References
Allman, E. S., and Rhodes, J. A. 2008. Identifying evolutionary trees and substitution parameters for the general Markov model with invariable sites. Mathematical Biosciences, 211:18–33.
Alvaro, J. J., Lefebvre, B., Shergold, J. H., and Vizcaïno, D. 2001. The Middle–Upper Cambrian of the southern Montagne Noire. Annales de la Société Géologique du Nord (2e série), 8:205–211.
Alvaro, J. J., Ferretti, A., González-Gómez, C., Serpagli, E., Tortello, M. F., Vecoli, M., and Vizcaïno, D. 2007. A review of the Late Cambrian (Furongian) palaeogeography in the western Mediterranean region, NW Gondwana. Earth-Science Reviews, 85(1):47–81. doi: https://doi.org/10.1016/j.earscirev.2007.06.006. Aris-Brosou, S., and Yang, Z. 2002. Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18s ribosomal RNA phylogeny. Systematic Biology, 51(5):703–714.
Baele, G., and Lemey, P. 2013. Bayesian evolutionary model testing in the phylogenomics era: matching model complexity with computational efficiency. Bioinformatics, 29(16):1970–1979.
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution, 4(8):724–733. ISSN 2041-210X. doi: https://doi.org/10.1111/2041-210X.12081. Barido-Sottani, J., Aguirre-Fernández, G., Hopkins, M. J., Stadler, T., and Warnock, R. 2019. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proceedings of the Royal Society B, 286(1902): 20190685.
Barido-Sottani, J., Justison, J. A., Wright, A. M., Warnock, R. C. M., Pett, W., and Heath, T. A. 2020a. Estimating a time-calibrated phylogeny of fossil and extant taxa using RevBayes. In Scornavacca, Céline, Delsuc, Frédéric, and Galtier, Nicolas, editors, Phylogenetics in the Genomic Era, pages 5.2:1–5.2:23. No commercial publisher — Authors’ open access book. https://hal.archives-ouvertes.fr/hal-02536394. Barido-Sottani, J., van Tiel, N., Hopkins, M. J., Wright, D. F., Stadler, T., and Warnock, R. C. M. 2020b. Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates using time calibrated tree inference. Frontiers in Ecology and Evolution, 8:123. doi: https://doi.org/10.3389/fevo.2020.00183. Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C., and Dronov, A. 2009. The new chronostratigraphic classification of the ordovician system and its relations to major regional series and stages and to δ13 C chemostratigraphy. Lethaia, 42(1):97–107. doi: https://doi.org/10.1111/j.1502-3931.2008.00136.x. Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios, 3:540–560. doi: https://doi.org/10.2307/3514444. Bottjer, D. J., Davidson, E. H., Peterson, K. J., and Cameron, R. A. 2006. Paleogenomics of echinoderms. Science, 314(5801):956–960.
Bromham, L., Rambaut, A., and Harvey, P. H. 1996. Determinants of rate variation in mammalian DNA sequence evolution. Journal of Molecular Evolution, 43(6):610–621.
Bromham, L., Hua, X., Lanfear, R., and Cowman, P. F. 2015. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. The American Naturalist, 185(4):507–524.
Brusca, R. C., and Brusca, G. J. 2003. Invertebrates. Number QL 362. B78 2003. Basingstoke. Sinauer Associates, Sunderland, Massachusetts.
Chlupac, I., Havlicek, V., Kríž, J., Kukal, Z., and Storch, P. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague.
Ciampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development, 4(3):170–188. doi: https://doi.org/10.1046/j.1525-142X.2002.02001.x. Cramer, B. D., Brett, C. E., Melchin, M. J., Männik, P., Kleffner, M. A., McLaughlin, P. I., Loydell, D. K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F. R., and Saltzman, M. R. 2011. Revised correlation of Silurian provincial series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia, 44(2):185–202. doi: https://doi.org/10.1111/j.1502-3931.2010.00234.x. David, B., Lefebvre, B., Mooi, R., and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26(4): 529–555.
Drummond, A. J., and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis sampling trees. BMC Evolutionary Biology, 7:214.
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5):e88.
Drummond, A. J., and Stadler, T. 2016. Bayesian phylogenetic estimation of fossil ages. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1699):20150129.
Duchêne, D. A., Duchêne, S., Holmes, E. C., and Ho, S. Y. W. 2015. Evaluating the adequacy of molecular clock models using posterior predictive simulations. Molecular Biology and Evolution, 32(11):2986–2995.
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, book section 82, pages 82–115. Freeman, San Francisco.
Felsenstein, J. 1978. The number of evolutionary trees. Systematic Zoology, 27(1):27–33. ISSN 00397989.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6): 368–376.
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, USA, 89(16):7325–7329. doi: https://doi.org/10.1073/pnas.89.16.7325. Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology, 19(2):185–204. doi: https://doi.org/10.2307/2400876. Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20(3):320–344. doi: https://doi.org/10.2307/2401006. Foote, M. 1996b. Models of morphologic diversification, book section 62, pages 62–86. University of Chicago Press, Chicago.
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature, 398:415–417. doi: https://doi.org/10.1038/18872. Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology, 23(3):278–300.
Friedrich, W. P. 1993. Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria, 7.
Gaut, B. S., Muse, S. V., Clark, W. D., and Clegg, M. T. 1992. Relative rates of nucleotide substitution at the rbcl locus of monocotyledonous plants. Journal of Molecular Evolution, 35(4):292–303.
Gavryushkina, A., Heath, T. A., Ksepka, D. T., Stadler, T., Welch, D., and Drummond, A. J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology, 66(1):57–73.
Geyer, G., and Landing, E. 2006. Ediacaran–Cambrian depositional environments and stratigraphy of the western atlas regions. Beringeria Special Issue, 6: 47–120.
Geyer, G., and Shergold, J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes, 23(3):188–195.
Gradstein, F. M., Ogg, J. G., and Schmitz, M. 2012. The geologic time scale 2012, Volume 2. Elsevier, Amsterdam.
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology, Volume 239. Oxford University Press, Oxford.
Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2):160–174.
Heath, T. A., Huelsenbeck, J. P., and Stadler, T. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences, 111(29):E2957–E2966.
Hopkins, M. J., and Smith, A. B. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences, 112(2):3758–3763. doi: https://doi.org/10.1073/pnas.1418153112. Huelsenbeck, J. P., Larget, B., and Swofford, D. L. 2000. A compound Poisson process for relaxing the molecular clock. Genetics, 154:1879–1892.
Hughes, M., Gerber, S., and Wills, M. A. 2013. Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Sciences, 110(34):13875–13879. doi: https://doi.org/10.1073/pnas.1302642110. Jablonski, D. 2020. Macroevolutionary theory, book section 338, pages 338–368. University of Chicago Press, Chicago.
Kass, R. E., and Raftery, A. E. 1995. Bayes factors. Journal of the American Statistical Association, 90:773–795.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2):111–120.
King, B., and Beck, Robin. M. D. 2020. Tip dating supports novel resolutions of controversial relationships among early mammals. Proceedings of the Royal Society B: Biological Sciences, 287(1928):20200943. doi: https://doi.org/10.1098/rspb.2020.0943. Lefebvre, B., Guensburg, T. E., Martin, E. L., Rich, M., Elise, N., Nohejlová, M., Saleh, F., Kouraïss, K., Khadija, E. H., and David, B. 2019. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios, 52:27–36.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50(6):913–925.
Liñán, E., Perejón, A., Gozalo, R., Moreno-Eiris, E., and de Oliveira, J. T. 2004. The Cambrian system in Iberia. Cuadernos del Museo Geominero, 3: 1–63.
Lewis, L. H. 2013. Simultaneous estimation of occupancy and detection probabilities: an illustration using Cincinnatian brachiopods. Paleobiology, 39(2):193–213. ISSN 0094–8373. doi: https://doi.org/10.1666/12009. Liow, L. H., Quental, T. B., and Marshall, C. R. 2010. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Systematic Biology, 59(6):646.
Nardin, E., Lefebvre, B., Fatka, O., Nohejlová, M., Kašička, L., Šinágl, M., and Szabad, M. 2017. Evolutionary implications of a new transitional blastozoan echinoderm from the Middle Cambrian of the Czech Republic. Journal of Paleontology, 91(4):672–684. doi: https://doi.org/10.1017/jpa.2016.157. Nichols, D. 1972. The water-vascular system in living and fossil echinoderms. Palaeontology, 15:519–538.
Nowak, M. D., Smith, A. B., Simpson, C., and Zwickl, D. J. 2013. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS One, 8(6): e66245.
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P., and Nieves-Aldrey, J. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology, 53(1):47–67.
Poinar, G. O., and Mastalerz, M. 2000. Taphonomy of fossilized resins: determining the biostratinomy of amber. Acta Geologica Hispanica, 35(1): 171–182.
Posada, D., and Crandall, K. A. 1998. Modeltest: testing the model of dna substitution. Bioinformatics (Oxford, England), 14(9): 817–818.
Quental, T. B., and Marshall, C. R. 2009. Extinction during evolutionary radiations: reconciling the fossil record with molecular phylogenies. Evolution, 63(12):3158–3167.
Quental, T. B., and Marshall, C. R. 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology & Evolution, 25:434–441.
Rahman, I. A., Zamora, S., Falkingham, P. L., and Phillips, J. C. 2015. Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society B: Biological Sciences, 282(1818): 20151964.
Rahman, I. A. 2009. Making sense of carpoids. Geology Today, 25(1): 34–38.
Rahman, I. A. 2016. Fossil focus: Cinctans. Palaeontology Online, 6(4): 1–7.
Rahman, I. A., O’Shea, J., Lautenschlager, S., and Zamora, S. 2020. Potential evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63(5):689–701. ISSN 0031–0239. doi: https://doi.org/10.1111/pala.12495. Rahman, I. A., and Zamora, S. 2009. The oldest cinctan carpoid (stem-group echinodermata), and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157(2):420–432. doi: https://doi.org/10.1111/j.1096-3642.2008.00517.x. Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5):901–904. ISSN 1063–5157. doi: https://doi.org/10.1093/sysbio/syy032. Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L., and Colmenar, J. 2019. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences, 116(15):7207–7213. doi: https://doi.org/10.1073/pnas.1821123116. Sánchez-Villagra, M. R., and Williams, B. A. 1998. Levels of homoplasy in the evolution of the mammalian skeleton. Journal of Mammalian Evolution, 5(2):113–126. doi: https://doi.org/10.1023/A:1020549505177. Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19(1):101–109.
Sdzuy, K. 1993. Early cincta (carpoidea) from the Middle Cambrian of Spain. Beringia, 8:189–207.
Sheffield, S. L., and Sumrall, C. D. 2019. The phylogeny of the diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology, 93(4):740–752.
Smith, A. B., and Zamora, S. 2013. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proceedings of the Royal Society B: Biological Sciences, 270(1765):20131197.
Smith, A. B., Zamora, S., and Álvaro, J. J. 2013. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications, 4(1):1–7.
Smith, A. B. 2005. The pre-radial history of echinoderms. Geological Journal, 40(3):255–280.
Smith, A. B., and Swalla, B. J. 2009. Deciphering deuterostome phylogeny: molecular, morphological, and palaeontological perspectives. In Telford, M. J., and Littlewood, D. T. J., editors, Animal Evolution: Genomes, Fossils and Trees, pages 80–92. Oxford University Press, Oxford.
Sprinkle, J., and Collins, D. 2006. New eocrinoids from the Burgess Shale, southern British Columbia, Canada, and the Spence Shale, northern Utah, USA. Canadian Journal of Earth Sciences, 43(3):303–322. doi: https://doi.org/10.1139/e05-107. Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Harvard University, Museum of Comparative Zoology, Special Publication, Cambridge, MA, pages 1–283.
Sprinkle, J., and Kier, P. M. 1987. Phylum Echinodermata, pages 550–611. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto, California
Stadler, T. 2011. Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the National Academy of Sciences, 108(15): 6187–6192.
Stadler, T., Kühnert, D., Bonhoeffer, S., and Drummond, A. J. 2013. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proceedings of the National Academy of Sciences, 110(1):228–233.
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of echinodermata. The Paleontological Society Papers, 3:267–288.
Sumrall, C. D., and Waters, J. A. 2012. Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoa. Journal of Paleontology, 86:956–927.
Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology: DNA Sequence Analysis, 17:57–86.
Thomas, J. A., Welch, J. J., Woolfit, M., and Bromham, L. 2006. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proceedings of the National Academy of Sciences, 103(19):7366–7371.
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology, 6(4):444–450.
Valentine, J. W. et al. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology, 12(4): 684–709.
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early paleozoic gastropods. Paleobiology, 21(3):248–272. doi: https://doi.org/10.2307/2401166. Wagner, P. J. 2019. On the probabilities of branch durations and stratigraphic gaps in phylogenies of fossil taxa when rates of diversification and sampling vary over time. Paleobiology, 28(1):30–55. doi: https://doi.org/10.1017/pab.2018.35. Wagner, P. J., and Erwin, D. H. 1995. Phylogenetic patterns as tests of speciation models, book section 87, pages 87–122. Columbia University Press, New York.
Wagner, P. J., and Estabrook, G. F. 2015. The implications of stratigraphic compatibility for character integration among fossil taxa. Systematic Biology, 64(5):838–852. doi: https://doi.org/10.1093/sysbio/syv040. Wagner, P. J., and Marcot, J. D. 2010. Probabilistic phylogenetic inference in the fossil record: current and future applications, Volume 16, book section 195, pages 195–217. Paleontological Society, New Haven, CT.
Wagner, P. J., and Marcot, J. D. 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution, 4 (8):703–713. doi: https://doi.org/10.1111/2041-210X.12088. Warnock, R. C., and Wright, A. M. (2021). Understanding the tripartite approach to Bayesian divergence time estimation. Cambridge University Press.
Wright, A. M., and Hillis, D. M. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One, 9(10):e109210.
Wright, A. M., Lloyd, G. T., and Hillis, D. M. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Systematic Biology, 65(4):602–611.
Wright, D. F. 2017b. Bayesian estimation of fossil phylogenies and the evolution of Early to Middle Paleozoic crinoids (echinodermata). Journal of Paleontology, 91(4):799–814.
Wright, D. F., Ausich, W. I., Cole, S. R., Peter, M. E., and Rhenberg, E. C. 2017. Phylogenetic taxonomy and classification of the crinoidea (echinodermata). Journal of Paleontology, 91(4):829–846.
Wright, D. F., and Toom, U. 2017. New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the flexibilia (echinodermata). Palaeontology, 60(6):893–910.
Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M. H. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150–160.
Zamora, S. 2009. Equinodermos del Cámbrico medio de las Cadenas Ibéricas y de la zona Cantábrica (Norte de España). Thesis.
Zamora, S., and Álvaro, J. J. 2010. Testing for a decline in diversity prior to extinction: Languedocian (latest mid-Cambrian) distribution of cinctans (echinodermata) in the Iberian Chains, NE Spain. Palaeontology, 56(6): 1349–1368.
Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J. P., Nardin, E., and Parsley, R. 2013a. Cambrian echinoderm diversity and palaeobiogeography. Geological Society of London, Memoirs, 38(1):157–171.
Zamora, S., Rahman, I. A., and Smith, A. B. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One, 7(6):e38296.
Zamora, S., and Smith, A. B. 2008. A new Middle Cambrian stem-group echinoderm from Spain: Palaeobiological implications of a highly asymmetric cinctan. Acta Palaeontologica Polonica, 53(2):207–220.
Zamora, S., and Rahman, I. A. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology, 57(6): 1105–1119.
Zamora, S., and Rahman, I. A. 2015. Palaeobiological implications of a mass-mortality assemblage of cinctans (echinodermata) from the Cambrian of Spain. In Zamora, S., and Rábano, I., editors, Progress in Echinoderm Paleobiology, pages 203–206. Instituto Geológico y Minero de España.
Zamora, S., Rahman, I. A., and Smith, A. B. 2013b. The ontogeny of cinctans (stem-group echinodermata) as revealed by a new genus, graciacystis, from the Middle Cambrian of Spain. Palaeontology, 56(2): 399–410. doi: https://doi.org/10.1111/j.1475-4983.2012.01207.x. Zamora, S., Wright, D. F., Mooi, R., Lefebvre, B., Guensburg, T. E., Gorzelak, P., David, B., Sumrall, C. D., Cole, S. R., Hunter, A. W., Sprinkle, J., Thompson, J. R., Ewin, T. A. M., Fatka, O., Nardin, E., Reich, M., Nohejlová, M., and Rahman, I. 2020. Re-evaluating the phylogenetic position of the enigmatic Early Cambrian deuterostome yanjiahella. Nature Communications, 11(1): 1286.
Zwickl, D. J., and Holder, M. T. 2004. Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. Systematic Biology, 53(6):877–888.