Skip to main content Accessibility help
×
Home
The Theory and Applications of Instanton Calculations
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Instantons, or pseudoparticles, are solutions to the equations of motion in classical field theories on a Euclidean spacetime. Instantons are found everywhere in quantum theories as they have many applications in quantum tunnelling. Diverse physical phenomena may be described through quantum tunnelling, for example: the Josephson effect, the decay of meta-stable nuclear states, band formation in tight binding models of crystalline solids, the structure of the gauge theory vacuum, confinement in 2+1 dimensions, and the decay of superheated or supercooled phases. Drawing inspiration from Sidney Coleman's Erice lectures, this volume provides an accessible, detailed introduction to instanton methods, with many applications, making it a valuable resource for graduate students in many areas of physics, from condensed matter, particle and nuclear physics, to string theory.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

  • 6 - Decay of the False Vacuum
    pp 71-110
Bibliography
[1] S. A., Abel, C.-S., Chu, J., Jaeckel and V. V., Khoze. “SUSY breaking by a metastable ground state: Why the early universe preferred the nonsupersymmetric vacuumJHEP, 01 (2007), p. 089. doi: 10.1088/1126-6708/ 2007/01/089. arXiv: hep-th/0610334 [hep-th].
[2] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).
[3] A. A., Abrikosov. “On the magnetic properties of superconductors of the second groupSov. Phys. JETP, 5 (1957). [Zh. Eksp. Teor. Fiz.32,1442(1957)], pp. 1174– 1182.
[4] I. K., Affleck and N. S., Manton. “Monopole pair production in a magnetic fieldNucl. Phys., B194 (1982), pp. 38–64. doi: 10.1016/0550-3213(82)90511-9.
[5] A., Altland and B. D., Simons. Condensed Matter Field Theory (Cambridge University Press, 2010).
[6] P. W., Anderson. “An approximate quantum theory of the antiferromagnetic ground statePhys. Rev., 86 (5 June 1952), pp. 694–701. doi: 10.1103/PhysRev. 86.694. url: 10.1103/PhysRev.86.694.
[7] N. W., Ashcroft and N. D., Mermin. Solid State Physics. HRW International Editions (Holt, Rinehart and Winston, 1976).
[8] M. F., Atiyah and I. M., Singer. “The index of elliptic operators on compact manifoldsBull. Am. Math. Soc., 69 (1969), pp. 422–433. doi: 10.1090/S0002- 9904-1963-10957-X.
[9] L., Balents. “Spin liquids in frustrated magnetsNature, 464.7286 (Mar. 2010), pp. 199–208. doi: 10.1038/nature08917.
[10] A., Banyaga and D., Hurtubise. Lectures on Morse Homology. Texts in the Mathematical Sciences (Springer, 2013).
[11] A., Barone. Superconductive Particle Detectors: Advances in the Physics of Condensed Matter (World Scientific Pub. Co. Inc., 1987).
[12] A. A., Belavin and A. M., Polyakov. “Quantum fluctuations of pseudoparticlesNucl. Phys. B123 (1977), pp. 429–444. doi: 10.1016/0550-3213(77)90175-4.
[13] F. A., Berezin. “The method of second quantizationPure Appl. Phys., 24 (1966), pp. 1–228.
[14] H., Bethe. “On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chainZ. Phys., 71 (1931), pp. 205–226. doi: 10.1007/BF01341708.
[15] K., Binder and A. P., Young. “Spin glasses: Experimental facts, theoretical concepts, and open questionsRev. Mod. Phys., 58 (4 Oct. 1986), pp. 801– 976. doi: 10.1103/RevModPhys.58.801.
[16] M., Blasone and P., Jizba. “Nambu–Goldstone dynamics and generalized coherentstate functional integralsJournal of Physics A: Mathematical and Theoretical, 45.24 (2012), p. 244009.
[17] E. B., Bogomolny. “Stability of classical solutionsSov. J. Nucl. Phys., 24 (1976) [Yad. Fiz.24,861(1976)], p. 449.
[18] R., Bott. “An application of the Morse theory to the topology of Liegroups.” English. Bull. Soc. Math. Fr., 84 (1956), pp. 251–281. issn: 0037–9484.
[19] R., Bott. “Morse theory indomitable”. English. Publications Mathématiques de l'IHÉS, 68 (1988), pp. 99–114. url: http://eudml.org/doc/104046.
[20] H.-B., Braun and D., Loss. “Chiral quantum spin solitonsJournal of Applied Physics, 79.8 (1996), pp. 6107–6109. doi: 10.1063/1.362102.
[21] E., Brézin, J. C. Le, Guillou and J., Zinn-Justin, Phys. Rev. D15 (1977), 1544.
[22] L., Brillouin. “La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successivesComptes Rendus de líAcadémie des Sciences, 183 (Oct. 1926), pp. 24–26.
[23] C. G., Callan Jr. and S. R., Coleman. “The fate of the false vacuum. 2. First quantum correctionsPhys. Rev., D16 (1977), pp. 1762–1768. doi: 10.1103/ PhysRevD.16.1762.
[24] S., Chadha and P. D., VecchiaZeta function regularization of the quantum fluctuations around the Yang–Mills pseudoparticlePhys. Lett., B72 (1977), pp. 103–108. doi: 10.1016/0370-2693(77)90073-9.
[25] W., Chen, K., Hida and B. C., Sanctuary. “Ground-state phase diagram of S = 1 XXZ chains with uniaxial single-ion-type anisotropyPhys. Rev. B, 67 (10 Mar. 2003), p. 104401. doi: 10.1103/PhysRevB.67.104401.
[26] Y., Choquet-Bruhat, C., DeWitt-Morette and M., Dillard-Bleick. Analysis, Manifolds, and Physics. Analysis, Manifolds, and Physics pt. 1 (North-Holland Publishing Company, 1982).
[27] E. M., Chudnovsky and L., Gunther. “Quantum theory of nucleation in ferromagnetsPhys. Rev. B, 37 (16 June 1988), pp. 9455–9459. doi: 10.1103/ PhysRevB.37.9455.
[28] E. M., Chudnovsky and L., Gunther. “Quantum tunneling of magnetization in small ferromagnetic particlesPhys. Rev. Lett., 60 (8 Feb. 1988), pp. 661– 664. doi: 10.1103/PhysRevLett.60.661.
[29] E. M., Chudnovsky and J., Tejada. Lectures on Magnetism. Lectures on Magnetism: With 128 Problems (Rinton Press, 2006).
[30] E. M., Chudnovsky, J., Tejada, C., Calero and F., Macia. Problem Solutions to Lectures on Magnetism by Chudnovsky and Tejada (Rinton Press, 2007).
[31] S., Coleman. Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, 1988).
[32] S. R., Coleman. “The fate of the false vacuum. 1. Semiclassical theoryPhys. Rev., D15 (1977). [Erratum: Phys. Rev.D16,1248(1977)], pp. 2929–2936. doi: 10.1103/ PhysRevD.15.2929, doi: 10.1103/PhysRevD.16.1248.
[33] S. R., Coleman and F. D., Luccia. “Gravitational effects on and of vacuum decayPhys. Rev., D21 (1980), p. 3305. doi: 10.1103/PhysRevD.21.3305.
[34] S. R., Coleman, V., Glaser and A., Martin. “Action minima among solutions to a class of Euclidean scalar field equationsCommun. Math. Phys., 58 (1978), p. 211. doi: 10.1007/BF01609421.
[35] J. C., Collins and D. E., Soper. “Large order expansion in perturbation theoryAnnals Phys., 112 (1978), pp. 209–234. doi: 10.1016/0003-4916(78)90084-2.
[36] R. F., Dashen, B., Hasslacher and A., Neveu. “Nonperturbative methods and extended hadron models in field theory. 1. Semiclassical functional methodsPhys. Rev., D10 (1974), p. 4114. doi: 10.1103/PhysRevD.10.4114.
[37] P. J., Davis. Circulant Matrices. Pure and Applied Mathematics (Wiley, 1979).
[38] J. von, Delft and C. L., Henley. “Destructive quantum interference in spin tunnelling problemsPhys. Rev. Lett., 69 (22 Nov. 1992), pp. 3236– 3239. doi: 10.1103/ PhysRevLett.69.3236.
[39] F., Devreux and J. P., Boucher. “Solitons in Ising-like quantum spin chains in a magnetic field: a second quantization approachJ. Phys. France, 48.10 (1987), pp. 1663–1670. doi: 10.1051/jphys:0198700480100166300.
[40] P. A. M., Dirac. “The Lagrangian in quantum mechanicsPhys. Z. Sowjetunion, 3 (1933), pp. 64–72.
[41] A. J., Dolgert, S. J. Di, Bartolo and A. T., Dorsey. “Superheating fields of superconductors: Asymptotic analysis and numerical resultsPhys. Rev. B, 53 (9 Mar. 1996), pp. 5650–5660. doi: 10.1103/PhysRevB.53.5650.
[42] T., Eguchi, P. B., Gilkey and A. J., Hanson. “Gravitation, gauge theories and differential geometryPhys. Rept., 66 (1980), p. 213. doi: 10.1016/0370- 1573(80)90130-1.
[43] M., Enz and R., Schilling. “Magnetic field dependence of the tunnelling splitting of quantum spinsJournal of Physics C: Solid State Physics, 19.30 (1986), p. L711.
[44] L. D., Faddeev and V. N., Popov. “Feynman diagrams for the Yang–Mills fieldPhys. Lett., 25B (1967), pp. 29–30. doi: 10.1016/0370-2693(67)90067-6.
[45] R. P., Feynman. “Space-time approach to nonrelativistic quantum mechanicsRev. Mod. Phys., 20 (1948), pp. 367–387. doi: 10.1103/RevModPhys.20.367.
[46] R. P., Feynman and A. R., Hibbs. Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics (McGraw-Hill, 1965).
[47] W., Fischler, V., Kaplunovsky, C., Krishnan, L., Mannelli and M., Torres. “Metastable supersymmetry breaking in a cooling universeJHEP, 03 (2007), p. 107. doi: 10.1088/1126-6708/2007/03/107. arXiv: hep-th/0611018 [hep-th].
[48] E., Fradkin. Field Theories of Condensed Matter Physics (Cambridge University Press, 2013).
[49] E., Fradkin and M., Stone. “Topological terms in one- and twodimensional quantum Heisenberg antiferromagnetsPhys. Rev. B, 38 (10 Oct. 1988), pp. 7215–7218. doi: 10.1103/PhysRevB.38.7215.
[50] K., Fujikawa. “Path integral measure for gauge invariant fermion theoriesPhys. Rev. Lett., 42 (1979), pp. 1195–1198. doi: 10.1103/PhysRevLett.42.1195.
[51] D. B., Fuks. “Spheres, homotopy groups of the”. In Encyclopedia of Mathematics (2001).
[52] D. A., Garanin. “Spin tunnelling: a perturbative approachJ. Phys. A-Math. Gen., 24.2 (1991), p. L61.
[53] A., Garg and G.-H., Kim. “Macroscopic magnetization tunneling and coherence: Calculation of tunneling-rate prefactorsPhys. Rev. B, 45 (22 June 1992), pp. 12921–12929. doi: 10.1103/PhysRevB.45.12921.
[54] H., Georgi and S. L., Glashow. “Unified weak and electromagnetic interactions without neutral currentsPhys. Rev. Lett., 28 (1972), p. 1494. doi: 10.1103/ PhysRevLett.28.1494.
[55] J., Glimm and A., Jaffe. Quantum Physics: A Functional Integral Point of View (Springer 2012). doi: 10.1007/BF02812722.
[56] J., Goldstone. “Field theories with superconductor solutionsNuovo Cim., 19 (1961), pp. 154–164. doi: 10.1007/BF02812722.
[57] D. J., Gross and F., Wilczek. “Ultraviolet behavior of nonabelian gauge theoriesPhys. Rev. Lett., 30 (1973), pp. 1343–1346. doi: 10.1103/PhysRevLett.30.1343.
[58] D., Haldane. “Large-D, and intermediate-D states in an S =2 quantum spin chain with on-site and XXZ anisotropiesPhys. Soc. Jn., 80.4 (2011), p. 043001. doi: 10.1143/JPSJ.80.043001.
[59] F. D. M., Haldane. “Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel statePhys. Rev. Lett., 50 (15 Apr. 1983), pp. 1153–1156. doi: 10.1103/ PhysRevLett.50.1153.
[60] S. W., Hawking and G. F. R., Ellis. The Large Scale Structure of Space-Time. (Cambridge University Press, 2011). doi: 10.1017/CBO9780511524646.
[61] P. W., Higgs. “Broken symmetries and the masses of gauge bosonsPhys. Rev. Lett., 13 (1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.
[62] K., Hori, S., Katz, A., Klemm et al. Mirror Symmetry. Vol. 1. Clay Mathematics Monographs (AMS, 2003). url: www.claymath.org/library/monographs/ cmim01.pdf.
[63] L., Hulthén. “Uber has Austauschproblem eines KristallsArkiv Mat. Astron. Fysik, 26A (1938), pp. 1–10.
[64] K. Jain, Rohit. Supersymmetric Schrodinger operators with applications to Morse theory. 2017. arXiv: 1703.06943v2.
[65] A., Jevicki. “Treatment of zero frequency modes in perturbation expansion about classical field configurationsNucl. Phys., B117 (1976), pp. 365–376. doi: 10.1016/0550-3213(76)90403-X.
[66] B., Julia and A., Zee. “Poles with both magnetic and electric charges in nonabelian gauge theoryPhys. Rev., D11 (1975), pp. 2227–2232. doi: 10.1103/PhysRevD. 11.2227.
[67] S., Kachru, R., Kallosh, A., Linde and S. P., Trivedi. “De Sitter vacua in string theoryPhys. Rev., D68 (2003), p. 046005. doi: 10.1103/PhysRevD.68.046005. arXiv: hep-th/0301240[hep-th].
[68] A., Khare and M. B., Paranjape. “Suppression of quantum tunneling for all spins for easy-axis systemsPhys. Rev. B, 83 (17 May 2011), p. 172401. doi: 10.1103/ PhysRevB.83.172401.
[69] T. W. B., Kibble. “Some implications of a cosmological phase transitionPhys. Rept., 67 (1980), p. 183. doi: 10.1016/0370-1573(80)90091-5.
[70] T. W. B., Kibble. “Topology of cosmic domains and stringsJ. Phys., A9 (1976), pp. 1387–1398. doi: 10.1088/0305-4470/9/8/029.
[71] G.-H., Kim. “Level splittings in exchange-biased spin tunnelingPhys. Rev. B, 67 (2 Jan. 2003), p. 024421. doi: 10.1103/PhysRevB.67.024421.
[72] G.-H., Kim. “Tunneling in a single-molecule magnet via anisotropic exchange interactionsPhys. Rev. B, 68 (14 Oct. 2003), p. 144423. doi: 10.1103/PhysRevB. 68.144423.
[73] A., Kitaev. “Anyons in an exactly solved model and beyondAnn. Phys., 321.1 (2006), pp. 2–111. doi: 10.1016/j.aop.2005.10.005.
[74] J. A., Kjäll, M., Zalatel, R., Mong, J., Bardarson and F., Pollmann. “Phase diagram of the anisotropic spin-2 XXZ model: infinite-system density matrix renormalization group studyPhys. Rev. B, 87 (23 June 2013), p. 235106. doi: 10.1103/ PhysRevB.87.235106.
[75] J. R., Klauder. “Path integrals and stationary-phase approximationsPhys. Rev. D, 19 (8 Apr. 1979), pp. 2349–2356. doi: 10.1103/PhysRevD.19.2349.
[76] H., Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Edition (World Scientific Publishing Co., 2009). doi: 10.1142/7305.
[77] H. A., Kramers. “Wellenmechanik und halbzahlige QuantisierungZ. Phys., 39 (Oct. 1926), pp. 828–840. doi: 10.1007/BF01451751.
[78] H. A., Kramers, “Théorie générale de la rotation paramagnétique dans les cristauxProc. Acad. Sci. Amsterdam, 33 (1930), p. 959.
[79] B., Kumar, M. B., Paranjape and U. A., Yajnik. “Fate of the false monopoles: induced vacuum decayPhys. Rev., D82 (2010), p. 025022. doi: 10.1103/Phys- RevD.82.025022. arXiv: 1006.0693[hep-th].
[80] B., Kumar and U., Yajnik. “Graceful exit via monopoles in a theory with OíRaifeartaigh type supersymmetry breakingNucl. Phys., B831 (2010), pp. 162–177. doi: 10.1016/j.nuclphysb.2010.01.011. arXiv: 0908.3949[hep-th].
[81] B., Kumar and U. A., Yajnik. “Stability of false vacuum in supersymmetric theories with cosmic stringsPhys. Rev., D79 (2009), p. 065001. doi: 10.1103/PhysRevD. 79.065001. arXiv: 0807.3254[hep-th].
[82] Laurascudder. Baryon Decuplet ó Wikipedia, The Free Encyclopedia. 2007.
[83] Laurascudder. Baryon Octet ó Wikipedia, The Free Encyclopedia. 2007.
[84] Laurascudder. Meson Octet ó Wikipedia, The Free Encyclopedia. 2007.
[85] B.-H., Lee, W., Lee, R., MacKenzie et al. “Tunneling decay of false vorticesPhys. Rev., D88 (2013), p. 085031. doi: 10.1103/PhysRevD.88.085031. arXiv: 1308. 3501[hep-th].
[86] A. J., Leggett. “A theoretical description of the new phases of liquid 3HeRev. Mod. Phys., 47 (2 Apr. 1975), pp. 331–414. doi: 10.1103/RevModPhys.47.331.
[87] E. H., Lieb. “The classical limit of quantum spin systemsComm. Math. Phys., 31.4 (1973), pp. 327–340. url: http://projecteuclid.org/euclid.cmp/1103859040.
[88] D., Loss, D. P., DiVincenzo and G., Grinstein. “Suppression of tunneling by interference in half-integer-spin particlesPhys. Rev. Lett., 69 (22 Nov. 1992), pp. 3232–3235. doi: 10.1103/PhysRevLett.69.3232.
[89] Y., Matsumoto. An Introduction to Morse Theory. Trans. Kiki Hudson and Masahico Saito (American Mathematical Society, 2002).
[90] F., Meier, J., Levy and D., Loss. “Quantum computing with antiferromagnetic spin clustersPhys. Rev. B, 68 (13 Oct. 2003), p. 134417. doi: 10.1103/PhysRevB. 68.134417.
[91] F., Meier and D., Loss. “Electron and nuclear spin dynamics in antiferromagnetic molecular ringsPhys. Rev. Lett., 86 (23 June 2001), pp. 5373–5376. doi: 10. 1103/PhysRevLett.86.5373.
[92] F., Meier and D., Loss. “Thermodynamics and spin-tunneling dynamics in ferric wheels with excess spinPhys. Rev. B, 64 (22 Nov. 2001), p. 224411. doi: 10. 1103/PhysRevB.64.224411.
[93] H.-J., Mikeska and M., Steiner. “Solitary excitations in one-dimensional magnetsAdv. Phys., 40.3 (1991), pp. 191–356. doi: 10.1080/00018739100101492.
[94] J., Milnor. Morse Theory (AM-51). Annals of Mathematics Studies (Princeton University Press, 2016).
[95] S. E., Nagler, W. J. L., Buyers, R. L., Armstrong and B., Briat. “Propagating domain walls in CsCoBr3Phys. Rev. Lett., 49 (8 Aug. 1982), pp. 590–592. doi: 10.1103/ PhysRevLett.49.590.
[96] H. B., Nielsen and P., Olesen. “Vortex line models for dual stringsNucl. Phys. B, 61 (1973), pp. 45–61. doi: 10.1016/0550-3213(73)90350-7.
[97] S. P., Novikov. “The Hamiltonian formalism and a many valued analog of Morse theoryUsp. Mat. Nauk, 37N5.5 (1982). [Russ. Math. Surveys(1982),37(5):1], pp. 3–49. doi: 10.1070/RM1982v037n05ABEH004020.
[98] F. R., Ore Jr. “Quantum field theory about a Yang–Mills pseudoparticlePhys. Rev. D, 15 (1977), p. 470. doi: 10.1103/PhysRevD.15.470.
[99] S. A., Owerre and M. B., Paranjape. “Macroscopic quantum spin tunneling with two interacting spinsPhys. Rev. B, 88 (22 Dec. 2013), p. 220403. doi: 10.1103/ PhysRevB.88.220403.
[100] A., Perelomov. Generalized Coherent States and their Applications (Springer- Verlag New York Inc., Jan. 1986).
[101] M. E., Peskin and D. V., Schroeder. An Introduction to Quantum Field Theory (Addison-Wesley, 1995).
[102] H. D., Politzer. “Reliable perturbative results for strong interactions?Phys. Rev. Lett., 30 (26 June 1973), pp. 1346–1349. doi: 10.1103/PhysRevLett.30.1346.
[103] A. M., Polyakov. “Quark confinement and topology of gauge groupsNucl. Phys. B, 120 (1977), pp. 429–458. doi: 10.1016/0550-3213(77)90086-4.
[104] M. K., Prasad and C. M., Sommerfield. “An exact classical solution for the ít Hooft monopole and the Julia-Zee dyonPhys. Rev. Lett., 35 (1975), pp. 760–762. doi: 10.1103/PhysRevLett.35.760.
[105] K., Pretzl. “Superconducting granule detectorsJ. Low Temp. Phys., 93.3 (1993), pp. 439–448. issn: 1573–7357. doi: 10.1007/BF00693458.
[106] J. M., Radcliffe. “Some properties of coherent spin statesJ. Phys. A: General Physics, 4.3 (1971), p. 313. doi: 10.1088/0305-4470/4/3/009.
[107] M., Reed and B., Simon. I: Functional Analysis. Methods of Modern Mathematical Physics (Elsevier Science, 1981).
[108] H. J., Schulz. “Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum numberPhys. Rev. B, 34 (9 Nov. 1986), pp. 6372– 6385. doi: 10.1103/PhysRevB.34.6372.
[109] J., Schwinger. “On gauge invariance and vacuum polarizationPhys. Rev., 82 (5 June 1951), pp. 664–679. doi: 10.1103/PhysRev.82.664.
[110] J., Simon, W., Bakr and R., Ma. “Quantum simulation of antiferromagnetic spin chains in an optical latticeNature, 472.7343 (Apr. 2011), pp. 307–312. doi: 10. 1038/nature09994.
[111] P. J., Steinhardt. “Monopole dissociation in the early universePhys. Rev. D, 24 (1981), p. 842. doi: 10.1103/PhysRevD.24.842.
[112] G. 't, Hooft. “Computation of the quantum effects due to a four-dimensional psuedoparticlePhys. Rev. D, 14 (12 Dec. 1976), pp. 3432–3450. doi: 10.1103/ PhysRevD.14.3432.
[113] J., Ummethum, J., Nehrkorn, S., Mukherjee et al. “Discrete antiferromagnetic spinwave excitations in the giant ferric wheel Fe18Phys. Rev. B, 86 (10 Sept. 2012), p. 104403. doi: 10.1103/PhysRevB.86.104403.
[114] J. H. Van, Vleck. “On sigma-type doubling and electron spin in the spectra of diatomic moleculesPhys. Rev., 33 (1929), pp. 467–506. doi: 10.1103/PhysRev. 33.467.
[115] J., Villain. “Propagative spin relaxation in the Ising-like antiferromagnetic linear chainPhysica B+C, 79.1 (1975), pp. 1–12. issn: 0378-4363. doi: 10.1016/0378- 4363(75)90101-1.
[116] O., Waldmann, C., Dobe, H., Güdel and H., Mutka. “Quantum dynamics of the Néel vector in the antiferromagnetic molecular wheel CsFe8Phys. Rev. B, 74 (5 Aug. 2006), p. 054429. doi: 10.1103/PhysRevB.74.054429.
[117] S., Weinberg. “Dynamical approach to current algebraPhys. Rev. Lett., 18 (1967), pp. 188–191. doi: 10.1103/PhysRevLett.18.188.
[118] S., Weinberg. “The U(1) problemPhys. Rev. D, 11 (1975), pp. 3583–3593. doi: 10.1103/PhysRevD.11.3583.
[119] G., Wentzel. “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der WellenmechanikZ. Phys., 38 (June 1926), pp. 518–529. doi: 10.1007/ BF01397171.
[120] J., Wess and B., Zumino. “Consequences of anomalous Ward identitiesPhys. Lett. B, 37 (1971), pp. 95–97. doi: 10.1016/0370-2693(71)90582-X.
[121] N., Wiener. “Differential spaceJ. Math. and Phys., 2 (1923), pp. 132–174.
[122] E., Witten. “Baryons in the 1/n ExpansionNucl. Phys. B, 160 (1979), pp. 57– 115. doi: 10.1016/0550-3213(79)90232-3.
[123] E., Witten. “Constraints on supersymmetry breakingNucl. Phys. B, 202 (1982), p. 253. doi: 10.1016/0550-3213(82)90071-2.
[124] E., Witten. “Dynamical breaking of supersymmetryNucl. Phys. B, 188 (1981), p. 513. doi: 10.1016/0550-3213(81)90006-7.
[125] E., Witten. “Supersymmetry and Morse theoryJ. Diff. Geom., 17.4 (1982), pp. 661–692.
[126] U. A., Yajnik. “Phase transitions induced by cosmic stringsPhys. Rev. D, 34 (1986), pp. 1237–1240. doi: 10.1103/PhysRevD.34.1237.
[127] W.-M., Zhang, D. H., Feng and R., Gilmore. “Coherent states: Theory and some applicationsRev. Mod. Phys., 62 (4 Oct. 1990), pp. 867–927. doi: 10.1103/ RevModPhys.62.867.
[128] J., Zinn-Justin. “Perturbation series at large orders in quantum mechanics and field theories: Application to the problem of resummationPhysics Reports, 70.2 (1981), pp. 109–167. issn: 0370-1573. doi: 10.1016/0370-1573(81)90016-8.
[129] W. H., Zurek. “Cosmic strings in laboratory superfluids and the topological remnants of other phase transitionsActa Phys. Pol. B, 24 (1993), pp. 1301–1311.
[130] W. H., Zurek. “Cosmological experiments in superfluid helium?Nature 317 (1985), pp. 505–508. doi: 10.1038/317505a0.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.