Skip to main content
×
×
Home
The Theory and Applications of Instanton Calculations
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    The Theory and Applications of Instanton Calculations
    • Online ISBN: 9781316658741
    • Book DOI: https://doi.org/10.1017/9781316658741
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

Instantons, or pseudoparticles, are solutions to the equations of motion in classical field theories on a Euclidean spacetime. Instantons are found everywhere in quantum theories as they have many applications in quantum tunnelling. Diverse physical phenomena may be described through quantum tunnelling, for example: the Josephson effect, the decay of meta-stable nuclear states, band formation in tight binding models of crystalline solids, the structure of the gauge theory vacuum, confinement in 2+1 dimensions, and the decay of superheated or supercooled phases. Drawing inspiration from Sidney Coleman's Erice lectures, this volume provides an accessible, detailed introduction to instanton methods, with many applications, making it a valuable resource for graduate students in many areas of physics, from condensed matter, particle and nuclear physics, to string theory.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
Bibliography
[1] S. A., Abel, C.-S., Chu, J., Jaeckel and V. V., Khoze. “SUSY breaking by a metastable ground state: Why the early universe preferred the nonsupersymmetric vacuumJHEP, 01 (2007), p. 089. doi: 10.1088/1126-6708/ 2007/01/089. arXiv: hep-th/0610334 [hep-th].
[2] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).
[3] A. A., Abrikosov. “On the magnetic properties of superconductors of the second groupSov. Phys. JETP, 5 (1957). [Zh. Eksp. Teor. Fiz.32,1442(1957)], pp. 1174– 1182.
[4] I. K., Affleck and N. S., Manton. “Monopole pair production in a magnetic fieldNucl. Phys., B194 (1982), pp. 38–64. doi: 10.1016/0550-3213(82)90511-9.
[5] A., Altland and B. D., Simons. Condensed Matter Field Theory (Cambridge University Press, 2010).
[6] P. W., Anderson. “An approximate quantum theory of the antiferromagnetic ground statePhys. Rev., 86 (5 June 1952), pp. 694–701. doi: 10.1103/PhysRev. 86.694. url: 10.1103/PhysRev.86.694.
[7] N. W., Ashcroft and N. D., Mermin. Solid State Physics. HRW International Editions (Holt, Rinehart and Winston, 1976).
[8] M. F., Atiyah and I. M., Singer. “The index of elliptic operators on compact manifoldsBull. Am. Math. Soc., 69 (1969), pp. 422–433. doi: 10.1090/S0002- 9904-1963-10957-X.
[9] L., Balents. “Spin liquids in frustrated magnetsNature, 464.7286 (Mar. 2010), pp. 199–208. doi: 10.1038/nature08917.
[10] A., Banyaga and D., Hurtubise. Lectures on Morse Homology. Texts in the Mathematical Sciences (Springer, 2013).
[11] A., Barone. Superconductive Particle Detectors: Advances in the Physics of Condensed Matter (World Scientific Pub. Co. Inc., 1987).
[12] A. A., Belavin and A. M., Polyakov. “Quantum fluctuations of pseudoparticlesNucl. Phys. B123 (1977), pp. 429–444. doi: 10.1016/0550-3213(77)90175-4.
[13] F. A., Berezin. “The method of second quantizationPure Appl. Phys., 24 (1966), pp. 1–228.
[14] H., Bethe. “On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chainZ. Phys., 71 (1931), pp. 205–226. doi: 10.1007/BF01341708.
[15] K., Binder and A. P., Young. “Spin glasses: Experimental facts, theoretical concepts, and open questionsRev. Mod. Phys., 58 (4 Oct. 1986), pp. 801– 976. doi: 10.1103/RevModPhys.58.801.
[16] M., Blasone and P., Jizba. “Nambu–Goldstone dynamics and generalized coherentstate functional integralsJournal of Physics A: Mathematical and Theoretical, 45.24 (2012), p. 244009.
[17] E. B., Bogomolny. “Stability of classical solutionsSov. J. Nucl. Phys., 24 (1976) [Yad. Fiz.24,861(1976)], p. 449.
[18] R., Bott. “An application of the Morse theory to the topology of Liegroups.” English. Bull. Soc. Math. Fr., 84 (1956), pp. 251–281. issn: 0037–9484.
[19] R., Bott. “Morse theory indomitable”. English. Publications Mathématiques de l'IHÉS, 68 (1988), pp. 99–114. url: http://eudml.org/doc/104046.
[20] H.-B., Braun and D., Loss. “Chiral quantum spin solitonsJournal of Applied Physics, 79.8 (1996), pp. 6107–6109. doi: 10.1063/1.362102.
[21] E., Brézin, J. C. Le, Guillou and J., Zinn-Justin, Phys. Rev. D15 (1977), 1544.
[22] L., Brillouin. “La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successivesComptes Rendus de líAcadémie des Sciences, 183 (Oct. 1926), pp. 24–26.
[23] C. G., Callan Jr. and S. R., Coleman. “The fate of the false vacuum. 2. First quantum correctionsPhys. Rev., D16 (1977), pp. 1762–1768. doi: 10.1103/ PhysRevD.16.1762.
[24] S., Chadha and P. D., VecchiaZeta function regularization of the quantum fluctuations around the Yang–Mills pseudoparticlePhys. Lett., B72 (1977), pp. 103–108. doi: 10.1016/0370-2693(77)90073-9.
[25] W., Chen, K., Hida and B. C., Sanctuary. “Ground-state phase diagram of S = 1 XXZ chains with uniaxial single-ion-type anisotropyPhys. Rev. B, 67 (10 Mar. 2003), p. 104401. doi: 10.1103/PhysRevB.67.104401.
[26] Y., Choquet-Bruhat, C., DeWitt-Morette and M., Dillard-Bleick. Analysis, Manifolds, and Physics. Analysis, Manifolds, and Physics pt. 1 (North-Holland Publishing Company, 1982).
[27] E. M., Chudnovsky and L., Gunther. “Quantum theory of nucleation in ferromagnetsPhys. Rev. B, 37 (16 June 1988), pp. 9455–9459. doi: 10.1103/ PhysRevB.37.9455.
[28] E. M., Chudnovsky and L., Gunther. “Quantum tunneling of magnetization in small ferromagnetic particlesPhys. Rev. Lett., 60 (8 Feb. 1988), pp. 661– 664. doi: 10.1103/PhysRevLett.60.661.
[29] E. M., Chudnovsky and J., Tejada. Lectures on Magnetism. Lectures on Magnetism: With 128 Problems (Rinton Press, 2006).
[30] E. M., Chudnovsky, J., Tejada, C., Calero and F., Macia. Problem Solutions to Lectures on Magnetism by Chudnovsky and Tejada (Rinton Press, 2007).
[31] S., Coleman. Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, 1988).
[32] S. R., Coleman. “The fate of the false vacuum. 1. Semiclassical theoryPhys. Rev., D15 (1977). [Erratum: Phys. Rev.D16,1248(1977)], pp. 2929–2936. doi: 10.1103/ PhysRevD.15.2929, doi: 10.1103/PhysRevD.16.1248.
[33] S. R., Coleman and F. D., Luccia. “Gravitational effects on and of vacuum decayPhys. Rev., D21 (1980), p. 3305. doi: 10.1103/PhysRevD.21.3305.
[34] S. R., Coleman, V., Glaser and A., Martin. “Action minima among solutions to a class of Euclidean scalar field equationsCommun. Math. Phys., 58 (1978), p. 211. doi: 10.1007/BF01609421.
[35] J. C., Collins and D. E., Soper. “Large order expansion in perturbation theoryAnnals Phys., 112 (1978), pp. 209–234. doi: 10.1016/0003-4916(78)90084-2.
[36] R. F., Dashen, B., Hasslacher and A., Neveu. “Nonperturbative methods and extended hadron models in field theory. 1. Semiclassical functional methodsPhys. Rev., D10 (1974), p. 4114. doi: 10.1103/PhysRevD.10.4114.
[37] P. J., Davis. Circulant Matrices. Pure and Applied Mathematics (Wiley, 1979).
[38] J. von, Delft and C. L., Henley. “Destructive quantum interference in spin tunnelling problemsPhys. Rev. Lett., 69 (22 Nov. 1992), pp. 3236– 3239. doi: 10.1103/ PhysRevLett.69.3236.
[39] F., Devreux and J. P., Boucher. “Solitons in Ising-like quantum spin chains in a magnetic field: a second quantization approachJ. Phys. France, 48.10 (1987), pp. 1663–1670. doi: 10.1051/jphys:0198700480100166300.
[40] P. A. M., Dirac. “The Lagrangian in quantum mechanicsPhys. Z. Sowjetunion, 3 (1933), pp. 64–72.
[41] A. J., Dolgert, S. J. Di, Bartolo and A. T., Dorsey. “Superheating fields of superconductors: Asymptotic analysis and numerical resultsPhys. Rev. B, 53 (9 Mar. 1996), pp. 5650–5660. doi: 10.1103/PhysRevB.53.5650.
[42] T., Eguchi, P. B., Gilkey and A. J., Hanson. “Gravitation, gauge theories and differential geometryPhys. Rept., 66 (1980), p. 213. doi: 10.1016/0370- 1573(80)90130-1.
[43] M., Enz and R., Schilling. “Magnetic field dependence of the tunnelling splitting of quantum spinsJournal of Physics C: Solid State Physics, 19.30 (1986), p. L711.
[44] L. D., Faddeev and V. N., Popov. “Feynman diagrams for the Yang–Mills fieldPhys. Lett., 25B (1967), pp. 29–30. doi: 10.1016/0370-2693(67)90067-6.
[45] R. P., Feynman. “Space-time approach to nonrelativistic quantum mechanicsRev. Mod. Phys., 20 (1948), pp. 367–387. doi: 10.1103/RevModPhys.20.367.
[46] R. P., Feynman and A. R., Hibbs. Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics (McGraw-Hill, 1965).
[47] W., Fischler, V., Kaplunovsky, C., Krishnan, L., Mannelli and M., Torres. “Metastable supersymmetry breaking in a cooling universeJHEP, 03 (2007), p. 107. doi: 10.1088/1126-6708/2007/03/107. arXiv: hep-th/0611018 [hep-th].
[48] E., Fradkin. Field Theories of Condensed Matter Physics (Cambridge University Press, 2013).
[49] E., Fradkin and M., Stone. “Topological terms in one- and twodimensional quantum Heisenberg antiferromagnetsPhys. Rev. B, 38 (10 Oct. 1988), pp. 7215–7218. doi: 10.1103/PhysRevB.38.7215.
[50] K., Fujikawa. “Path integral measure for gauge invariant fermion theoriesPhys. Rev. Lett., 42 (1979), pp. 1195–1198. doi: 10.1103/PhysRevLett.42.1195.
[51] D. B., Fuks. “Spheres, homotopy groups of the”. In Encyclopedia of Mathematics (2001).
[52] D. A., Garanin. “Spin tunnelling: a perturbative approachJ. Phys. A-Math. Gen., 24.2 (1991), p. L61.
[53] A., Garg and G.-H., Kim. “Macroscopic magnetization tunneling and coherence: Calculation of tunneling-rate prefactorsPhys. Rev. B, 45 (22 June 1992), pp. 12921–12929. doi: 10.1103/PhysRevB.45.12921.
[54] H., Georgi and S. L., Glashow. “Unified weak and electromagnetic interactions without neutral currentsPhys. Rev. Lett., 28 (1972), p. 1494. doi: 10.1103/ PhysRevLett.28.1494.
[55] J., Glimm and A., Jaffe. Quantum Physics: A Functional Integral Point of View (Springer 2012). doi: 10.1007/BF02812722.
[56] J., Goldstone. “Field theories with superconductor solutionsNuovo Cim., 19 (1961), pp. 154–164. doi: 10.1007/BF02812722.
[57] D. J., Gross and F., Wilczek. “Ultraviolet behavior of nonabelian gauge theoriesPhys. Rev. Lett., 30 (1973), pp. 1343–1346. doi: 10.1103/PhysRevLett.30.1343.
[58] D., Haldane. “Large-D, and intermediate-D states in an S =2 quantum spin chain with on-site and XXZ anisotropiesPhys. Soc. Jn., 80.4 (2011), p. 043001. doi: 10.1143/JPSJ.80.043001.
[59] F. D. M., Haldane. “Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel statePhys. Rev. Lett., 50 (15 Apr. 1983), pp. 1153–1156. doi: 10.1103/ PhysRevLett.50.1153.
[60] S. W., Hawking and G. F. R., Ellis. The Large Scale Structure of Space-Time. (Cambridge University Press, 2011). doi: 10.1017/CBO9780511524646.
[61] P. W., Higgs. “Broken symmetries and the masses of gauge bosonsPhys. Rev. Lett., 13 (1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.
[62] K., Hori, S., Katz, A., Klemm et al. Mirror Symmetry. Vol. 1. Clay Mathematics Monographs (AMS, 2003). url: www.claymath.org/library/monographs/ cmim01.pdf.
[63] L., Hulthén. “Uber has Austauschproblem eines KristallsArkiv Mat. Astron. Fysik, 26A (1938), pp. 1–10.
[64] K. Jain, Rohit. Supersymmetric Schrodinger operators with applications to Morse theory. 2017. arXiv: 1703.06943v2.
[65] A., Jevicki. “Treatment of zero frequency modes in perturbation expansion about classical field configurationsNucl. Phys., B117 (1976), pp. 365–376. doi: 10.1016/0550-3213(76)90403-X.
[66] B., Julia and A., Zee. “Poles with both magnetic and electric charges in nonabelian gauge theoryPhys. Rev., D11 (1975), pp. 2227–2232. doi: 10.1103/PhysRevD. 11.2227.
[67] S., Kachru, R., Kallosh, A., Linde and S. P., Trivedi. “De Sitter vacua in string theoryPhys. Rev., D68 (2003), p. 046005. doi: 10.1103/PhysRevD.68.046005. arXiv: hep-th/0301240[hep-th].
[68] A., Khare and M. B., Paranjape. “Suppression of quantum tunneling for all spins for easy-axis systemsPhys. Rev. B, 83 (17 May 2011), p. 172401. doi: 10.1103/ PhysRevB.83.172401.
[69] T. W. B., Kibble. “Some implications of a cosmological phase transitionPhys. Rept., 67 (1980), p. 183. doi: 10.1016/0370-1573(80)90091-5.
[70] T. W. B., Kibble. “Topology of cosmic domains and stringsJ. Phys., A9 (1976), pp. 1387–1398. doi: 10.1088/0305-4470/9/8/029.
[71] G.-H., Kim. “Level splittings in exchange-biased spin tunnelingPhys. Rev. B, 67 (2 Jan. 2003), p. 024421. doi: 10.1103/PhysRevB.67.024421.
[72] G.-H., Kim. “Tunneling in a single-molecule magnet via anisotropic exchange interactionsPhys. Rev. B, 68 (14 Oct. 2003), p. 144423. doi: 10.1103/PhysRevB. 68.144423.
[73] A., Kitaev. “Anyons in an exactly solved model and beyondAnn. Phys., 321.1 (2006), pp. 2–111. doi: 10.1016/j.aop.2005.10.005.
[74] J. A., Kjäll, M., Zalatel, R., Mong, J., Bardarson and F., Pollmann. “Phase diagram of the anisotropic spin-2 XXZ model: infinite-system density matrix renormalization group studyPhys. Rev. B, 87 (23 June 2013), p. 235106. doi: 10.1103/ PhysRevB.87.235106.
[75] J. R., Klauder. “Path integrals and stationary-phase approximationsPhys. Rev. D, 19 (8 Apr. 1979), pp. 2349–2356. doi: 10.1103/PhysRevD.19.2349.
[76] H., Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Edition (World Scientific Publishing Co., 2009). doi: 10.1142/7305.
[77] H. A., Kramers. “Wellenmechanik und halbzahlige QuantisierungZ. Phys., 39 (Oct. 1926), pp. 828–840. doi: 10.1007/BF01451751.
[78] H. A., Kramers, “Théorie générale de la rotation paramagnétique dans les cristauxProc. Acad. Sci. Amsterdam, 33 (1930), p. 959.
[79] B., Kumar, M. B., Paranjape and U. A., Yajnik. “Fate of the false monopoles: induced vacuum decayPhys. Rev., D82 (2010), p. 025022. doi: 10.1103/Phys- RevD.82.025022. arXiv: 1006.0693[hep-th].
[80] B., Kumar and U., Yajnik. “Graceful exit via monopoles in a theory with OíRaifeartaigh type supersymmetry breakingNucl. Phys., B831 (2010), pp. 162–177. doi: 10.1016/j.nuclphysb.2010.01.011. arXiv: 0908.3949[hep-th].
[81] B., Kumar and U. A., Yajnik. “Stability of false vacuum in supersymmetric theories with cosmic stringsPhys. Rev., D79 (2009), p. 065001. doi: 10.1103/PhysRevD. 79.065001. arXiv: 0807.3254[hep-th].
[82] Laurascudder. Baryon Decuplet ó Wikipedia, The Free Encyclopedia. 2007.
[83] Laurascudder. Baryon Octet ó Wikipedia, The Free Encyclopedia. 2007.
[84] Laurascudder. Meson Octet ó Wikipedia, The Free Encyclopedia. 2007.
[85] B.-H., Lee, W., Lee, R., MacKenzie et al. “Tunneling decay of false vorticesPhys. Rev., D88 (2013), p. 085031. doi: 10.1103/PhysRevD.88.085031. arXiv: 1308. 3501[hep-th].
[86] A. J., Leggett. “A theoretical description of the new phases of liquid 3HeRev. Mod. Phys., 47 (2 Apr. 1975), pp. 331–414. doi: 10.1103/RevModPhys.47.331.
[87] E. H., Lieb. “The classical limit of quantum spin systemsComm. Math. Phys., 31.4 (1973), pp. 327–340. url: http://projecteuclid.org/euclid.cmp/1103859040.
[88] D., Loss, D. P., DiVincenzo and G., Grinstein. “Suppression of tunneling by interference in half-integer-spin particlesPhys. Rev. Lett., 69 (22 Nov. 1992), pp. 3232–3235. doi: 10.1103/PhysRevLett.69.3232.
[89] Y., Matsumoto. An Introduction to Morse Theory. Trans. Kiki Hudson and Masahico Saito (American Mathematical Society, 2002).
[90] F., Meier, J., Levy and D., Loss. “Quantum computing with antiferromagnetic spin clustersPhys. Rev. B, 68 (13 Oct. 2003), p. 134417. doi: 10.1103/PhysRevB. 68.134417.
[91] F., Meier and D., Loss. “Electron and nuclear spin dynamics in antiferromagnetic molecular ringsPhys. Rev. Lett., 86 (23 June 2001), pp. 5373–5376. doi: 10. 1103/PhysRevLett.86.5373.
[92] F., Meier and D., Loss. “Thermodynamics and spin-tunneling dynamics in ferric wheels with excess spinPhys. Rev. B, 64 (22 Nov. 2001), p. 224411. doi: 10. 1103/PhysRevB.64.224411.
[93] H.-J., Mikeska and M., Steiner. “Solitary excitations in one-dimensional magnetsAdv. Phys., 40.3 (1991), pp. 191–356. doi: 10.1080/00018739100101492.
[94] J., Milnor. Morse Theory (AM-51). Annals of Mathematics Studies (Princeton University Press, 2016).
[95] S. E., Nagler, W. J. L., Buyers, R. L., Armstrong and B., Briat. “Propagating domain walls in CsCoBr3Phys. Rev. Lett., 49 (8 Aug. 1982), pp. 590–592. doi: 10.1103/ PhysRevLett.49.590.
[96] H. B., Nielsen and P., Olesen. “Vortex line models for dual stringsNucl. Phys. B, 61 (1973), pp. 45–61. doi: 10.1016/0550-3213(73)90350-7.
[97] S. P., Novikov. “The Hamiltonian formalism and a many valued analog of Morse theoryUsp. Mat. Nauk, 37N5.5 (1982). [Russ. Math. Surveys(1982),37(5):1], pp. 3–49. doi: 10.1070/RM1982v037n05ABEH004020.
[98] F. R., Ore Jr. “Quantum field theory about a Yang–Mills pseudoparticlePhys. Rev. D, 15 (1977), p. 470. doi: 10.1103/PhysRevD.15.470.
[99] S. A., Owerre and M. B., Paranjape. “Macroscopic quantum spin tunneling with two interacting spinsPhys. Rev. B, 88 (22 Dec. 2013), p. 220403. doi: 10.1103/ PhysRevB.88.220403.
[100] A., Perelomov. Generalized Coherent States and their Applications (Springer- Verlag New York Inc., Jan. 1986).
[101] M. E., Peskin and D. V., Schroeder. An Introduction to Quantum Field Theory (Addison-Wesley, 1995).
[102] H. D., Politzer. “Reliable perturbative results for strong interactions?Phys. Rev. Lett., 30 (26 June 1973), pp. 1346–1349. doi: 10.1103/PhysRevLett.30.1346.
[103] A. M., Polyakov. “Quark confinement and topology of gauge groupsNucl. Phys. B, 120 (1977), pp. 429–458. doi: 10.1016/0550-3213(77)90086-4.
[104] M. K., Prasad and C. M., Sommerfield. “An exact classical solution for the ít Hooft monopole and the Julia-Zee dyonPhys. Rev. Lett., 35 (1975), pp. 760–762. doi: 10.1103/PhysRevLett.35.760.
[105] K., Pretzl. “Superconducting granule detectorsJ. Low Temp. Phys., 93.3 (1993), pp. 439–448. issn: 1573–7357. doi: 10.1007/BF00693458.
[106] J. M., Radcliffe. “Some properties of coherent spin statesJ. Phys. A: General Physics, 4.3 (1971), p. 313. doi: 10.1088/0305-4470/4/3/009.
[107] M., Reed and B., Simon. I: Functional Analysis. Methods of Modern Mathematical Physics (Elsevier Science, 1981).
[108] H. J., Schulz. “Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum numberPhys. Rev. B, 34 (9 Nov. 1986), pp. 6372– 6385. doi: 10.1103/PhysRevB.34.6372.
[109] J., Schwinger. “On gauge invariance and vacuum polarizationPhys. Rev., 82 (5 June 1951), pp. 664–679. doi: 10.1103/PhysRev.82.664.
[110] J., Simon, W., Bakr and R., Ma. “Quantum simulation of antiferromagnetic spin chains in an optical latticeNature, 472.7343 (Apr. 2011), pp. 307–312. doi: 10. 1038/nature09994.
[111] P. J., Steinhardt. “Monopole dissociation in the early universePhys. Rev. D, 24 (1981), p. 842. doi: 10.1103/PhysRevD.24.842.
[112] G. 't, Hooft. “Computation of the quantum effects due to a four-dimensional psuedoparticlePhys. Rev. D, 14 (12 Dec. 1976), pp. 3432–3450. doi: 10.1103/ PhysRevD.14.3432.
[113] J., Ummethum, J., Nehrkorn, S., Mukherjee et al. “Discrete antiferromagnetic spinwave excitations in the giant ferric wheel Fe18Phys. Rev. B, 86 (10 Sept. 2012), p. 104403. doi: 10.1103/PhysRevB.86.104403.
[114] J. H. Van, Vleck. “On sigma-type doubling and electron spin in the spectra of diatomic moleculesPhys. Rev., 33 (1929), pp. 467–506. doi: 10.1103/PhysRev. 33.467.
[115] J., Villain. “Propagative spin relaxation in the Ising-like antiferromagnetic linear chainPhysica B+C, 79.1 (1975), pp. 1–12. issn: 0378-4363. doi: 10.1016/0378- 4363(75)90101-1.
[116] O., Waldmann, C., Dobe, H., Güdel and H., Mutka. “Quantum dynamics of the Néel vector in the antiferromagnetic molecular wheel CsFe8Phys. Rev. B, 74 (5 Aug. 2006), p. 054429. doi: 10.1103/PhysRevB.74.054429.
[117] S., Weinberg. “Dynamical approach to current algebraPhys. Rev. Lett., 18 (1967), pp. 188–191. doi: 10.1103/PhysRevLett.18.188.
[118] S., Weinberg. “The U(1) problemPhys. Rev. D, 11 (1975), pp. 3583–3593. doi: 10.1103/PhysRevD.11.3583.
[119] G., Wentzel. “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der WellenmechanikZ. Phys., 38 (June 1926), pp. 518–529. doi: 10.1007/ BF01397171.
[120] J., Wess and B., Zumino. “Consequences of anomalous Ward identitiesPhys. Lett. B, 37 (1971), pp. 95–97. doi: 10.1016/0370-2693(71)90582-X.
[121] N., Wiener. “Differential spaceJ. Math. and Phys., 2 (1923), pp. 132–174.
[122] E., Witten. “Baryons in the 1/n ExpansionNucl. Phys. B, 160 (1979), pp. 57– 115. doi: 10.1016/0550-3213(79)90232-3.
[123] E., Witten. “Constraints on supersymmetry breakingNucl. Phys. B, 202 (1982), p. 253. doi: 10.1016/0550-3213(82)90071-2.
[124] E., Witten. “Dynamical breaking of supersymmetryNucl. Phys. B, 188 (1981), p. 513. doi: 10.1016/0550-3213(81)90006-7.
[125] E., Witten. “Supersymmetry and Morse theoryJ. Diff. Geom., 17.4 (1982), pp. 661–692.
[126] U. A., Yajnik. “Phase transitions induced by cosmic stringsPhys. Rev. D, 34 (1986), pp. 1237–1240. doi: 10.1103/PhysRevD.34.1237.
[127] W.-M., Zhang, D. H., Feng and R., Gilmore. “Coherent states: Theory and some applicationsRev. Mod. Phys., 62 (4 Oct. 1990), pp. 867–927. doi: 10.1103/ RevModPhys.62.867.
[128] J., Zinn-Justin. “Perturbation series at large orders in quantum mechanics and field theories: Application to the problem of resummationPhysics Reports, 70.2 (1981), pp. 109–167. issn: 0370-1573. doi: 10.1016/0370-1573(81)90016-8.
[129] W. H., Zurek. “Cosmic strings in laboratory superfluids and the topological remnants of other phase transitionsActa Phys. Pol. B, 24 (1993), pp. 1301–1311.
[130] W. H., Zurek. “Cosmological experiments in superfluid helium?Nature 317 (1985), pp. 505–508. doi: 10.1038/317505a0.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 685 *
Loading metrics...

Book summary page views

Total views: 2151 *
Loading metrics...

* Views captured on Cambridge Core between 4th November 2017 - 23rd May 2018. This data will be updated every 24 hours.