References
Allen, J. (1983). Maintaining knowledge about Temporal Intervals. Communications of the ACM, 26(11), 832–43.
Allen, J. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2), 123–54.
Allen, J., & Ferguson, G. (1994). Actions and events in interval temporal logic. Journal of Logic and Computation, 4(5), 531–79.
Alur, R., & Henzinger, T. A. (1992). Logics and models of real time: A survey. In de Bakker, J. W., Huizing, C., de Roever, W. P., & Rozenberg, G. (Eds.), Real-time: Theory in practice (pp. 74–106). Springer.
Alur, R., & Henzinger, T. (1993). Real-time logics: Complexity and expressiveness. Information and Computation, 104(1), 35–77.
Alur, R., & Henzinger, T. A. (1994). A really temporal logic. Journal of the ACM, 41(1), 181–203.
Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49(5), 672–713.
Andréka, H., Madarász, J. X., & Németi, I. (2007). Logic of space-time and relativity theory. In Aiello, M., Pratt-Hartmann, I., & Van Benthem, J. (Eds.), Handbook of Spatial Logics (pp. 607–711). Springer.
Areces, C., & ten Cate, B. (2006). Hybrid logics. In Handbook of modal logic. Elsevier.
, Aristotle. (1984/350 BC). Organon II. On Interpretation. In Complete Works of Aristotle, ed. Jonathan Barnes, . Princeton University Press.
Artale, A., & Franconi, E. (2000). A survey of temporal extensions of description logics. Annals of Mathematics and Artificial Intelligence, 30, 171–210.
Baier, C., & Katoen, J.-P. (2008). Principles of model checking. MIT Press.
Barcan, R. C. (1946). A functional calculus of first order based on strict implication. The Journal of Symbolic Logic, 11(1), 1–16.
Belnap, N. (1992). Branching space-time. Synthese, 92(3), 385–434.
Belnap, N., & Green, M. (1994). Indeterminism and the Thin Red Line. Philosophical Perspectives, 8, 365–88.
Belnap, N., & Müller, T. (2014a). CIFOL: Case-intensional first order logic. Journal of Philosophical Logic (I) Toward a Theory of Sorts., 43(2–3), 393–437.
Belnap, N., & Müller, T. (2014b). BH-CIFOL: Case-intensional first order logic. Journal of Philosophical Logic (II) Branching Histories., 43(5), 835–66.
Belnap, N., Müller, T., & Placek, T. (2022). Branching space-times. Theory and applications. Oxford University Press.
Belnap, N., & Perloff, M. (1988). Seeing to it that: A canonical form for agentives. Theoria, 54, 175–99.
Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our indeterminist world. Oxford University Press.
Ben-Ari, M., Pnueli, A., & Manna, Z. (1983). The temporal logic of branching time. Acta Informatica, 20, 207–26.
Blackburn, P. (2006). Arthur Prior and hybrid logic. Synthese, 150(3), 329–72.
Blackburn, P., Hasle, P., & Øhrstrøm, P. (Eds.),. (2019). Logic and philosophy of time: Further themes from Prior, volume 2. Aalborg University Press.
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge University Press.
Bolc, L., & Szałas, A. (Eds.),. (1995). Time and logic: A computational approach. University College London.
Braüner, T. (2011). Hybrid logic and its proof-theory. Springer.
Braüner, T., Øhrstrøm, P., & Hasle, P. (2000). Determinism and the origins of temporal logic. In Advances in temporal logic (pp. 185–206). Springer.
Braüner, T. (2022). Hybrid logic. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Spring 2022 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., & Sciavicco, G. (2013). Metric propositional neighborhood logics on natural numbers. Software & Systems Modeling, 12(2), 245–64.
Broersen, J. (2011). Deontic epistemic stit logic distinguishing modes of mens rea. Journal of Applied Logic, 9(2), 137–52.
Brown, M. A. (2014). Worlds enough, and time: Musings on foundations. In Müller, T. (Ed.), Nuel Belnap on indeterminism and free action, (pp. 99–121). Springer.
Bull, R. (1970). An approach to tense logic I. Theoria, 36(3), 282–300.
Burgess, J. (1978). The unreal future. Theoria, 44(3), 157–79.
Burgess, J. (1979). Logic and time. Journal of Symbolic Logic, 44(4), 566–82.
Burgess, J. (1980). Decidability for branching time. Studia logica, 39(2–3), 203–18.
Burgess, J. (1982a). Axioms for tense logic: II. Time periods. Notre Dame Journal of Formal Logic, 23(4), 375–83.
Burgess, J. (1982b). Axioms for tense logic: I. “‘Since” and “Until”’. Notre Dame Journal of Formal Logic, 23(4), 367–74.
Burgess, J. (1984). Basic tense logic. In Handbook of philosophical logic (pp. 89–133). Springer.
Burgess, J. (2002). Basic tense logic. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosophical logic (Vol. 7, pp. 1–43). Springer.
Burgess, J., & Gurevich, Y. (1985). The decision problem for linear temporal logic. Notre Dame Journal of Formal Logic, 26(2), 115–28.
Carnielli, W., & Coniglio, M. E. (2020). Combining logics. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Fall 2020 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Cocchiarella, N. B. (2002). Philosophical perspectives on quantification in tense and modal logic. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosophical logic (Vol 7, pp. 672–713). Springer.
Conradie, W., Marais, C., & Goranko, V. (2023). Axiomatisations of some classes of trees in the Priorean temporal language. In preparation.
Copeland, B. J. (2022). Arthur Prior. In, E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2022 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Correia, F., & Iacona, A. (Eds.). (2013). Around the tree: Semantic and metaphysical issues concerning branching and the open future (Vol. 361). Springer.
Dean, T. L., & McDermott, D. V. (1987). Temporal database management. Artificial Intelligence, 32(1), 1–55.
Della Monica, D., Goranko, V., Montanari, A., & Sciavicco, G. (2011). Interval temporal logics: A journey. Bulletin of EATCS, 3(105), 73–99.
Demri, S., Goranko, V., & Lange, M. (2016). Temporal logics in computer science. Cambridge University Press.
Dyke, H., & Bardon, A. (Eds.). (2013). A companion to the philosophy of time (Vol. 154). John Wiley & Sons.
Emerson, E. (1990). Temporal and modal logics. In van Leeuwen, J. (Ed.), Handbook of theoretical computer science (Vol. B, pp. 995–1072). MIT Press.
Emerson, E. A., & Clarke, E. M. (1982). Using branching time temporal logic to synthesize synchronization skeletons. Science of Computer Programming, 2(3), 241–66.
Emerson, E. A., & Halpern, J. Y. (1985). Decision procedures and expressiveness in the temporal logic of branching time. Journal of computer and system sciences, 30, 1–24.
Emerson, E., & Sistla, A. (1984). Deciding full branching time logic. Information and Control, 61, 175–201.
Emery, N., Markosian, N., & Sullivan, M. (2020). Time. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Winter 2020 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Euzenat, J., & Montanari, A. (2005). Time granularity. In Handbook of temporal reasoning in artificial intelligence (pp. 59–118). Elsevier.
Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. MIT Press.
Finger, M., & Gabbay, D. (1992). Adding a temporal dimension to a logic system. Journal of Logic, Language and Information, 1, 203–33.
Finger, M., & Gabbay, D. (1996, Spring). Combining temporal logic systems. Notre Dame Journal of Formal Logic, 37(2), 204–32.
Finger, M., Gabbay, D., & Reynolds, M. (2002). Advanced tense logic. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosophical logic (Vol. 7, pp. 43–204). Springer.
Fisher, M. (2008). Temporal representation and reasoning. In van Harmelen, F., Lifschitz, V., & Porter, B. (Eds.), Handbook of knowledge representation (pp. 513–50). Elsevier.
Fisher, M. (2011). An introduction to practical formal methods using temporal logic. Wiley.
Fisher, M., Gabbay, D., & Vila, L. (Eds.). (2005). Handbook of temporal reasoning in artificial intelligence. Elsevier.
Fitting, M. (2022). Intensional logic. In Zalta, E. N. & Nodelman, U. (Eds.), The Stanford encyclopedia of philosophy (Winter 2022 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Fitting, M., & Mendelsohn, R. L. (1998). First order modal logic. Kluwer Academic Publishers.
Florio, C. D., & Frigerio, A. (2020). The thin red line, Molinism, and the flow of time. Journal of Logic, Language and Information, 29(3), 307–29. DOI: http://10.1007/s10849-019-09304-4. Gabbay, D. (1973). A survey of decidability results for modal, tense and intermediate logics. In Heyting, A., Keisler, J., Moskowski, A., Robinson, A. & Suppes, P. (Eds.), Proceedings of the fourth international congress on logic, methodology and philosophy of science (pp. 29–43). North-Holland.
Gabbay, D. (1975). Decidability results in non-classical logics. Annals of Mathematical Logic, 8, 237–95.
Gabbay, D. (1981). An irreflexivity lemma with applications to axiomatizations of conditions on linear frames. In Mönnich, U. (Ed.), Aspects of philosophical logic (pp. 67–89). Reidel.
Gabbay, D. M. (1987). The declarative past and imperative future: Executable temporal logic for interactive systems. In Banieqbal, B., Barringer, H., & Pnueli, A. (Eds.), Temporal logic in specification, Altrincham, UK, April 8–10, 1987, Proceedings (Vol. 398, pp. 409–48). Springer.
Gabbay, D., & Guenthner, F. (Eds.). (2002). Handbook of philosophical logic, (2nd ed., Vol. 7). Springer.
Gabbay, D., Hodkinson, I., & Reynolds, M. (1994). Temporal logic, vol. 1: Mathematical foundations and computational aspects. Clarendon Press.
Gabbay, D., Pnueli, A., Shelah, S., & Stavi, J. (1980). On the temporal analysis of fairness. In Proceedings of POPL ’80 (Proceedings of the Seventh Annual ACM Symposium on Principles of Programming) Languages (pp. 163–73). ACM Press.
Gabbay, D., Reynolds, M., & Finger, M. (2000). Temporal Logic, Vol. 2: Mathematical foundations and computational aspects, vol. 2 Clarendon Press.
Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2005). Combining spatial and temporal logics: Expressiveness vs. complexity. Journal of Artificial Intelligence Research, 23, 167–243.
Gallois, A. (2016). Identity over time. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Galton, A. (1987). Temporal logic and computer science: An overview. In Galton, A. (Ed.), Temporal logics and their applications (pp. 1–52). Academic Press.
Galton, A. (1995). Time and change for AI. In Gabbay, D. M., Hogger, C. J., Robinson, J. A., & Antony, A. Galton (Eds.), Handbook of logic in artificial intelligence and logic programming, vol. 4: Epistemic and temporal reasoning (pp. 175–240). Oxford University Press.
Galton, A. (1996). Time and continuity in philosophy, mathematics, and artificial intelligence. Kodikas/Code, 19(1–2), 101–19.
Garson, J. W. (1984). Quantification in modal logic. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosophical logic, volume II: Extensions of classical logic (Vol. 165, pp. 249–307). Reidel.
Goldblatt, R. (1992). Logics of time and computation (2nd ed.). CSLI.
Goranko, V. (1996). Hierarchies of modal and temporal logics with references pointers. Journal of Logic, Language and Information, 5, 1–24.
Goranko, V. (2016). Logic as a tool: A guide to formal logical reasoning. Wiley.
Goranko, V., Montanari, A., & Sciavicco, G. (2003). Propositional interval neighborhood temporal logics. Journal of Universal Computer Science, 9(9), 1137–67.
Goranko, V., Montanari, A., & Sciavicco, G. (2004). A road map of interval temporal logics and duration calculi. Journal of Applied Non-Classical Logics, 14(1–2) 9–54.
Goranko, V., & Rumberg, A. (2020). Temporal logic. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Spring 2020 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Goranko, V., & Shkatov, D. (2010). Tableau-based decision procedures for logics of strategic ability in multiagent systems. ACM Transactions on Computational Logic, 11(1), 3–51.
Goranko, V., & van Drimmelen, G. (2006). Complete axiomatization and decidablity of Alternating-time temporal logic. Theoretical Computer Science, 353, 93–117.
Goré, R. (1999). Tableau methods for modal and temporal logics. In D’Agostino, M., Gabbay, D., Hähnle, R., & Posega, J. (Eds.), Handbook of tableau methods (pp. 297–396). Kluwer.
Grädel, E., & Otto, M. (1999). On logics with two variables. Theoretical Computer Science 224(1–2), 73–113.
Gurevich, Y., & Shelah, S. (1985). The decision problem for branching time logic. The Journal of Symbolic Logic, 50, 668–81.
Halbach, V. (2010). The logic manual. Oxford University Press.
Halpern, J., & Shoham, Y. (1991). A propositional modal logic of time intervals. Journal of the ACM, 38(4), 935–62.
Halpern, J., & Vardi, M. (1989). The complexity of reasoning about knowledge and time I: Lower bounds. Journal of Computer and System Sciences, 38(1), 195–237.
Hamblin, C. (1972). Instants and intervals. In Fraser, J., Haber, F., & Mueller, G. (Eds.), The study of time (volume 1) (pp. 324–31). Springer.
Hamm, F., & Bott, O. (2021). Tense and aspect. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Fall 2021 ed.). Stanford, CA: Metaphysics Research Lab, Stanford University.
Hansen, M., & Chaochen, Z. (1997). Duration calculus: Logical foundations. Formal Aspects of Computing, 9, 283–330.
Hasle, P., Blackburn, P. R., & Øhrstrøm, P. (2017). Logic and philosophy of time: Themes from Prior, volume 1. Aalborg University Press.
Hodges, W. (2001). Logic – an introduction to elementary logic, 2nd edition. Penguin Books.
Hodges, W., & Johnston, S. (2017). Medieval modalities and modern methods: Avicenna and Buridan. IfCoLog Journal of Logics and Their Applications, 4(4), 1029–73.
Hodkinson, I., & Reynolds, M. (2007). Temporal logic. In Blackburn, P., Van Benthem, J., & Wolter, F. (Eds.), Handbook of modal logic (Vol. 3, pp. 655–720). Elsevier.
Hodkinson, I., Wolter, F., & Zakharyaschev, M. (2000). Decidable fragment of first-order temporal logics. Annals of Pure and Applied Logic, 106(1–3) 85–134.
Hodkinson, I., Wolter, F., & Zakharyaschev, M. (2001). Monodic fragments of first-order temporal logics: 2000–2001 A.D. In Nieuwenhuis, R. & Voronkov, A. (Eds.), Logic for programming, artificial intelligence, and reasoning (pp. 1–23). Springer.
Hodkinson, I. M., Wolter, F., & Zakharyaschev, M. (2002). Decidable and undecidable fragments of first-order branching temporal logics. In 17th IEEE symposium on Logic in Computer Science (LICS 2002), 22–25 July 2002, Copenhagen, Denmark, Proceedings (pp. 393–402). IEEE Computer Society.
Humberstone, I. L. (1979). Interval semantics for tense logic: Some remarks. Journal of Philosophical Logic, 8, 171–196.
Humberstone, L. (2016). Philosophical applications of modal logic. College Publications.
Ju, F., Grilletti, G., & Goranko, V. (2018). A logic for temporal conditionals and a solution to the sea battle puzzle. In Bezhanishvili, G., D’Agostino, G., Metcalfe, G., & Studer, T. (Eds.), Proceedings of the 12th International Conference on Advances in Modal Logic (AiML’ 2018) (pp. 407–426). College Publications.
Kamp, H. (1971). Formal Properties of ‘Now’. Theoria, 37, 227–73.
Kamp, H. (1979). Events, Instants and Temporal Reference. In Bäuerle, R., Egli, U., & Schwarze, C. (Eds.), Semantics from different points of view (pp. 376–417). De Gruyter.
Kamp, H., & Reyle, U. (1993). From discourse to logic: Introduction to modeltheoretic semantics of natural language, formal logic and discourse representation theory. Kluwer Academic Publishers.
Kamp, J. (1968). Tense logic and the theory of linear order (Doctoral dissertation UCLA). UCLA ProQuest Dissertations Publishing.
Kesten, Y., & Pnueli, A. (2002). Complete proof system for QPTL. Journal of Logic and Computation, 12(5), 701–45.
Kontchakov, R., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2007). Spatial logic + temporal logic=? In Aiello, M., Van Benthem, J., & Pratt-Hartmann, I. (Eds.), Handbook of spatial logics (pp. 497–564). Springer.
Kontchakov, R., Lutz, C., Wolter, F., & Zakharyaschev, M. (2004). Temporalising tableaux. Studia Logica, 76(1), 91–134.
Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing, 4(1), 67–95.
Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real Time Systems, 2(4), 255–299.
Kröger, F., & Merz, S. (2008). Temporal logic and state systems. Springer.
Kuhn, S. T., & Portner, P. (2002). Tense and time. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosophical logic (pp. 277–346). Springer.
Kurucz, A., Wolter, F., Zakharyaschev, M., & Gabbay, D. (2003). Multidimentional modal logics: Theory and applications. Elsevier.
Ladkin, P. (1987). The logic of time representation (Unpublished doctoral dissertation). University of California, Berkeley.
Lamport, L. (1994, March). The temporal logic of actions. ACM Transactions on Programming Languages and Systems, 16(3), 872–923.
Lindström, S., & Segerberg, K. (2007). Modal logic and philosophy. In Blackburn, P., van Benthem, J., & Wolter, F. (Eds.), Handbook of modal logic (Vol. 3, pp. 1149–1214). North-Holland.
Linsky, B., & Zalta, E. N. (1994). In defense of the simplest quantified modal logic. Philosophical Perspectives, 8, 431–458.
Lorini, E. (2013). Temporal logic and its application to normative reasoning. Journal of Applied Non-Classical Logics, 23(4), 372–399.
Ludlow, P. (2021). Descriptions. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Fall 2021 ed.). Metaphysics Research Lab, Stanford University.
Lutz, C., Wolter, F., & Zakharyaschev, M. (2008). Temporal description logics: A survey. In Demri, S.P. & Jensen, C. S. (Eds.), 2008 15th International Symposium on Representation and Reasoning (pp. 3–14). IEEE Computer Society.
Manna, Z., & Pnueli, A. (1992). The temporal logic of reactive and concurrent systems: Specifications. Springer.
Marx, M., & Reynolds, M. (1999). Undecidability of compass logic. Journal of Logic and Computation, 9(6), 897–914.
McArthur, R. P. (1976). Tense logic (1st ed., Vol. 111). D. Reidel Publishing Company.
McCall, S. (1994). A model of the universe: Space-time, probability, and decision. Oxford University Press.
McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In Meltzer, B. & Michie, D. (Eds.), Machine intelligence 4 (pp. 463–502). Edinburgh University Press.
McDermott, D. (1982). A temporal logic for reasoning about processes and plans. Cognitive Science, 6(2), April, 101–55.
Merz, S. (1992). Decidability and incompleteness results for first-order temporal logics of linear time. Journal of Applied Non-Classical Logics, 2(2), 139–56.
Meyer, U. (2013). The nature of time. Oxford University Press.
Meyer, U. (2015). Tense Logic. Philosophy Compass, 10(6), 406–19.
Montanari, A. (1996). Metric and layered temporal logic for time granularity (Doctoral dissertation, ILLC, University of Amsterdam). ILLC Dissertation Series, 1996-02.
Montanari, A., & Policriti, A. (1996). Decidability results for metric and layered temporal logics. Notre Dame Journal of Formal Logic, 37(2), 260—82.
Moszkowski, B. (1983). Reasoning about digital circuits (Doctoral dissertation, Department of Computer Science, Stanford University, Stanford, CA). Technical Report STAN-CS-83-970.
Müller, T. (Ed.). (2014). Nuel Belnap on indeterminism and free action (Vol. 2). Springer.
Nishimura, H. (1979). Is the semantics of branching structures adequate for chronological modal logics? Journal of Philosophical Logic, 8(4), 469–75.
Ohrstrom, P. (2014). What William of Ockham and Luis de Molina would have said to Nuel Belnap: A discussion of some arguments against ‘the Thin Red Line’. In Müller, T. (Ed.), Nuel Belnap on indeterminism and free action (Vol. 2, pp. 175–190). Springer.
Ohrstrom, P. (2019). A critical discussion of Prior’s philosophical and tense-logical analysis of the ideas of indeterminism and human freedom. Synthese, 196(1), 69–85.
Ohrstrom, P., & Hasle, P. (2006). Modern temporal logic: The philosophical background. In Handbook of the history of logic (Vol. 7, pp. 447–98). Elsevier.
Ohrstrom, P., & Hasle, P. (2020). Future Contingents. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Summer 2020 ed.). Metaphysics Research Lab, Stanford University.
Ohrstrom, P., & Hasle, P. F. V. (1995). Temporal logic: From ancient ideas to artificial intelligence. Springer.
Pani, A., & Bhattacharjee, G. (2001). Temporal representation and reasoning in artificial Intelligence: A review. Mathematical and Computer Modelling, 34(1–2), 55–80.
Pinto, J., & Reiter, R. (1995). Reasoning about time in the situation calculus. Annals of Mathematics and Artificial Intelligence, 14(2), 251–68.
Ploug, T., & Øhrstrøm, P. (2012). Branching time, indeterminism and tense logic. Synthese, 188(3), 367–79.
Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the Eighteenth IEEE Symposium on the Foundations of Computer Science (pp. 46–57). IEEE Computer Society.
Prior, A. N. (1957). Time and modality. Clarendon Press.
Prior, A. N. (1962). Tense logic and the continuity of time. Studia Logica, 13, 133–48.
Prior, A. N. (1967). Past, present and future. Oxford University Press.
Prior, A. N. (1968). Papers on time and tense. University of Oxford Press.
Reichenbach, H. (1947). Elements of symbolic logic. Macmillan.
Rescher, N., & Urquhart, A. (1971). Temporal logic. Springer.
Reynolds, M. (1994). Axiomatizing U and S over integer time. In Gabbay, D. & Ohlbach, H. J. (Eds.), Proceedings of the first International conference on temporal logic (pp. 117–32). Springer-Verlag.
Reynolds, M. (1996). Axiomatising first-order temporal logic: Until and Since over linear time. Studia Logica, 57(2/3), 279–302.
Reynolds, M. (2001). An axiomatization of full computation tree logic. The Journal of Symbolic Logic, 66(3), 1011–57.
Reynolds, M. (2002). Axioms for Branching Time. Journal of Logic and Computation, 12(4), 679–97.
Reynolds, M. (2003). An Axiomatization of Prior’s Ockhamist logic of historical necessity. In Balbiani, P., Suzuki, N. Y., Wolter, F., & Zakharyaschev, M. (Eds.), Proceedings of AiML 2002 (pp. 355–70).
Reynolds, M. (2005). An axiomatization of PCTL*. Information and Computation, 201(1), 72–119.
Reynolds, M. (2007). A tableau for bundled CTL*. Journal of Logic and Computation, 17(1), 117–32.
Reynolds, M. (2010). The complexity of temporal logic over the reals. Annals of Pure and Applied Logic, 161(8), 1063–96.
Reynolds, M. (2011). A tableau-based decision procedure for CTL*. Formal Aspects of Computing, 23(6), 739–79.
Reynolds, M. (2014). A Tableau for temporal logic over the reals. In Goré, R., Kooi, B., & Kurucz, A. (Eds.), Advances in modal logic (vol. 10, pp. 439–58). CSLI Publications.
Reynolds, M., & French, T. (2003). A sound and complete proof system for QPTL. In Balbiani, P., Suzuki, N. Y., Wolter, F., & Zakharyaschev, M. (Eds.), Advances In modal logic (pp. 127–48). King’s College Publications.
Röper, P. (1980). Intervals and tenses. Journal of Philosophical Logic, 9(4), 451–69.
Rumberg, A. (2016). Transition semantics for branching time. Journal of Logic, Language and Information, 25(1), 77–108.
Santelli, A. (Ed.). (2022). Ockhamism and philosophy of time. Springer.
Segerberg, K. (1970). Modal logics with linear alternative relations. Theoria, 36(3), 301–22.
Sistla, A., & Clarke, E. M. (1985). The complexity of propositional linear temporal logics. Journal of the ACM, 32(3), 733–49.
Steedman, M. (1997). Temporality. In van Benthem, J. & ter Meulen, A. (Eds.), Handbook of logic and language (pp. 895–938). Elsevier.
Stirling, C. (1992). Modal and temporal logics. In Handbook of logic in computer science (Vol. 2, Background: Computational Structures), pp. 477–563. Clarendon Press.
ter Meulen, A. (2005). Temporal reasoning in natural language. In Fisher, M. & Gabbay, D. (Eds.), Handbook of temporal logic In artificial intelligence, vol. 1 (pp. 559–86). Elsevier.
Thomason, R. (1970). Indeterminist time and truth-value gaps. Theoria, 36(3), 264–81.
Thomason, R. (1984). Combinations of tense and modality. In Gabbay, D. & Guenthner, F. (Eds.), Handbook of philosophical logic, volume II: Extensions of classical logic (pp. 135–166). Reidel.
Uckelman, S. L. (in press). Modal logic. Cambridge University Press.
Uckelman, S. L., & Uckelman, J. (2007). Modal and temporal logics for abstract space–time structures. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(3), 673–81.
van Benthem, J. (2010). Modal logic for open minds. CSLI Publications.
van Benthem, J. (1983). The logic of time – a model-theoretic investigation into the varieties of temporal ontology and temporal discourse (Vol. 156). Springer.
van Benthem, J. (1995). Temporal logic. In Gabbay, D., Hogger, C. J., & Robinson, J. A. (Eds.), Handbook of logic in artificial intelligence and logic programming (pp. 241–350). Oxford: Clarendon Press.
van Benthem, J., & Pacuit, E. (2006). The tree of knowledge in action: Towards a common perspective. In Governatori, G., Hodkinson, I. M., & Venema, Y. (Eds.), Proceedings of Advances in Modal Logic, 2006 (pp. 87–106). College Publications.
Vardi, M. Y. (2007). Automata-theoretic techniques for temporal reasoning. In Blackburn, P., Van Benthem, J., & Wolter, F. (Eds.), Handbook of modal logic (Vol. 3, pp. 971–89). Elsevier.
Venema, Y. (1990). Expressiveness and completeness of an interval tense logic. Notre Dame Journal of Formal Logic, 31(4), 529–47.
Venema, Y. (1991). A modal logic for chopping intervals. Journal of Logic and Computation, 1(4), 453–76.
Venema, Y. (1993). Completeness via Completeness: Since and Until. In de Rijke, M. (Ed.), Diamonds and defaults (pp. 279–86). Kluwer.
Venema, Y. (2001). Temporal logic. In Goble, L. (Ed.), The Blackwell Guide to Philosophical Logic (pp. 259–81). Wiley-Blackwell.
Vila, L. (1994). A survey on temporal reasoning in artificial intelligence. AI Communications, 7(1), 4–28.
Wałȩga, P. (2019). Hybrid fragments of Halpern-Shoham logic and their expressive power. Theoretical Computer Science, 797, 102–28.
Walker, A. G. (1947). Durées et instants. Revue Scientifique, 131–34.
Wölfl, S. (1999). Combinations of tense and modality for predicate logic. Journal of Philosophical Logic, 28(4), 371–98.
Wolper, P. (1985). The tableau method for temporal logic: An overview. Logique et Analyse, 110–111, 119–36.
Wolter, F., & Zakharyaschev, M. (2000). Temporalizing description logics. In Gabbay, D. & de Rijke, M. (Eds.), Frontiers of combining systems 2 (Vol. 2, pp. 379–402). Research Studies Press.
Wolter, F., & Zakharyaschev, M. (2002). Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied Logic, 118(1–2) 133–45.
Xu, M. (1988). On some U, S-tense logics. Journal of Philosophical Logic, 181–202.
Zanardo, A. (1985). A finite axiomatization of the set of strongly valid Ockamist formulas. Journal of Philosophical Logic, 14, 447–68.
Zanardo, A. (1990). Axiomatization of ‘Peircean’ branching-time logic. Studia Logica, 49(2), 183–95.
Zanardo, A. (1991). A complete deductive system for since-until branching time logic. Journal of Philosophical Logic, 20, 131–48.
Zanardo, A. (1996). Branching-time logic with quantification over branches: The point of view of modal logic. Journal of Symbolic Logic, 61(1), 1–39.
Zanardo, A. (1998). Undivided and indistinguishable histories in branching time logics. Journal of Logic, Language and Information, 7, 297–315.
Zanardo, A., Barcellan, B., & Reynolds, M. (1999). Non-definability of the class of complete bundled trees. Logic Journal of the IGPL, 7(1), 125–36.
Ohrstrom, P., & Hasle, P. (2020). Future contingents. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Summer 2020 ed.). Metaphysics Research Lab, Stanford University.