Skip to main content Accessibility help
×
  • Cited by 5
  • Dirk Hovy, Università Commerciale Luigi Bocconi, Milan
Publisher:
Cambridge University Press
Online publication date:
February 2022
Print publication year:
2022
Online ISBN:
9781108960885

Book description

Text contains a wealth of information about about a wide variety of sociocultural constructs. Automated prediction methods can infer these quantities (sentiment analysis is probably the most well-known application). However, there is virtually no limit to the kinds of things we can predict from text: power, trust, misogyny, are all signaled in language. These algorithms easily scale to corpus sizes infeasible for manual analysis. Prediction algorithms have become steadily more powerful, especially with the advent of neural network methods. However, applying these techniques usually requires profound programming knowledge and machine learning expertise. As a result, many social scientists do not apply them. This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.

References

Adamson, A. S., & Smith, A. (2018). Machine learning and health care disparities in dermatology. JAMA Dermatology, 154(11), 12471248.
Alowibdi, J. S., Buy, U. A., & Yu, P. (2013). Empirical evaluation of profile characteristics for gender classification on Twitter. In 12th International Conference on Machine Learning and Applications (Volume 1) (pp. 365369).
Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica, May, 23.
Atalay, S., El Kihal, S., & Ellsaesser, F. (2019). A natural language processing approach to predicting the persuasiveness of marketing communications. SSRN 3410351.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations.
Bamman, D., O’Connor, B., & Smith, N. (2012). Censorship and deletion practices in Chinese social media. First Monday, 17(3).
Bender, E. M., & Friedman, B. (2018). Data statements for natural language processing: Toward mitigating system bias and enabling better science. Transactions of the Association for Computational Linguistics, 6, 587604. https://doi.org/10.1162/tacl_a_00041
Berg-Kirkpatrick, T., Burkett, D., & Klein, D. (2012). An empirical investigation of statistical significance in NLP. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 9951005).
Bhatia, S. (2017). Associative judgment and vector space semantics. Psychological Review, 124(1), 1.
Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain (pp. 43494357).
Chatsiou, K., & Mikhaylov, S. J. (2020). Deep learning for political science. arXiv preprint arXiv:2005.06540.
Chollet, F. (2017). Deep learning with Python. Manning.
Ciot, M., Sonderegger, M., & Ruths, D. (2013). Gender inference of Twitter users in non-english contexts. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 1821).
Coavoux, M., Narayan, S., & Cohen, S. B. (2018). Privacy-preserving neural representations of text. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 110).
Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (pp. 18). Association for Computational Linguistics. www.aclweb.org/anthology/W02-1001. http://doi.org/10.3115/1118693.1118694.
Coussement, K., & Van den Poel, D. (2008). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34(1), 313327.
De Choudhury, M., Counts, S., & Horvitz, E. J. (2013). Predicting postpartum changes in emotion and behavior via social media. In Proceedings of the Sigchi Conference on Human Factors in Computing Systems (pp. 32673276).
De Choudhury, M., Counts, S., Horvitz, E. J., & Hoff, A. (2014). Characterizing and predicting postpartum depression from shared facebook data. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 626638).
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers) (pp. 41714186).
Elazar, Y., & Goldberg, Y. (2018). Adversarial removal of demographic attributes from text data. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 1121).
Eliashberg, J., Hui, S. K., & Zhang, Z. J. (2007). From story line to box office: A new approach for green-lighting movie scripts. Management Science, 53(6), 881893.
Evans, M., McIntosh, W., Lin, J., & Cates, C. (2007). Recounting the courts? Applying automated content analysis to enhance empirical legal research. Journal of Empirical Legal Studies, 4(4), 10071039.
Fort, K., Adda, G., & Cohen, K. B. (2011). Last words: Amazon Mechanical Turk: Gold mine or coal mine? Computational Linguistics, 37(2), 413420. www.aclweb.org/anthology/J11-2010. http://doi.org/10.1162/COLI_a_00057.
Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635E3644.
Gerber, M. S. (2014). Predicting crime using twitter and kernel density estimation. Decision Support Systems, 61, 115125.
Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345420.
Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1), 1309.
Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109(1), 75.
Gonen, H., & Goldberg, Y. (2019, June). Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers)( pp. 609614). www.aclweb.org/anthology/N19-1061. http://doi.org/10.18653/v1/N19-1061.
Greene, K. T., Park, B., & Colaresi, M. (2019). Machine learning human rights and wrongs: How the successes and failures of supervised learning algorithms can inform the debate about information effects. Political Analysis, 27(2), 223230.
Harwell, D. (2018). The accent gap. Why some accents don’t work on Alexa or Google Home. The Washington Post. www.washingtonpost.com/graphics/2018/business/alexa-does-not-understand-your-accent/.
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. In 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 17351780.
Hofman, J. M., Sharma, A., & Watts, D. J. (2017). Prediction and explanation in social systems. Science, 355(6324), 486488.
Hovy, D. (2016). The enemy in your own camp: How well can we detect statistically-generated fake reviews – An adversarial study. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. (pp. 351356). http://doi.org/10.18653/v1/P16-2057
Hovy, D. (2020). Text analysis in Python for social scientists: Discovery and exploration. Cambridge University Press.
Hovy, D., Berg-Kirkpatrick, T., Vaswani, A., & Hovy, E. (2013). Learning whom to trust with MACE. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 11201130).
Hovy, D., & Søgaard, A. (2015). Tagging performance correlates with author age. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers) (pp. 483488).
Hovy, D., & Spruit, S. L. (2016). The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 591598).
Huang, H., Wen, Z., Yu, D., Ji, H., Sun, Y., Han, J., & Li, H. (2013). Resolving entity morphs in censored data. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 10831093).
Humphreys, A., & Wang, R. J.-H. (2017). Automated text analysis for consumer research. Journal of Consumer Research, 44(6), 12741306.
Jonas, H. (1984). The imperative of responsibility: Foundations of an ethics for the technological age (Original in German: Prinzip Verantwortung). University of Chicago Press.
Jørgensen, A., Hovy, D., & Søgaard, A. (2015). Challenges of studying and processing dialects in social media. In Proceedings of the Workshop on Noisy User-Generated Text (pp. 918).
Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020, July). The state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 62826293). Association for Computational Linguistics. www.aclweb.org/anthology/2020.acl-main.560. http://doi.org/10.18653/v1/2020.acl-main.560.
Kiritchenko, S., & Mohammad, S. (2018). Examining gender and race bias in two hundred sentiment analysis systems. In Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics (pp. 4353).
Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
Kozlowski, A. C., Taddy, M., & Evans, J. A. (2018). The geometry of culture: Analyzing meaning through word embeddings. arXiv preprint arXiv:1803.09288.
Kurita, K., Vyas, N., Pareek, A., Black, A. W., & Tsvetkov, Y. (2019, August). Measuring bias in contextualized word representations. In Proceedings of the First Workshop on Gender Bias in Natural Language Processing (pp. 166172). Association for Computational Linguistics. www.aclweb.org/anthology/W19-3823. http://doi.org/10.18653/v1/W19-3823.
Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on Machine Learning (pp. 11881196).
Levelt, W. J. (1993). Speaking: From intention to articulation (Vol. 1). MIT Press.
Lewis-Kraus, G. (2016). The great AI awakening. The New York Times, 14. www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html.
Li, Y., Baldwin, T., & Cohn, T. (2018). Towards robust and privacy-Preserving text representations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 2530).
Liu, W., & Ruths, D. (2013). What’s in a name? Using first names as features for gender inference in Twitter. In Analyzing Microtext: 2013 AAAI Spring Symposium (1016).
Lucy, L., Demszky, D., Bromley, P., & Jurafsky, D. (2020). Content analysis of textbooks via natural language processing: Findings on gender, race, and ethnicity in Texas U.S. history textbooks. AERA Open, 6(3), 2332858420940312.
Luong, T., Pham, H., & Manning, C. D. (2015, September). Effective approaches to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 14121421). Association for Computational Linguistics. www.aclweb.org/anthology/D15-1166. http://doi.org/10.18653/v1/D15-1166.
Manning, C. D. (2015). Computational linguistics and deep learning. Computational Linguistics, 41(4), 701707.
Marsland, S. (2011). Machine learning: An algorithmic perspective. Chapman and Hall/CRC.
Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417473.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain (pp. 31113119).
Mills, S. (2012). Gender matters: Feminist linguistic analysis. Equinox.
Minsky, M., & Papert, S. A. (1969). Perceptrons. MIT Press.
Mohammady, E., & Culotta, A. (2014). Using county demographics to infer attributes of Twitter users. In Proceedings of the Joint Workshop on Social Dynamics and Personal Attributes in Social Media (pp. 716).
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT Press.
Mosteller, F., & Wallace, D. L. (1963). Inference in an authorship problem: A comparative study of discrimination methods applied to the authorship of the disputed Federalist Papers. Journal of the American Statistical Association, 58(302), 275309.
Munro, R. (2013). NLP for all languages. Idibon Blog, May 22. http://idibon.com/nlp-for-all.
Nguyen, D., Smith, N. A., & Rosé, C. P. (2011). Author age prediction from text using linear regression. In Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (pp. 115123).
Niculae, V., Kumar, S., Boyd-Graber, J., & Danescu-Niculescu-Mizil, C. (2015). Linguistic harbingers of betrayal: A case study on an online strategy game. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 16501659).
Nozza, D., Bianchi, F., & Hovy, D. (2020). What the [MASK]? Making sense of language-specific BERT models. arXiv preprint arXiv:2003.02912.
O’Neil, C. (2016). The ethical data scientist. Slate, February 4. www.slate.com/articles/technology/future_tense/2016/02/how_to_bring_better_ethics_to_data_science.html.
Park, B., Colaresi, M., & Greene, K. (2018). Beyond a bag of words: Using pulsar to extract judgments on specific human rights at scale. Peace Economics, Peace Science and Public Policy, 24(4).
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., … Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934.
Passonneau, R. J., & Carpenter, B. (2014). The benefits of a model of annotation. Transactions of the Association for Computational Linguistics, 2, 311326. www.aclweb.org/anthology/Q14-1025. http://doi.org/10.1162/tacl_a_00185.
Paun, S., Carpenter, B., Chamberlain, J., Hovy, D., Kruschwitz, U., & Poesio, M. (2018). Comparing Bayesian models of annotation. Transactions of the Association for Computational Linguistics, 6, 571585. https://doi.org/10.1162/tacl_a_00040
Pavlick, E., Post, M., Irvine, A., Kachaev, D., & Callison-Burch, C. (2014). The language demographics of Amazon Mechanical Turk. Transactions of the Association for Computational Linguistics, 2, 7992. www.aclweb.org/anthology/Q14-1007. http://doi.org/10.1162/tacl_a_00167.
Peskov, D., Cheng, B., Elgohary, A., Barrow, J., Danescu-Niculescu-Mizil, C., & Boyd-Graber, J. (2020, July). It takes two to lie: One to lie, and one to listen. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 38113854). Association for Computational Linguistics. www.aclweb.org/anthology/2020.acl-main.353.
Peterson, A., & Spirling, A. (2018). Classification accuracy as a substantive quantity of interest: Measuring polarization in westminster systems. Political Analysis, 26(1), 120128.
Plank, B., Hovy, D., & Søgaard, A. (2014). Learning part-of-speech taggers with inter-annotator agreement loss. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics (pp. 742751).
Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural Information Processing Systems (pp. 305313).
Pomerleau, D. A. (2012). Neural network perception for mobile robot guidance (Vol. 239). Springer Science & Business Media.
Prabhakaran, V., Rambow, O., & Diab, M. (2012). Predicting overt display of power in written dialogs. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 518522).
Preotiuc-Pietro, D., Lampos, V., & Aletras, N. (2015a). An analysis of the user occupational class through Twitter content. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 17541764).
Preotiuc-Pietro, D., Volkova, S., Lampos, V., Bachrach, Y., & Aletras, N. (2015b). Studying user income through language, behaviour and affect in social media. PloS One, 10(9), e0138717.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/openaiassets/researchcovers/languageunsupervised/languageunderstandingpaper.pdf.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Rogaway, P. (2015). The moral character of cryptographic work (Technical Report). IACR-Cryptology ePrint Archive.
Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in BERTology: What we know about how BERT works. arXiv preprint arXiv:2002.12327.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.
Rosenthal, S., & McKeown, K. (2011). Age prediction in blogs: A study of style, content, and online behavior in pre-and post-social media generations. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (Volume 1) (pp. 763772).
Rudinger, R., Naradowsky, J., Leonard, B., & Van Durme, B. (2018). Gender bias in coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers) (pp. 814).
Sap, M., Card, D., Gabriel, S., Choi, Y., & Smith, N. A. (2019, July). The risk of racial bias in hate speech detection. In Proceedings of the 57th Conference of the Association for Computational Linguistics (pp. 16681678). Association for Computational Linguistics. www.aclweb.org/anthology/P19-1163.
Sap, M., Gabriel, S., Qin, L., Jurafsky, D., Smith, N. A., & Choi, Y. (2020, July). Social bias frames: Reasoning about social and power implications of language. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 54775490). Association for Computational Linguistics. www.aclweb.org/anthology/2020.acl-main.486.
Schnoebelen, T. (2013). The weirdest languages. Idibon Blog, June 21. http://idibon.com/the-weirdest-languages.
Shah, D. S., Schwartz, H. A., & Hovy, D. (2020, July). Predictive biases in natural language processing models: A conceptual framework and overview. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 52485264). Association for Computational Linguistics. www.aclweb.org/anthology/2020.acl-main.468. http://doi.org/10.18653/v1/2020.acl-main.468.
Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289310.
Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. (2008, October). Cheap and fast – but is it good? Evaluating non-expert annotations for natural language tasks. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing (pp. 254263). Association for Computational Linguistics. www.aclweb.org/anthology/D08-1027.
Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., … Wang, J. (2019). Release strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203.
Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 1121.
Strubell, E., Ganesh, A., & McCallum, A. (2019, July). Energy and policy considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 36453650). Association for Computational Linguistics. www.aclweb.org/anthology/P19-1355. http://doi.org/10.18653/v1/P19-1355.
Sunstein, C. R. (2004). Precautions against what? The availability heuristic and cross-cultural risk perceptions. University of Chicago John M. Olin Law & Economics Working Paper, No. 220, 422.
Tan, Y. C., & Celis, L. E. (2019). Assessing social and intersectional biases in contextualized word representations. In 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain (pp. 1323013241).
Tatman, R. (2017). Gender and dialect bias in YouTube’s automatic captions. In Proceedings of the First ACL Workshop on Ethics in Natural Language Processing (pp. 5359).
Tetreault, J., Burstein, J., & Leacock, C. (2015). Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications. Association for Computational Linguistics. http://aclweb.org/anthology/W15-0600
Tirunillai, S., & Tellis, G. J. (2012). Does chatter really matter? Dynamics of user-generated content and stock performance. Marketing Science, 31(2), 198215.
Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5(2), 207232.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. In 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain (pp. 59986008).
Vicinanza, P., Goldberg, A., & Srivastava, S. (2020). Who sees the future? A deep learning language model demonstrates the vision advantage of being small. https://doi.org/10.31235/osf.io/j24pw
Volkova, S., Bachrach, Y., Armstrong, M., & Sharma, V. (2015, January). Inferring latent user properties from texts published in social media (demo). In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence (pp. 42964297).
Volkova, S., Coppersmith, G., & Van Durme, B. (2014). Inferring user political preferences from streaming communications. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (pp. 186196).
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., & Dean, J. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 11001122.
Yatskar, M., Zettlemoyer, L., & Farhadi, A. (2016). Situation recognition: Visual semantic role labeling for image understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 55345542).
Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K.-W. (2017). Men also like shopping: Reducing gender bias amplification using corpus-level constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 29792989).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.