Skip to main content
×
×
Home
  • Access
  • Print publication year: 1973
  • Online publication date: January 2010

Appendix B - Spherically symmetric solutions and Birkhoff's theorem

    • Send chapter to Kindle

      To send this chapter to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats
      ×
      Send chapter to Dropbox

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

      Available formats
      ×
      Send chapter to Google Drive

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

      Available formats
      ×
Summary

We wish to consider Einstein's equations in the case of a spherically symmetric space–time. One might regard the essential feature of a spherically symmetric space–time as the existence of a world-line ℒ such that the space–time is spherically symmetric about ℒ. Then all points on each spacelike two-sphere d centred on any point p of ℒ, defined by going a constant distance d along all geodesies through p orthogonal to ℒ, are equivalent. If one permutes directions at p by use of the orthogonal group SO(3) leaving ℒ invariant, the space–time is, by definition, unchanged, and the corresponding points of d are mapped into themselves; so the space–time admits the group SO(3) as a group of isometries, with the orbits of the group the spheres d. (There could be particular values of d such that the surface d was just a point p′; then p′ would be another centre of symmetry. There can be at most two points (p′ and p itself) related in this way.)

However, there might not exist a world-line like ℒ in some of the space–times one would wish to regard as spherically symmetric. In the Schwarzschild and Reissner–Nordström solutions, for example, space–time is singular at the points for which r = 0, which might otherwise have been centres of symmetry. We shall therefore take the existence of the group SO(3) of isometries acting on two-surfaces like d as the characteristic feature of a spherically symmetric space–time. Thus we shall say that space–time is spherically symmetric if it admits the group SO(3) as a group of isometries, with the group orbits spacelike two-surfaces.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

The Large Scale Structure of Space-Time
  • Online ISBN: 9780511524646
  • Book DOI: https://doi.org/10.1017/CBO9780511524646
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×