Ecological Applications, 16, 503–514
    Grace, J. B. & Pugesek, B. (1997). A structural equation model of plant species richness and its application to a coastal wetland. American Naturalist, 149, 436–460
    Grace, J. B. & Pugesek, B. H. (1998). On the use of path analysis and related procedures for the investigation of ecological problems. American Naturalist 152, 151–159
    Grace, J. B., Allain, L., & Allen, C. (2000). Factors associated with plant species richness in a coastal tall-grass prairie. Journal of Vegetation Science, 11, 443–452
    Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347
    Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1194
    Grime, J. P. (1979). Plant Strategies and Vegetation Processes. London: John Wiley & Sons
    Grime, J. P. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. London: John Wiley & Sons
    Grime, J. P. (2002). Declining plant diversity: empty niches or functional shifts? Journal of Vegetation Science, 13, 457–460
    Grimm, V. (1994). Mathematical models and understanding in ecology. Ecological Modelling, 74, 641–651
    Gross, K. L., Willig, M. R., & Gough, L. (2000). Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos, 89, 417–427
    Grubb, P. J. (1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3–31
    Hägglund, G. (2001). Milestones in the history of factor analysis. pp. 11–38. In: Cudeck, R., Toit, S. H. C. Du, & Sörbom, D. (eds.). Structural Equation Modeling: Present and Future. Lincolnwood, IL: SSI Scientific Software International
    Hair, J. F., Anderson, R. E.Jr., Tatham, R. L., & Black, W. C. (1995). Multivariate Data Analysis. Fourth Edition. Englewood Cliffs, NJ: Prentice Hall
    Hannon, B. & Ruth, M. (1997). Modeling Dynamic Biological Systems. New York: Springer
    Hargens, L. L. (1976). A note on standardized coefficients as structural parameters. Sociological Methods & Research, 5, 247–256
    Harrison, S., Safford, H. D., Grace, J. B., Viers, J. H., & Davies, K. F. (2006). Regional and local species richness in an insular environment: serpentine plants in California. Ecological Monographs, 76, 41–56
    Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–106
    Hayduk, L. A. (1987). Structural Equation Modeling with LISREL. Baltimore, MD: Johns Hopkins University Press
    Hayduk, L. A. (1996). LISREL Issues, Debates, and Strategies. Baltimore, MD: Johns Hopkins University Press
    Heise, D. R. (1972). Employing nominal variables, induced variables, and block variables in path analyses. Sociological Methods & Research, 1, 147–173
    Hodson, J. G., Thompson, K., Wilson, P. J., & Bogaard, A. (1998). Does biodiversity determine ecosystem function? The ecotron experiment reconsidered. Functional Ecology, 12, 843–848
    Hox, J. (2002). Multilevel Analysis. Mahway, NJ: Lawrence Erlbaum Associates
    Hoyle, R. H. (ed.) (1999). Statistical Strategies for Small Sample Research. Thousand Oaks, CA: Sage Publications
    Huston, M. A. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81–101
    Huston, M. A. (1980). Soil nutrients and tree species richness in Costa Rican forests. Journal of Biogeography, 7, 147–157
    Huston, M. A. (1994). Biological Diversity. Cambridge: Cambridge University Press
    Huston, M. A. (1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460
    Huston, M. A. (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86, 393–401
    Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30, 199–218
    Jedidi, K. & Ansari, A. (2001). Bayesian structural equation models for multilevel data. pp. 129–158. In: Marcoulides, B. A. & Schumacker, R. E. (eds.), New Developments and Techniques in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
    Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. New York: Springer Verlag
    Johnson, M. L., Huggins, D. G., & Noyelles, F. Jr. (1991). Ecosystem modeling with LISREL: a new approach for measuring direct and indirect effects. Ecological Applications, 1, 383–398
    Johnson, J. B. (2002). Divergent life histories among populations of the fish Brachyrhaphis rhabdophora: detecting putative agents of selection by candidate model analysis. Oikos, 96, 82–91
    Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. pp. 85–112. In: Goldberger, A. S. & Duncan, O. D. (eds.). Structural Equation Models in the Social Sciences. New York: Seminar Press
    Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User's Reference Guide. Chicago: Scientific Software International
    Jutila, H. & Grace, J. B. (2002). Effects of disturbance and competitive release on germination and seedling establishment in a coastal prairie grassland. Journal of Ecology, 90, 291–302
    Kaplan, D. (2000). Structural Equation Modeling: Foundations and Extensions. Thousand Oaks, CA: Sage Publishers.
    Kaplan, D., Harik, P., & Hotchkiss, L. (2001). Cross-sectional estimation of dynamic structural equation models in disequilibrium. pp. 315–339. In: Cudeck, R., Toit, S. H. C. Du & Sörbom, D. (eds.). Structural Equation Modeling: Present and Future. Lincolnwood, IL: SSI Scientific Software International
    Keddy, P. A. (1990). Competitive hierarchies and centrifugal organization in plant communities. pp. 265–289. In: Grace, J. B. & Tilman, D. (eds.). Perspectives on Plant Competition, New York: Academic Press
    Keesling, J. W. (1972). Maximum Likelihood Approaches to Causal Flow Analysis. Ph.D. Dissertation, Department of Education, University of Chicago
    Kelloway, E. K. (1998). Using LISREL for Structural Equation Modeling. Thousand Oaks, CA: Sage Publications
    Kline, R. B. (2005). Principles and Practice of Structural Equation Modeling. 2nd Edition. New York: The Guilford Press
    Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In: Proceedings of the 10th National Conference on Artificial Intelligence. pp. 223–228. Cambridge, MA: MIT Press
    Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les événements. Mémoires de l'Academie de Science de Paris, 6, 621–656
    Larson, D. L. & , Grace J. B. (2004). Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents. Biological Control, 29, 207–214
    Lawton, J. H., Naeem, S., Thompson, L. J., Hector, A., & Crawley, J. J. (1998). Biodiversity and ecosystem function: getting the ecotron experiment in its correct context. Functional Ecology, 12, 848–852
    Lee, S. Y., & Bentler, P. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models. South African Statistical Journal, 14, 121–136
    Legendre, P. (1993). Spatial autocorrelation: Trouble or a new paradigm. Ecology, 74, 659–673
    Levins, R. (1968). Evolution in Changing Environments. Princeton, NJ: Princeton University Press
    Li, C. C. (1975). Path Analysis – A primer. Pacific Grove, CA: Boxwood Press
    Little, T. D., Schnabel, K. U., & Baumert, J. (eds.) (2000). Modeling Longitudinal and Multilevel Data. Mahway, NJ: Lawrence Erlbaum Associates
    Loehle, C. (1987). Hypothesis testing in ecology: psychological aspects and the importance of theory maturation. The Quarterly Review of Biology, 62, 397–409
    Loehle, C. (1988). Problems with the triangular model for representing plant strategies. Ecology, 69, 284–286
    Loehlin, J. C. (1998). Latent Variable Models. Third Edition. Mahway, NJ: Lawrence Erlbaum Associates
    Loreau, M., Naeem, S., & Inchausti, P. (2002). Biodiversity and Ecosystem Functioning. Oxford: Oxford University Press
    MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press
    MacCallum, R. C. & Browne, M. W. (1993). The use of causal indicators in covariance structure models: some practical issues. Psychological Bulletin, 114, 533–541
    Mancera, J. E., Meche, G. C., Cardona-Olarte, P. P.et al. (2005). Fine-scale environmental control of spatial variation in species richness in a wetland community. Plant Ecology, 178, 39–50
    Marcoulides, G. A. & Schumacker, R. E. (eds.) (1996). Advanced Structural Equation Modeling: Issues and Techniques. Mahway, NJ: Lawrence Erlbaum Associates
    Marcoulides, G. A. & Schumacker, R. E. (eds.) (2001). New Developments and Techniques in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
    Marrs, R., Grace, J. B., & Gough, L. (1996). On the relationship between plant species diversity and biomass: a comment on a paper by Gough, Grace, and Taylor. Oikos, 75, 323–326
    Marsh, H. W., Balla, J. R., & Hau, K.-T. (1996). An evaluation of incremental fit indices: a clarification of mathematical and empirical properties. pp. 315–353. In: Marcoulides, B. A. & Schumacker, R. E. (eds.). Advanced Structural Equation Modeling.Mahway, NJ: Lawrence Erlbaum Associates
    Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's findings. Structural Equation Modeling, 11, 320–341
    Maruyama, G. M. (1998). Basics of Structural Equation Modeling. Thousand Oaks, CA: Sage Publications
    McCune, B. & Grace, J. B. (2002). Analysis of Ecological Communities. Gleneden Beach, Oregon: MJM
    Meziane, D. & Shipley, B. (2001). Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Annals of Botany, 88, 915–927
    Mikola, J., Salonen, V., & Setälä, H (2002). Studying the effects of plant species richness on ecosystem functioning: does the choice of experimental design matter? Oecologia, 133, 594–598
    Mitchell, R. J. (1992). Testing evolutionary and ecological hypotheses using path analysis and structural equation modelling. Functional Ecology, 6, 123–129
    Mitchell, R. J. (1994). Effects of floral traits, pollinator visitation, and plant size on Ipomopsis aggregata fruit production. The American Naturalist, 143, 870–889
    Mittelbach, G. G., Steiner, C. F., Scheiner, S. M.et al. (2001). Ecology, 82, 2381–2396
    Moore, D. R. J. & Keddy, P. A. (1989). The relationship between species richness and standing crop in wetlands: the importance of scale. Vegetatio, 79, 99–106
    Muggleton, S. (ed.) (1992). Inductive Logic Programming. San Diego, CA: Academic Press
    Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132
    Muthén, L. K. & Muthén, B. O. (2004). Mplus User's Guide. Third Edition. Los Angeles, CA: Muthén and Muthén
    Naeem, S. (2002). Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83, 1537–1552
    Neapolitan, R. E. (2004). Learning Bayesian Networks. Upper Saddle River, NJ: Prentice Hall Publishers
    Oakes, M. (1990). Statistical Inference. Chestnut Hill, MA: Epidemiology Resources Inc
    Palmer, M. W. (1994). Variation in species richness: towards a unification of hypotheses. Folia Geobot. Phytotax. Praha, 29, 511–530
    Pankratz, A. (1991). Forecasting with Dynamic Regression Models. New York: John Wiley & Sons
    Pearl, J. (1992). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Morgan Kaufmann
    Pearl, J. (2000). Causality. Cambridge: Cambridge University Press
    Pedhazur, E. J. (1997). Multiple Regression in Behavioral Research, 3rd edition. Toronto: Wadsworth Press
    Peters, R. H. (1991). A Critique for Ecology. Cambridge: Cambridge University Press
    Pianka, E. R. (1970). On r- and K-selection. American Naturalist, 104, 592–597
    Popper, K. R. (1959). The Logic of Scientific Discovery. London: Hutchinson
    Pugesek, B. H. (2003). Modeling means in latent variable models of natural selection. pp. 297–311. In: Pugesek, B. H., Tomer, A., & Eye, A. (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
    Pugesek, B. H. & Tomer, A. (1996). The Bumpus house sparrow data: a reanalysis using structural equation models. Evolutionary Ecology, 10, 387–404
    Pugesek, B. H., Tomer, A., & Eye, A. (2003). Structural Equation Modeling. Cambridge: Cambridge University Press
    Raftery, A. E. (1993). Bayesian model selection in structural equation models. pp. 163–180. In: Bollen, K. A. & Long, J. S. (eds.). Testing Structural Equation Models. Newbury Park, CA: Sage Publishers
    Raykov, T. & Marcoulides, G. A. (2000). A First Course in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
    Raykov, T. & Penev, S. (1999). On structural equation model equivalence. Multivariate Behavioral Research, 34, 199–244
    Reich, P. B., Ellsworth, D. S., Walters, M. B.et al. (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955–1969
    Reyment, R. A. & Jöreskog, K. G. (1996). Applied Factor Analysis in the Natural Sciences. Cambridge: Cambridge University Press
    Rosenzweig, M. L. & Abramsky, Z. (1993). How are diversity and productivity related? pp. 52–64. In: Ricklefs, R. E. & Schluter, D. (eds.). Species Diversity in Ecological Communities. Chicago: University of Chicago Press
    Rupp, A. A., Dey, D. K., & Zumbo, B. D. (2004). To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling. Structural Equation Modeling, 11, 424–451
    Salsburg, D. (2001). The Lady Tasting Tea. New York: Henry Holt & Company
    Satorra, A. & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. pp. 308–313. In: Proceedings of the American Statistical Association
    Satorra, A. & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. pp. 399–419. In: Eye, A. & Clogg, C. C. (eds.). Latent Variables Analysis: Applications for Developmental Research. Thousand Oaks, CA: Sage Publishers
    Scheiner, S. M., Mitchell, R. J., & Callahan, H. S. (2000). Using path analysis to measure natural selection. Journal of Evolutionary Biology, 13, 423–433
    Scheines, R., Hoijtink, R., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37–52
    Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness-of-fit measures. Methods of Psychological Research – Online, 8, 23–74
    Schumacker, R. E. & Lomax, R. G. (eds.) (1996). A Beginner's Guide to Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
    Schumacker, R. E. & Marcoulides, G. A. (eds.) (1998). Interaction and Nonlinear Effects in Structural Equation Modeling. Mahway, NJ: Lawrence Erlbaum Associates
    Shipley, B. (2000). Cause and Correlation in Biology. Cambridge: Cambridge University Press
    Shipley, B. & Lechowicz, M. J. (2000). The functional coordination of leaf morphology and gas exchange in 40 wetland plant species. Ecoscience, 7, 183–194
    Shipley, B., Keddy, P. A., Gaudet, C., & Moore, D. R. J. (1991). A model of species density in shoreline vegetation. Ecology, 72, 1658–1667
    Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search. Cambridge: MIT Press
    Stamp, N. (2003). Theory of plant defense level: example of process and pitfalls in development of ecological theory. Oikos, 102, 672–678
    Stearns, S. C. (1977). The evolution of life history traits: a critique of the theory and a review of the data. Annual Review of Ecology and Systematics, 8, 145–171
    Steiger, J. H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research, 25, 173–180
    Symstad, J. J, Chapin, F. W., Wall, D. H.et al. (2003). Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience, 53, 89–98
    Taper, M. L. & Lele, S. R. (2004). The Nature of Scientific Evidence. Chicago, Illinois: University of Chicago Press
    Taylor, D. R., Aarssen, L. W., & Loehle, C. (1990). On the relationship between r/K selection and environmental carry capacity: a new habitat templet for plant life history strategies. Oikos, 58, 239–250
    Tilman, D. (1982). Resource competition and community structure. Princeton, NJ: Princeton University Press
    Tilman, D. (1986). Resources, competition and the dynamics of plant communities. pp. 51–75. In: Crawley, M. J. (ed.). Plant Ecology. London: Blackwell Scientific Publications
    Tilman, D. (1987). On the meaning of competition and the mechanisms of competitive superiority. Functional Ecology, 1, 304–315
    Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton, New Jersey: Princeton University Press
    Tilman, D. (1997). Mechanisms of plant competition. chapter. In: Crawley, M. J. (ed.). Plant Ecology, 2nd edn. Malden, MA: Blackwell Scientific Publications
    Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718–720
    Tomer, A. (2003). A short history of structural equation models. pp. 85–124. In: Pugesek, B. H., , A.Tomer, , & Eye, A. (eds.). Structural Equation Modeling. Cambridge: Cambridge University Press
    Tukey, J. W. (1954). Causation, regression, and path analysis. pp. 35–66. In: Kempthorne, O., Bancroft, T. A.Gowen, J. W., & Lush, J. D. (eds.). Statistics and Mathematics in Biology. Ames, IA: Iowa State College Press
    Turner, M. E. & Stevens, C. D. (1959). The regression analysis of causal paths. Biometrics, 15, 236–258
    Verheyen, K., Guntenspergen, G. R., Biesbrouck, B., & Hermy, M. (2003). An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale. Journal of Ecology, 91, 731–742
    Mises, R. (1919). Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, Vol. 5. (referenced in Neapolitan (2004))
    Waide, R. B., Willig, M. R., Steiner, C. F.et al. (1999). The relationship between productivity and species richness. Annual Reviews in Ecology and Systematics, 30, 257–300
    Wardle, D. A. (1999). Is “sampling effect” a problem for experiments investigating biodiversity–ecosystem function relationships? Oikos, 87, 403–407
    Weiher, E., Forbes, S., Schauwecker, T., & Grace, J. B. (2004). Multivariate control of plant species richness in a blackland prairie. Oikos, 106, 151–157
    Wheeler, B. D. & Giller, K. E. (1982). Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above-ground plant material. Journal of Ecology, 70, 179–200
    Wheeler, B. D. & Shaw, S. C. (1991). Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. Journal of Ecology, 79, 285–302
    Wiley, D. E. (1973). The identification problem for structural equation models with unmeasured variables. In: Goldberger, A. S. & Duncan, O. D. (eds.). Structural Equation Models in the Social Sciences. New York: Seminar Press A. S.
    Williams, L. J., Edwards, J. R., & Vandenberg, R. J. (2003). Recent advances in causal modeling methods for organizational and management research. Journal of Management, 29, 903–936
    Wilson, J. B. & Lee, W. G. (2000). C-S-R triangle theory: community-level predictions, tests, evaluation of criticisms, and relation to other theories. Oikos, 91, 77–96
    Wisheu, I. C. & Keddy, P. A. (1989). Species richness-standing crop relationships along four lakeshore gradients: constraints on the general model. Canadian Journal of Botany, 67, 1609–1617
    Wootton, J. T. (1994). Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology, 75, 151–165
    Wootton, J. T. (2002). Indirect effects in complex ecosystems: recent progress and future challenges. Journal of Sea Research, 48, 157–172
    Wright, S. (1918). On the nature of size factors. Genetics, 3, 367–374
    Wright, S. (1920). The relative importance of heredity and environment in determining the piebald pattern of guinea pigs. Proceedings of the National Academy of Sciences, 6, 320–332
    Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 10, 557–585
    Wright, S. (1932). General, group, and special size factors. Genetics, 17, 603–619
    Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161–215
    Wright, S. (1960). Path coefficients and path regressions: alternative or complementary concepts? Biometrics, 16, 189–202
    Wright, S. (1968). Evolution and the Genetics of Populations, Vol. 1: Genetic and Biometric Foundations. Chicago: University of Chicago Press
    Wright, S. (1984). Diverse uses of path analysis. pp. 1–34. In: Chakravarti, A. (ed.). Human Population Genetics. New York: Van Nostrand Reinhold

    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.