Skip to main content Accessibility help
×
  • Cited by 141
    • 2nd edition
      Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      01 June 2011
      28 May 1992
      ISBN:
      9780511564000
      9780521423779
      Dimensions:
      Weight & Pages:
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.7kg, 428 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose–Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern–Gauss–Bonnet formula for the Euler–Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text.

    Reviews

    ‘Supermanifolds is destined to become the standard work for all serious study of super-symmetric theories of physics.’

    Source: Nature

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.