Skip to main content Accessibility help
Thermodynamic Foundations of the Earth System
  • Cited by 37
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Thermodynamics sets fundamental laws for all physical processes and is central to driving and maintaining planetary dynamics. But how do Earth system processes perform work, where do they derive energy from, and what are the limits? This accessible book describes how the laws of thermodynamics apply to Earth system processes, from solar radiation to motion, geochemical cycling and biotic activity. It presents a novel view of the thermodynamic Earth system explaining how it functions and evolves, how different forms of disequilibrium are being maintained, and how evolutionary trends can be interpreted as thermodynamic trends. It also offers an original perspective on human activity, formulating this in terms of a thermodynamic, Earth system process. This book uses simple conceptual models and basic mathematical treatments to illustrate the application of thermodynamics to Earth system processes, making it ideal for researchers and graduate students across a range of Earth and environmental science disciplines.


'Examines what goes on in the Earth’s atmosphere, oceans, geosphere and biosphere from the perspective of energy and entropy flows. Kleidon draws on a wide range of research to help clarify in quantitative detail how thermodynamics shapes the entire Earth system, and, in particular, how humanity has come to play a central role in the Earth’s physics … This important book fills a crucial gap by drawing out the implications of the second law of thermodynamics for the whole Earth system.'

Mark Buchanan Source: Nature Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Aiello, L. C., and Wheeler, P. 1995. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol., 36, 199–221.
Allen, M. R., and Ingram, W. J. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232.
Allman, J. M. 1999. Evolving Brains. New York: Scientific American Library.
Ambaum, M. H. P. 2010. Thermal Physics of the Atmosphere. Chichester: J. Wiley and Sons.
Amend, J. P., and Shock, E. L. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archea and Bacteria. FEMS Microbiol. Rev., 25, 175–243.
Amthor, J. S. 1995. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle. Glob. Ch. Biol., 1, 243–274.
Amthor, J. S. 2010. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol., 188, 939–959.
Andreas, E. L. 2011. Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 1435–1445.
Andresen, B., Berry, R. S., Nitzan, A., and Salamon, P. 1977. Thermodynamics in finite time. I: the step-Carnot cycle. Phys. Rev. A, 15, 2086–2093.
Andresen, B., Salamon, P., and Berry, R. S. 1984. Thermodynamics in finite time. Phys. Today, 37, 62–70.
Aoki, I. 1983. Entropy productions on the Earth and other planets of the solar system. J. Phys. Soc. Japan, 52, 1075–1078.
Archer, C. L., and Caldeira, K. 2009. Global assessment of high-altitude wind power. Energies, 2, 307–319.
Arens, S., and Kleidon, A. 2008. Global sensitivity of weathering rates to atmospheric CO2 under the assumption of saturated river discharge. Mineral. Mag., 72, 301–304.
Arya, S. P. 1998. Introduction to Micrometeorology. San Diego, CA: Academic Press.
Ashton, K. G., Tracy, M. C., and de Queiroz, A. 2000. Is Bergmann's rule valid for mammals? Am. Nat., 156, 390–415.
Atkins, P, and de Paula, J. 2010. Physical Chemistry. 9th edn. Oxford and New York: Oxford University Press.
Ayres, R., and Kneese, A. 1969. Production, consumption, and externalities. Am. Econ. Rev., 59, 282–297.
Ayres, R. U. 1989. Industrial metabolism. Pages 23–49 of: Ausubel, J.H., and Sladovich, H.E. (eds) Technology and Environment. Washington DC: National Academy Press.
Ayres, R. U., and Nair, I. 1984. Thermodynamics and economics. Phys. Today, 37, 62–71.
Ayres, R. U., Ayres, L.W., and Warr, B. 2003. Exergy, power and work in the US economy, 1900–1998. Energy, 28, 219–273.
Backus, G. E. 1975. Gross thermodynamics of heat engines in deep interior of Earth. Proc. Natl. Acad. Sci. USA, 72, 1555–1558.
Bala, G., Duffy, P. B., and Taylor, K. E. 2008. Impact of geoengineering schemes on the global hydrologic cycle. Proc. Natl. Acad. Sci. USA, 105, 7664–7669.
Barber, J. 2009. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev., 38, 185–196.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Roedenbeck, C., Arain, M. A., Baldocchi, D., and Bonan, G. B. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834–838.
Beerling, D. J., and Royer, D. L. 2002. Reading a CO2 signal from fossil stomata. New Phytol., 153, 387–397.
Bejan, A. 1996. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys., 79, 1191–1218.
Bejan, A. 1997. Advanced Engineering Thermodynamics. New York: Wiley.
Bejan, A. 2002. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res., 26, 545–565.
Bejan, A. 2007. Constructal theory of pattern formation. Hydrol. Earth Syst. Sci., 11, 753–768.
Bering, E. A., Few, A. A., and Benbrook, J. R. 1998. The global electric circuit. Phys. Today, 24–30.
Betts, A. K., and Ridgway, W. 1989. Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 2621–2641.
Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J., and Viterbo, P. A. 1996. The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J. Geophys. Res., 101, 7209–7225.
Betz, A. 1920. Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Z. Gesamte Turbinenwesen, 26, 307–309.
Bister, M., and Emanuel, K. A. 1998. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys., 65, 233–240.
Bister, M., Renno, N., Pauluis, O., and Emanuel, K. 2011. Comment on Makarieva et al. ‘A critique of some modern applications of the Carnot heat engine concept: the dissipative heat engine cannot exist’. Proc. R. Soc. London A, 467, 1–6.
Bobe, R., and Behrensmeyer, A. K. 2004. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Paleogeogr. Paleocl., 207, 399–420.
Bohren, C. F., and Albrecht, B. A. 1998. Atmospheric Thermodynamics. New York: Oxford University Press.
Bolton, J. R., and Hall, D. O. 1991. The maximum efficiency of photosynthesis. Photochem. Photobiol., 53, 545–548.
Boltzmann, L. 1886. Der zweite Hauptsatz der mechanischenWärmetheorie. Almanach der kaiserlichen Akademie der Wissenschaften, 36, 225–259.
Bonan, G B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.
Bony, S., Bellon, G., Klocke, D., Sherwood, S., Fermepin, S., and Denvil, S. 2013. Robust direct effect of carbon dioixide on tropical circulation and regional precipitation. Nature Geosci., 6, 447–451.
Borucki, W. J., and Chameides, W. L. 1984. Lightning: estimates of rates of energy dissipation and nitrogen fixation. Rev. Geophys., 22, 363–372.
Bowring, S. P. K., Miller, L. M., Ganzeveld, L., and Kleidon, A. 2014. Applying the concept of “energy return on investment” to desert greening of the Sahara/Sahel using a global climate model. Earth Syst. Dynam., 5, 43–53.
Boyce, C. K., Brodribb, T. J., Feild, T. S., and Zwieniecki, M. A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. Lond. B, 276, 1771–1776.
BP, . 2014. BP Statistical Review of World Energy 2014. Tech. rept. London, UK: BP P.L.C.
Brodribb, T. J., and Feild, T. S. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett., 13, 175– 183.
Brodribb, T. J., Feild, T. S., and Jordan, G. J. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol., 144, 1890–1898.
Brovkin, V. 2002. Climate-vegetation interaction. J. Phys-Paris, 12, 57–72.
Brunsell, N. A., Schymanski, S. J., and Kleidon, A. 2011. Quantifying the thermodynamic entropy budget of the land surface: is this useful? Earth Syst. Dynam., 2, 87–103.
Brunt, D. 1941. Physical and Dynamical Meteorology. London: Cambridge University Press.
Budyko, M. I. 1974. Climate and Life. Translated from the Original Russian Edition. New York: Academic Press.
Callies, U., and Herbert, F. 1988. Radiative processes and non-equilibrium thermodynamics. Z. Angew. Math. Phys., 39, 242–266.
Campbell, G. S., and Norman, J. M. 1998. An Introduction to Environmental Biophysics. 2nd edn. New York: Springer.
Campbell, I. H., and Taylor, S. R. 1983. No water, no granites - no oceans, no continents. Geophys. Res. Lett., 10, 1061–1064.
Carnot, S. 1824. Reflections on theMotive Power of Fire and on Machines Fitted to Develop that Power. Paris: Bachelier.
Carpenter, S. R., and Kitchell, J. F. 1984. Plankton community structure and limnetic primary production. Am. Nat., 124, 159–172.
Catling, D. C. 2005. Coupled evolution of Earth's atmosphere and biosphere. Pages 191– 206 of: Kleidon, A., and Lorenz, R. D. (eds), Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Heidelberg: Springer.
Cawood, P. A., Hawkesworth, C. J., and Dhuime, B. 2013. The continental record and the generation of continental crust. GSA Bulletin, 125, 14–32.
Chaisson, E. J. 1998. The cosmic environment for the growth of complexity. Biosystems, 46, 13–19.
Charru, F., Andreotti, B., and Claudin, P. 2013. Sand ripples and dunes. Annu. Rev. Fluid Mech., 45, 469–493.
Christensen, U. R., and Tilgner, A. 2004. Power requirements of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature, 429, 169–171.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S., and Thornton, P. 2013. Carbon and other biogeochemical cycles. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press.
Ciamician, G. 1912. The photochemistry of the future. Science, 36, 385–394.
Cicerone, R. J. 1987. Changes in stratospheric ozone. Science, 237, 35–42.
Clark, T. L., Jenkins, M. A., Coen, J., and Packham, D. 1996. A coupled atmosphere-fire model: convective feedback on fire-line dynamics. J. Appl. Meteor., 35, 875–901.
Clausius, R. 1850. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. Phys. Chem., 155, 368–397.
Cleveland, C. J., and Ruth, M. 1997. When, where, and by how much do biophysical limits constrain the economic process? A survey of Nicholas Georgescu-Roegen's contribution to ecological economics. Ecol. Econ., 22, 203–223.
Cleveland, C. J., Costanza, R., Hall, C. A. S., and Kaufmann, R. 1984. Energy and the US economy: a biophysical perspective. Science, 225, 890–897.
Cohen, J. E. 1995. Population growth and Earth's human carrying capacity. Science, 269, 341–346.
Corten, G. 2001. Novel views on the extraction of energy from wind-heat generation concentration and terrain. Page 5 of: Proceedings of the 2001 EWEC Conference. available at Accessed May 2, 2014.
Count, E. W. 1947. Brain and body weight in man. Ann. N. Y. Acad. Sci., 46, 993–1122.
Cross, M, and Hohenberg, P. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65, 851–1112.
Crutzen, P. J. 2002. Geology of mankind. Nature, 415, 23.
Curzon, F. L., and Ahlborn, B. 1975. Efficiency of a Carnot engine at maximum power output. Am. J. Phys., 43, 22–24.
Daly, H. E. 1992. Is the entropy law relevant to economics of natural resource scarcity? Yes, of course it is! J. Environ. Econ. Manage., 23, 91–95.
Davies, J. H., and Davies, D. R. 2010. Earth's surface heat flux. Solid Earth, 1, 5–24.
de, Arellano, J., Vila-Guerau, Ouwersloot, H. G., Baldocchi, D., and Jacobs, C. M. J. 2014. Shallow cumulus rooted in photosynthesis. Geophys. Res. Lett., 41, 1796–1802.
de Bruin, H. A. R., and Lablans, W. N. 1998. Reference crop evapotranspiration determined with a modified Makkink equation. Hydrol. Process., 12, 1053–1062.
Denmead, O. T., Raupach, M. R., Dunin, F. X., Cleugh, H. A., and Leuning, R. 1996. Boundary layer budgets for regional estimates of scalar fluxes. Glob. Ch. Biol., 2, 255–264.
Desjardins, R. L., Brach, E. J., Alvo, P., and Schuepp, P. H. 1982. Aircraft monitoring of surface carbon dioxide exchange. Science, 216, 733–735.
Dewar, R. C. 2003. Information theory explanation of the fluctuation theorem, Maximum Entropy Production, and self-organized criticality in non-equilibrium stationary states. J. Physics A, 36, 631–641.
Dewar, R. C. 2005a. Maximum entropy production and non-equilibrium statistical mechanics. In: Kleidon, A., and Lorenz, R. D. (eds), Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Heidelberg: Springer.
Dewar, R. C. 2005b. Maximum entropy production and the fluctuation theorem. J. Physics A, 38, L371–L381.
Dewar, R C. 2010. Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger. Entropy, 11, 931–944.
Dewar, R C, Lineweaver, C H, Niven, R K, and Regenauer-Lieb, K. 2014. Beyond the second law: an overview. Pages 3–27 of: Dewar, R C, Lineweaver, C H, Niven, R K, and Regenauer-Lieb, K (eds), Beyond the Second Law: Entropy Production and Nonequilibrium Systems. Heidelberg: Springer.
Dincer, I., and Rosen, M. A. 2005. Thermodynamic aspects of renewables and sustainable development. Renew. Sust. Energ. Rev., 9, 169–189.
Dukes, J. S. 2003. Burning buried sunshine: human consumption of ancient solar energy. Clim. Ch., 61, 31–44.
Duysens, L. N. M. 1958. The path of light energy in photosynthesis. Pages 10–25 of: Brookhaven Symposia in Biology 1: The Photochemical Apparatus, its Structure & Function. Upton, NY, USA: Brookhaven Natl. Lab.
Dyke, J. G., Gans, F., and Kleidon, A. 2011. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach. Earth Syst. Dynam., 2, 139–160.
Dyson, F J. 1960. Search for artificial stellar sources of infrared radiation. Science, 131, 1667–1668.
Eddington, A. S. 1928. The Nature of the Physical World. New York: Macmillan.
Edlefsen, N. E., and Anderson, A. B. C. 1943. Thermodynamics of soil moisture. Hilgardia, 15, 31–298.
Ehleringer, J. R., and Cerling, T. E. 1995. Atmospheric CO2 and the ratio of intercellular to ambinent CO2 concentrations in plants. Tree Physiol., 15, 105–111.
Elder, J. 1976. The Bowels of the Earth. London: Oxford University Press.
Elimelech, M., and Phillip, W. A. 2011. The future of seawater desalination: energy, technology and the environment. Science, 333, 712–717.
Emanuel, K. 1987. The dependence of hurricane intensity on climate. Nature, 326, 483–485.
Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.
Emanuel, K. 2007. Environmental factors affecting tropical cyclone power dissipation. J. Clim., 20, 5497–5509.
Emanuel, K. 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12219–12224.
Emanuel, K. A. 1986. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci., 43, 585–604.
Emanuel, K. A. 1999. Thermodynamic control of hurricane intensity. Nature, 401, 665–669.
Ertel, H., and Köhler, H. 1948. On the thermodynamic efficiency of steady atmospheric circulations. Geofisica Pura e Applicata, 13, 102–108.
Essex, C. 1984. Radiation and the irreversible thermodynamics of climate. J. Atmos. Sci., 41, 1985–1991.
Falk, D. 1990. Brain evolution in Homo: the “radiator” theory. Behav. Brain Sci., 13, 333–381.
Farquhar, G. D., and Sharkey, T. D. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant. Physiol., 33, 317–345.
Feild, T. S., Brodribb, T. J., Iglesias, A., Chatelet, D. S., Baresch, A., Upchurch, G. R.,
Gomez, B., Mohr, B. A. R., Coiffard, C., Kvacek, J., and Jaramillo, C. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc. Natl. Acad. Sci. USA, 108, 8363–8366.
Ferrari, R., and Wunsch, C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253–282.
Feynman, R. P., Leighton, R. B., and Sands, M. 1966. The Feynman Lectures on Physics. Reading, MA, USA: Addison-Wesley.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237–240.
Field, C. B., Campbell, J. E., and Lobell, D. B. 2007. Biomass energy: the scale of the potential resource. Trends Ecol. Evol., 23, 65–72.
Fischer-Kowalski, M., and Haberl, H. 1998. Sustainable development: socio-economic metabolism and the colonization of nature. Int. Soc. Sci. J., 50, 573–587.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K. 2005. Global consequences of land use. Science, 309, 570–574.
Foley, R. A., and Lee, P. C. 1991. Ecology and energetics of encephalization in hominid evolution. Phil. Trans. R. Soc. B, 334, 223–232.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Dorland, R. Van. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., M., Tignor, and Miller, H.L. (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press.
Franck, S., von Bloh, W., Müller, C., Bondeau, A., and Sakschweski, B. 2011. Harvesting the Sun: new estimations of the maximum population of planet Earth. Ecol.Mod., 222, 2019–2026.
Gans, F., Miller, L. M., and Kleidon, A. 2012. The problem of the second wind turbine: a note on a common but flawed wind power estimation method. Earth Syst. Dynam., 3, 79–86.
Garratt, J. R. 1992. The Atmospheric Boundary Layer. Cambridge, UK: Cambridge University Press.
Garrett, C., and Cummins, P. 2007. The efficiency of a turbine in a tidal channel. J. Fluid Mech., 588, 243–251.
Garrett, T J. 2009. Are there basic physical constraints on future anthropogenic emissions of carbon dioxide? Clim. Change, 104, 437–455.
Georgescu-Roegen, N. 1971. The Entropy Law and the Economic Process. Cambridge, MA: Harvard University Press.
Glaser, P. E. 1968. Power from the Sun: its future. Science, 162, 857–861.
Gnanadesikan, A., Slater, R. D., Swathi, P. S., and Vallis, G. K. 2005. The energetics of ocean heat transport. J. Clim., 18, 2604–2616.
Goldstein, B., Hiriart, G., Bertani, R., Bromley, C., Gutierrez-Negrin, L., Huenges, E., Muraoka, H., Ragnarsson, A., Tester, J., and Zui, V. 2011. Geothermal energy. Pages 401–436 of: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., and von Stechow, C. (eds), IPCC Special Report on Renewable Energy Sources and Climate ChangeMitigation. Cambridge, UK and New York: Cambridge University Press.
Goody, R. 2000. Sources and sinks of climate entropy. Q. J. R. Meteorol. Soc., 126, 1953–1970.
Goody, R. 2003. On the mechanical efficiency of deep, tropical convection. J. Atmos. Sci., 60, 2827–2832.
Goody, R. 2007. Maximum entropy production in climate theory. J. Atmos. Sci., 64, 2735–2739.
Goody, R., and Abdou, W. 1996. Reversible and irreversible sources of radiation entropy. Q. J. Roy. Meteorol. Soc., 122(530), 483–494.
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev., 41, 587–640.
Gyftopoulos, E. P., and Beretta, G. P. 1991. Thermodynamics: Foundations and Applications. New York: Macmillan.
Haaf, W., Friedrich, K., Mayr, G., and Schlaich, J. 1983. Solar chimneys. Part I: principle and construction of the pilot plant in Manzanares. Int. J. Solar Energy, 2, 3–20.
Haberl, H, Erb, K H, Krausmann, F, Gaube, V, Bondeau, A, Pluttzar, C, Gingrich, S, Lucht, W, and Fischer-Kowalski, M. 2007. Quantifying and mapping the human appropriation of net primary productivity in earth's terrestrial ecosystems. Proc. Natl. Acad. Sci. USA, 104, 12942–12947.
Haberl, H., Erb, K.-H., and Krausmann, F. 2014. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour., 39, 363–391.
Haff, P. K. 2010. Hillslopes, rivers, plows, and trucks: mass transport on Earth's surface by natural and technological processes. Earth Surf. Process. Landforms, 35, 1157–1166.
Haff, P. K. 2013. Technology as a geological phenomenon: implications for human wellbeing. In: Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. A., and Snelling, A. M. (eds), A Stratigraphic Basis for the Anthropocene. Special Publications, vol. 395. London: Geological Society.
Haken, H. 1975. Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys., 47, 67–121.
Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T., and Eichhorn, W. 2001. The need to reintegrate the natural sciences with economics. Bioscience, 51, 663–673.
Hammond, K. A., and Diamond, J. 1997. Maximal sustained energy budgets in humans and animals. Nature, 386, 457–462.
Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J. 1984. Climate sensitivity: analysis of feedback mechanisms. In: Climate Processes and Climate Sensitivity, Geophysical Monograph 29. Washington, DC: American Geophysical Union.
Hartmann, D. L. 1994. Global Physical Climatology. San Diego: Academic Press.
Held, I. M., and Soden, B. J. 2006. Robust responses of the hydrological cycle to global warming. J. Clim., 19, 5686–5699.
Herrmann, W. A. 2006. Quantifying global exergy resources. Energy, 31, 1685–1702.
Hewitt, J. M., McKenzie, D. P., and Weiss, N. O. 1975. Dissipative heating in convective flows. J. Fluid Mech., 68, 721–738.
Hill, R., and Rich, P. R. 1983. A physical interpretation for the natural photosynthetic process. Proc. Natl. Acad. Sci. USA, 80, 978–982.
Hitchcock, D. R., and Lovelock, J. E. 1967. Life detection by atmospheric analysis. Icarus, 7, 149–159.
Hobbs, P. V. 2000. Introduction to Atmospheric Chemistry. Cambridge, UK: Cambridge University Press.
Hoening, D., Hansen-Goos, H., Airo, A., and Spohn, T. 2014. Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet. Space Sci., 98, 5–13.
Hoffert, M. I., Caldeira, K., Benford, G., Criswell, D. R., Green, C., Herzog, H., Jain, A. K., Kheshgi, H. S., Lackner, K. S., Lewis, J. S., Lightfoot, H. D., Manheimer, W., Mankins, J. C., Mauel, M. E., Perkins, L. J., Schlesinger, M. E., Volk, T., and Wigley, T. M. L. 2002. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science, 298, 981–987.
Holdaway, R. J., Sparrow, A. D., and Coomes, D. 2010. Trends in entropy production during ecosystem development in the Amazon basin. Phil. Trans. R. Soc. B, 365, 1437–1447.
Holland, H. H. 2006. The oxygenation of the atmosphere and ocean. Phil. Trans. Roy. Soc. London B, 361, 903–915.
Holton, J. R. 1992. An Introduction to Dynamic Meteorology. 3rd edn. San Diego: Academic Press.
Howard, A. D. 1990. Theoretical model of optimal drainage networks. Water Resour. Res., 26, 2107–2117.
Huang, S-S. 1959. Occurrence of life in the universe. Am. Sci., 47, 397–402.
Hubbert, M. King. 1981. The world's evolving energy system. Am. J. Phys., 49, 1007–1029.
Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, R. 2000. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425–429.
Imhoff, M. L., Bounoua, L., Ricketts, T., Loucks, C., Harriss, R., and Lawrence, W. T. 2004. Global patterns in human consumption of net primary production. Nature, 429, 870–873.
IPCC. 2011. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared byWorking Group III of the Intergovernmental Panel on Climate Change [O., Edenhofer, R., Pichs-Madruga, Y., Sokona, K., Seyboth, P., Matschoss, S., Kadner, T., Zwickel, P., Eickemeier, G., Hansen, S., Schlömer, C. von, Stechow (eds)]. Cambridge, UK and New York: Cambridge University Press.
Isaacs, J D, and Schmitt, W R. 1980. Ocean energy: forms and prospects. Science, 207, 265–273.
Jacobsen, M. Z., and Archer, C. L. 2012. Saturation wind power potential and its implications for wind energy. Proc. Natl. Acad. Sci. USA, 109, 15679–15684.
Jerison, H. J. 1955. Brain to body ratios and the evolution of intelligence. Science, 121, 447–449.
Jerison, H. J. 1977. The theory of encephalization. Ann. N. Y. Acad. Sci., 299, 146–160.
Jerison, H. J. 1985. Animal intelligence as encephalization. Phil. Trans. R. Soc. B, 308, 21–35.
Jupp, T., and Schultz, A. 2000. A thermodynamic explanation for black smoker temperatures. Nature, 403, 880–883.
Jupp, T. E., and Cox, P. M. 2010. MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Phil. Trans. R. Soc. B, 365, 1355–1365.
Jupp, T. E., and Schultz, A. 2004. Physical balances in subseafloor hydrothermal convection cells. J. Geophys. Res., 109.
Kabelac, S. 1994. Thermodynamik der Strahlung. Braunschweig and Wiesbaden: Vieweg.
Kagan, B. A., and Sündermann, Jürgen. 1996. Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv. Geophys., 38, 179–266.
Kasting, J. F. 1993. Earth's early atmosphere. Science, 259, 920–926.
Kasting, J. F., and Catling, D. 2003. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys., 41, 429–463.
Kasting, J. F., Whitmire, D. P., and Reynolds, R. T. 1993. Habitable zones around main sequence stars. Icarus, 101, 108–128.
Keith, D., DeCarolis, J., Denkenberger, D., Lenschow, D., Malyshev, S. L., Pacala, S., and Rasch, P. 2004. The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA, 101, 16116–16120.
Klausmeier, C A. 1999. Regular and irregular patterns in semiarid vegetation. Science, 284, 1826–1828.
Kleiber, M. 1932. Body size and metabolism. Hilgardia, 6, 315–353.
Kleidon, A. 2004a. Beyond Gaia: thermodynamics of life and Earth system functioning. Clim. Ch., 66, 271–319.
Kleidon, A. 2004b. Optimized stomatal conductance of vegetated land surfaces and its effects on simulated productivity and climate. Geophys. Res. Lett., 31, L21203.
Kleidon, A. 2006. The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Glob. Planet. Ch., 54, 109–127.
Kleidon, A. 2007. Optimized stomatal conductance and the climate sensitivity to carbon dioxide. Geophys. Res. Lett., 34, L14709.
Kleidon, A. 2008. Entropy production by evapotranspiration and its geographic variation. Soil Water Res., 3, S89–S94.
Kleidon, A. 2009a. Climatic constraints on maximum possible levels of human activity and their relation to human evolution and global change. Clim. Ch., 95, 405–431.
Kleidon, A. 2009b. Maximum entropy production and general trends in biospheric evolution. Paleontol. J., 43, 130–135.
Kleidon, A. 2009c. Non-equilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications. Naturwissenschaften, 96, 653–677.
Kleidon, A. 2010. Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys. Life Rev., 7, 424–460.
Kleidon, A. 2012. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?Phil. Trans. R. Soc. A, 370, 1012–1040.
Kleidon, A., and Fraedrich, K. 2005. Biotic entropy production and global atmospherebiosphere interactions. Pages 173–190 of: Kleidon, A., and Lorenz, R. D. (eds), Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Heidelberg: Springer.
Kleidon, A., and Heimann, M. 1998. A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water- and carbon cycle. Global Change Biol., 4, 275–286.
Kleidon, A., and Lorenz, R. D. (eds). 2005. Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Heidelberg: Springer.
Kleidon, A., and Renner, M. 2013a. A simple explanation for the sensitivity of the hydrologic cycle to climate change. Earth Syst. Dynam., 4, 455–465.
Kleidon, A, and Renner, M. 2013b. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol. Earth Syst. Sci., 17, 2873–2892.
Kleidon, A., Fraedrich, K., and Heimann, M. 2000. A green planet versus a desert world: estimating the maximum effect of vegetation on land surface climate. Clim. Ch., 44, 471–493.
Kleidon, A., Fraedrich, K., Kunz, T., and Lunkeit, F. 2003. The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett., 30, 2223.
Kleidon, A., Fraedrich, K., Kirk, E., and Lunkeit, F. 2006. Maximum entropy production and the strength of boundary layer exchange in an atmospheric general circulation model. Geophys. Res. Lett., 33, L06706.
Kleidon, A., Schymanski, S., and Stieglitz, M. 2009. Thermodynamics, irreversibility and optimality in land surface hydrology. Pages 107–118 of: Strelcova, K., Matyas, C., Kleidon, A., Lapin, M., Matejka, F., Skvarenina, J., and Holecy, J. (eds), Bioclimatology and Natural Hazards. Heidelberg: Springer.
Kleidon, A., Malhi, Y., and Cox, P. M. 2010. Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B, 365, 1297–1302.
Kleidon, A, Zehe, E, Ehret, U, and Scherer, U. 2013. Thermodynamics, maximum power, and the dynamics of preferential river flow structures on continents. Hydrol. Earth Syst. Sci., 17, 225–251.
Kleidon, A., Zehe, E., Ehret, U., and Scherer, U. 2014a. Earth system dynamics beyond the second law: maximum power limits, dissipative structures, and planetary interactions. Pages 163–182 of: Dewar, R. C., Lineweaver, C. H., Niven, R. K., and Regenauer- Lieb, K. (eds), Beyond the Second Law: Entropy Production and Non-equilibrium Systems. Berlin and Heidelberg: Springer.
Kleidon, A., Renner, M., and Porada, P. 2014b. Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol. Earth Syst. Sci., 18, 2201–2218.
Kleidon, A., Miller, L., and Gans, F. 2016. Physical limits of solar energy conversion in the Earth system. Top. Curr. Chem., 371, 1–22.
Klein, M. J. 1967. Thermodynamics in Einstein's thought. Science, 157, 509–516.
Klein Goldewijk, K., Beusen, A., and Janssen, P. 2010. Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3.1. Holocene, 20, 565–573.
Klein Goldewijk, K., Beusen, A., de Vos, M., and van Drecht, G. 2011. The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Glob. Ecol. Biogeog., 20, 73–86.
Knox, R. S. 1969. Thermodynamics and the primary processes of photosynthesis. Biophys J, 9, 1351–1362.
Kok, J. F., Parteli, E. J. R., Michaels, T. I., and Karam, D. B. 2012. The physics of wind-blown sand and dust. Rep. Prog. Phys., 75, 106901.
Kondepudi, D., and Prigogine, I. 1998. Modern Thermodynamics: From Heat Engines to Dissipative Structures. Chichester: Wiley.
Köppen, W. 1923. Die Klimate der Erde. Berlin: de Gruyter.
Kump, L. R., Brantley, S. L., and Arthur, M. A. 2000. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci., 28, 611–667.
Lambert, F. L. 2002. Entropy is simple, qualitatively. J. Chem. Ed., 79, 1241–1246.
Landsberg, P T, and Tonge, G. 1979. Thermodynamics of the conversion of diluted radiation. J. Phys. A, 12, 551–562.
Landsberg, P. T., and Tonge, G. 1980. Thermodynamic energy conversion efficiencies. J. Appl. Phys., 51, R1.
Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A. J., Falk, M., Fuentes, J. D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I. A., Jarvis, P., Jensen, N. O., Katul, G., Malhi, Y., Matteucci, G., Meyers, T., Monson, R., Munger, W., Oechel, W., Olson, R., Pilegaard, K., U, K. T. Paw, Thorgeirsson, H., Valentini, R., Verman, S., Vesala, T., Wilson, K., and Wofsy, S. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteor., 113, 97–120.
Leff, H. S. 1996. Thermodynamic entropy: the spreading and sharing of energy. Am. J. Phys., 64, 1261–1271.
Leff, H. S. 2007. Entropy, its language, and interpretation. Found. Phys., 37, 1744–1766.
Lejeune, O, and Tlidi, M. 1999. A model for the explanation of vegetation stripes (Tiger Bush). J. Veg. Sci., 10, 201–208.
Lejeune, O., Tlidi, M., and Couteron, P. 2002. Localized vegetation patches: a selforganized response to resource scarcity. Phys. Rev. E, 66, 010901.
Lenardic, A, Moresi, L.-N., Jellinek, A. M., and Manga, M. 2005. Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett., 234, 317–333.
Lenton, T. M. 1998. Gaia and natural selection. Nature, 394, 439–447.
Lenton, T. M., Schellnhuber, H. J., and Szathmary, E. 2004. Climbing the co-evolutionary ladder. Nature, 913.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J. 2008. Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. USA, 105, 1786–1793.
Li, L., Ingersoll, A. P., Jiang, X., Feldman, D., and Yung, Y. L. 2007. Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813.
Liao, W., Heijungs, R., and Huppes, G. 2012. Thermodynamic analysis of human– environment systems: a review focused on industrial ecology. Ecol. Mod., 228, 76–88.
Lineweaver, C. H., and Chopra, A. 2012. Earth and other Earths: astrophysical, geochemical, geophysical, and biological limits on planet habitability. Annu. Rev. Earth Planet. Sci., 40, 597–623.
Lineweaver, C. H., and Egan, C. A. 2008. Life, gravity and the second law of thermodynamics. Phys. Life Rev., 5, 225–242.
Lobell, D. B., Cassman, K. G., and Field, C. B. 2009. Crop yield gaps: their importance, magnitudes, and causes. Ann. Rev. Environ. Resour., 34, 179–204.
Lorenz, E. N. 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.
Lorenz, E. N. 1960. Generation of available potential energy and the intensity of the general circulation. Pages 86–92 of: Pfeffer, R. C. (ed), Dynamics of Climate. Oxford: Pergamon Press.
Lorenz, R. D. 2002. Planets, life and the production of entropy. Intl. J. Astrobiol., 1, 3–13.
Lorenz, R. D. 2010. The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies. Phil. Trans. R. Soc. B, 365, 1349–1354.
Lorenz, R. D., and Renno, N. O. 2002. Work output of planetary atmospheric engines: dissipation in clouds and rain. Geophys. Res. Lett., 29, 1023.
Lorenz, R. D., Lunine, J. I., Withers, P. G., and McKay, C. P. 2001. Titan, Mars and Earth: entropy production by latitudinal heat transport. Geophys. Res. Lett., 28, 415–418.
Lotka, A. J. 1921. Note on the economic conversion factors of energy. Proc. Natl. Acad. Sci. USA, 7, 192–197.
Lotka, A. J. 1922a. Contribution to the energetics of evolution. Proc. Natl. Acad. Sci. USA, 8, 147–151.
Lotka, A. J. 1922b. Natural selection as a physical principle. Proc. Natl. Acad. Sci. USA, 8, 151–154.
Lotka, A. J. 1925. Elements of Physical Biology. Baltimore: Williams and Wilkins.
Lovelock, J. E. 1965. A physical basis for life detection experiments. Nature, 207, 568–570.
Lovelock, J. E. 1972a. Gaia: A New Look at Life on Earth. Oxford: Oxford University Press.
Lovelock, J. E. 1972b. Gaia as seen through the atmosphere. Atmos. Environ., 6, 579–580.
Lovelock, J. E. 1975. Thermodynamics and the recognition of alien biospheres. Proc. Roy. Soc. Lond. B, 189, 167–181.
Lovelock, J. E., and Margulis, L. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26, 2–10.
Lunine, J. I., and Lorenz, R. D. 2002. A simple prescription for calculating day–night temperature contrasts on synchronously rotating planets. In: 33rd Annual Lunar and Planetary Science Conf., Houston, TX, 11–15 March, 2002.
Lyons, T. J. 2002. Clouds prefer native vegetation. Met. Atmos. Phys., 80, 131–140.
Magnus, G. 1844. Versuche über die Spannkräfte des Wasserdampfs. Ann. Phys. Chem., 61, 225–248.
Makkink, G. F. 1957. Testing the Penman formula by means of lysimeters. J. Inst. Wat. Engrs., 11, 277–288.
Manabe, S., and Moeller, F. 1961. On the radiative equilibrium and heat balance of the atmosphere. Mon. Wea. Rev., 89, 503–532.
Marais, D. J. Des. 2000. When did photosynthesis emerge on Earth?Science, 289, 1703–1705.
Marchetti, C. 1979. 1012: a check on the Earth-carrying capacity for man. Energy, 4, 1107–1117.
Margules, M. 1905. Über die Energie der Stürme. Jahrb. Zentralanst. Meteorol., 40, 1–26.
Martin, R. D. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293, 57–60.
Martin, W. F., Sousa, F. L., and Lane, N. 2014. Energy at life's origin. Science, 344, 1092–1093.
Martyushev, L. M., and Seleznev, V. D. 2006. Maximum entropy production principle in physics, chemistry, and biology. Phys. Rep., 426, 1–45.
Masuda, K. 1988. Meridional heat transport by the atmosphere and the ocean: analysis of FGGE data. Tellus A, 40, 285–302.
McDonald, J. E. 1960. Direct absorption of solar radiation by atmospheric water vapor. J. Meteor., 17, 319–328.
McNaughton, K. G., and Spriggs, T. W. 1986. A mixed-layer model for regional evaporation. Bound. Lay. Meteorol., 34, 243–262.
McNaughton, S. J. 1979. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat., 113, 691–703.
Meadows, D. H., Meadows, D. L, Randers, J., and III, W. W. Behrens. 1972. The Limits to Growth. New York: Universe Books.
Metchnik, V. I., Gladwin, M. T., and Stacey, F. D. 1974. Core convection as a power source for the geomagnetic dynamo: a thermodynamic argument. J. Geomag. Geoelectr., 26, 405–415.
Meyer, H.J. 1886. Meyers Konversations-Lexikon: Eine Encyklopädie des allgemeinen Wissens. No. Bd. 4. Leipzig: Bibliographisches Institut.
Meysman, F. J. R., and Bruers, S. 2007. A thermodynamic perspective on food webs: quantifying entropy production within detrital-based ecosystems. J. Theor. Biol., 249, 124–139.
Miller, L M, Gans, F, and Kleidon, A. 2011a. Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dynam., 2, 1–12.
Miller, L. M., Gans, F., and Kleidon, A. 2011b. Jet stream wind power as a renewable energy resource: little power, big impacts. Earth Syst. Dynam., 2, 201–212.
Milly, P. C. D. 1994. Climate, soil water storage, and the average annual water balance. Water Resour. Res., 30, 2143–2156.
Monsi, M., and Saeki, T. 1953. Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. J. Bot., 14, 22–52.
Monteith, J. L. 1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol., 9, 747–766.
Monteith, J. L. 1977. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. B, 281, 277–294.
Monteith, J. L. 1978. Reassessment of maximum growth rates for C3 and C4 crops. Expl. Agric., 14, 1–5.
Mortimer, R. G., and Mazo, R. M. 1961. Irreversible thermodynamics of systems containing radiation. Application to photochemical reactions. J. Chem. Phys., 35, 1013–1018.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A. 2012. Closing yield gaps through nutrient and water management. Nature, 490, 254–257.
Mulligan, J. F., and Hertz, H. G. 1997. An unpublished lecture by Heinrich Hertz: “On the energy balance of the Earth.”Am. J. Phys., 65, 36–45.
Munk, W., and Wunsch, C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1977–2010.
Murphy, D. J., and Hall, C. A. S. 2011a. Energy return on investment, peak oil, and the end of economic growth. Ann. N. Y. Acad. Sci., 1219, 52–72.
Murphy, D. J., and Hall, C. A. S. 2011b. Year in review: EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci., 1185, 102–118.
Nair, U. S., Wu, Y., Kala, J., Lyons, T. J., Sr., R. A. Pielke, and Hacker, J. M. 2011. The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J. Geophys. Res., 116, D07103.
Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, H. G., da Silva, E. D., Stone, T. A, Trumbore, S. E., and Vieira, S. 1994. The role of deep roots in the hydrological and carbon cycles of Amazon forests and pastures. Nature, 372, 666–669.
Nepstad, D. C., Stickler, C. M., Soares-Filho, B., and Merry, F. 2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Phil. Trans. R. Soc. B, 363, 1737–1746.
Nihous, G. C. 2006. A preliminary assessment of ocean thermal energy conversion resources. J. Energy Resour. Technol., 129, 10–17.
Nisbet, E. G., and Sleep, N. H. 2001. The habitat and nature of early life. Nature, 409, 1083–1091.
Novikov, I. I. 1958. The efficiency of atomic power stations (A review). J. Nuclear Energy II, 7, 125–128.
Odum, E. P. 1969. The strategy of ecosystem development. Science, 164, 262–270.
Odum, H. T. 1973. Energy, ecology and economics. Ambio, 2, 220–227.
Odum, H. T. 1988. Self-organization, transformity, and information. Science, 242, 1132–1139.
Odum, H. T., and Pinkerton, R. C. 1955. Time's speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci., 43, 331–343.
Oke, T R. 1987. Boundary Layer Climates. London: Methuen.
Oki, T, and Kanae, S. 2006. Global hydrological cycle and world water resources. Science, 313, 1068–1072.
Oort, A. H. 1989. Angular momentum cycle in the atmosphere-ocean-solid Earth system. Bull. Amer. Meteorol. Soc., 70, 1231–1242.
Oort, A. H., Ascher, S. C., Levitus, S., and Peixoto, J. P. 1989. New estimates of the available potential energy in the world ocean. J. Geophys. Res., 94, 3187–3200.
Oort, A. H., Anderon, L. A., and Peixoto, J. P. 1994. Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 7665–7688.
Ornstein, L, Aleinov, I, and Rind, D. 2009. Irrigated afforestation of the Sahara and Australian Outback to end global warming. Clim. Change, 97, 409–437.
Ostwald, W. 1909. Energetische Grundlagen der Kulturwissenschaften. Leipzig: Klinkhardt.
Ou, H. W. 2001. Possible bounds on the Earth's surface temperature: from the perspective of a conceptual global-mean model. J. Clim., 14, 2976–2988.
Ou, H. W. 2006. Thermal properties of a coupled ocean-atmosphere: a conceptual model. Tellus, 58(3), 404–415.
Ou, H. W. 2007. Hydrological cycle and ocean stratification in a coupled climate system: a theoretical study. Tellus, 59A, 683–694.
Ozawa, H., and Ohmura, A. 1997. Thermodynamics of a global-mean state of the atmosphere: a state of maximum entropy increase. J. Clim., 10, 441–445.
Ozawa, H., Shimokawa, S., and Sakuma, H. 2001. Thermodynamics of fluid turbulence: A unified approach to the maximum transport properties. Phys. Rev. E, 64, 026303.
Ozawa, H., Ohmura, A., Lorenz, R. D., and Pujol, T. 2003. The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev. Geophys., 41, 1018.
Paltridge, G. W. 1975. Global dynamics and climate: a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc., 101, 475–484.
Paltridge, G. W. 1978. The steady-state format of global climate. Q. J. Roy. Meteorol. Soc., 104, 927–945.
Paltridge, G. W. 1979. Climate and thermodynamic systems of maximum dissipation. Nature, 279, 630–631.
Pascale, S., Gregory, J. M., Ambaum, M. H. P., and Tailleux, R. 2012. A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn., 38, 1211–1227.
Pascale, S., Ragone, F., Lucarini, V., Wang, Y., and Boschi, R. 2013. Nonequilibrium thermodynamics of circulation regimes in optically thin, dry atmospheres. Planet. Space Sci., 84, 48–65.
Pauluis, O., and Dias, J. 2012. Satellite estimates of precipitation-induced dissipation in the atmosphere. Science, 335, 953–956.
Pauluis, O., and Held, I.M. 2002a. Entropy budget of an atmosphere in radiative convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci., 59, 126–139.
Pauluis, O., and Held, I.M. 2002b. Entropy budget of an atmosphere in radiative convective equilibrium. Part II: latent heat transport and moist processes. J. Atmos. Sci., 59, 140–149.
Pauluis, O., Balaji, V., and Held, I. M. 2000. Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci., 57, 987–994.
Peixoto, J. P., and Oort, A. H. 1992. Physics of Climate. New York: American Institute of Physics.
Peixoto, J. P., Oort, A. H., de Almeida, M., and Tome, A. 1991. Entropy budget of the atmosphere. J. Geophys. Res., 96, 10,981–10,988.
Penman, H. L. 1948. Natural evaporation from open water bare soil and grass. Proc. R. Soc. London A, 193, 120–146.
Petela, R. 1964. Exergy of heat radiation. J. Heat Transfer, 86, 187–192.
Petela, R. 2003. Exergy of undiluted thermal radiation. Solar Energy, 74, 469–488.
Pierrehumbert, R. T. 2002. The hydrologic cycle in deep-time climate problems. Nature, 419, 191–198.
Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., and Whitman, R. J. 1973. Food production and the energy crisis. Science, 182, 443–449.
Planck, M. 1906. Theorie der Wärmestrahlung. Leipzig: Barth.
Porada, P., Kleidon, A., and Schymanski, S. J. 2011. Entropy production of soil hydrological processes and its maximization. Earth Syst. Dynam., 2, 179–190.
Press, W. H. 1976. Theoretical maximum for energy from direct and diffuse sunlight. Nature, 264, 734–735.
Price, C., Penner, J., and Prather, M. 1997. NOx from lightning. 1: global distribution based on lightning physics. J. Geophys. Res., 102, 5929–5941.
Priestley, C. H. B., and Taylor, R. J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 81–92.
Prigogine, I. 1947. Etude Thermodynamique des Phenomenes Irreversibles. Liege Belgium: Desoer.
Prigogine, I. 1962. Introduction to Non-equilibrium Thermodynamics. New York: Wiley Interscience.
Prigogine, I. 1978. Time, structure, and fluctuations. Science, 201, 777–785.
Prigogine, I., Nicolis, G., and Babloyantz, A. 1972. Thermodynamics of evolution. Phys. Today, 25, 23–28.
Rabinowitch, E., and Govindjee, . 1969. Photosynthesis. New York: Wiley.
Radmer, R., and Kok, B. 1977. Photosynthesis: limited yields, unlimited dreams. Bioscience, 27, 599–605.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and Hartmann, D. 1989. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science, 243, 57–63.
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cy., 22, GB1003.
Raupach, M. R. 1998. Influences of local feedbacks on land-air exchanges of energy and carbon. Glob. Ch. Biol., 4, 477–494.
Renno, N O, and Ingersoll, A P. 1996. Natural convection as a heat engine: a theory for CAPE. J. Atmos. Sci., 53, 572–585.
Retallack, G. J. 2001. Cenozoic expansion of grasslands and climatic cooling. J. Geology, 109, 407–426.
Retallack, G. J. 2007. Coevolution of life and Earth. Pages 295–230 of: Schubert, G. (ed), Treatise of Geophysics. Amsterdam: Elsevier.
Rietkerk, M., Dekker, S., Wassen, M., Verkroost, A., and Bjerkens, M. 2004. A putative mechanism for bog patterning. Am. Nat., 163, 699–708.
Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Bras, R. L., Ijjasz-Vasquez, E., and Marani, A. 1992. Minimum energy and fractal structures of drainage networks. Water Resour. Res., 28, 2183–2195.
Rinaldo, A., Rodriguez-Iturbe, I., and Rigon, R. 1998. Channel networks. Ann. Rev. Earth Planet. Sci., 26, 289–327.
Rochetin, N., Lintner, B. R., Findell, K. L., Sobel, A. H., and Gentine, P. 2014. Radiative-convective equilibrium over a land surface. J. Clim., 27, 8611–8629.
Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Constanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J. A. 2009. A safe operating space for humanity. Nature, 461(472–475).
Rodgers, C. D. 1976. Minimum entropy exchange principle: reply. Q. J. Roy. Meteorol. Soc., 102, 455–457.
Rodriguez-Iturbe, I., and Rinaldo, A. 1997. Fractal River Basins: Chance and Self- Organization. Cambridge UK: Cambridge University Press.
Rogner, H. H., Barthel, F., Cabrera, M., Faaij, A., Girouc, M., Hall, D., Kagramanian, V., Kononov, S., Lefevre, T., Moreira, R., Nötstaller, R., Odell, P., and Taylor, M. 2000. Energy resources. In: World Energy Assessment: Energy and the Challenge of Sustainability. New York, USA: United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council.
Rojstaczer, S., Sterling, S. M., and Moore, N. J. 2001. Human appropriation of photosynthesis products. Science, 294, 2549–2552.
Romps, D. M., Seeley, J. T., Vallaro, D., and Molinari, J. 2014. Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851–854.
Romps, David M., and Charn, Alexander B. 2015. Sticky thermals: evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 2890–2901.
Rosen, M. A., and Scott, D. S. 2003. Entropy production and exergy destruction: Part I - hierarchy of Earth's major constituencies. Int. J. Hydrogen Energ., 28, 1307–1313.
Rosen, P. 1954. Entropy of radiation. Phys. Rev., 96, 555.
Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: prediction from climatological data. Am. Nat., 102, 67–74.
Rosing, M. T., Bird, D. K., Sleep, N. H., Glassley, W., and Albarede, F. 2006. The rise of continents: an essay on the geologic consequences of photosynthesis. Paleogeogr. Paleocl., 232, 99–113.
Ross, R. T. 1966. Thermodynamic limitations on the conversion of radiant energy into work. J. Chem. Phys., 45, 1–7.
Rotenberg, E., and Yakir, D. 2010. Contribution of semi-arid forests to the climate system. Science, 327, 451–454.
Rotenberg, E., and Yakir, D. 2011. Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Glob. Ch. Biol., 17, 1536–1548.
Rubin, D. M., and Hunter, R. E. 1987. Bedform alignment in directionally varying flows. Science, 237, 276–278.
Ruimy, A., Jarvis, P. G., Baldocchi, D. D., and Saugier, B. 1995. CO2 fluxes over plant canopies and solar radiation: a review. Adv. Ecol. Res., 26, 1–68.
Russell, M. J., and Hall, A. J. 1997. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London, 154, 377–402.
Sagan, C., and Mullen, G. 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science, 177, 52–56.
Schlaich, J., Bergermann, R., Schiel, W., and Weinrebe, G. 2005. Design of commercial solar updraft tower systems: utilization of solar induced convective flows for power generation. J. Solar Energy Eng., 127, 117–124.
Schlesinger, W H. 1997. Biogeochemistry: An Analysis of Global Change. San Diego: Academic Press.
Schmidt, W. 1915. Strahlung und Verdunstung an freien Wasserflächen; ein Beitrag zum Wärmehaushalt des Weltmeeres und zum Wasserhaushalt der Erde. Ann. d. Hydrogr. u. maritimen Meteorol., 43, 111–178.
Schneider, E. D., and Kay, J. J. 1994a. Complexity and thermodynamics: towards a new ecology. Futures, 26, 626–647.
Schneider, E. D., and Kay, J. J. 1994b. Life as a manifestation of the second law of thermodynamics. Math. Comput. Modeling, 19, 25–48.
Schrenk, M. O., Brazelton, W. J., and Lang, S. Q. 2013. Serpentinization carbon, and deep life. Rev. Mineral. Geochem., 75, 575–606.
Schrödinger, E. 1944. What is Life? The Physical Aspect of the Living Cell. Cambridge, UK: Cambridge University Press.
Schumann, U., and Huntrieser, H. 2007. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys., 7, 3823–3907.
Schwartzman, D. W., and Middendorf, G. 2000. Biospheric cooling and the emergence of intelligence. Pages 425–429 of: Lemarchand, G., and Meech, K. (eds), A New Era in Bioastronomy. ASP Conference Series, Vol. 213.
Schwartzman, D. W., and Volk, T. 1989. Biotic enhancement of weathering and the habitability of Earth. Nature, 340, 457–460.
Schymanski, S. J., Kleidon, A., Stieglitz, M., and Narula, J. 2010. Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems. Phil. Trans. R. Soc. B, 365(1449–1455).
Seager, S. 2013. Exoplanet habitability. Science, 340, 577–581.
Shock, E. L., and Holland, M. E. 2007. Quantitative habitability. Astrobiology, 7, 839–851.
Shukla, J., and Mintz, Y. 1982. The influence of land-surface-evapotranspiration on the Earth's climate. Science, 247, 1322–1325.
Shutts, G. J. 1981. Maximum entropy production states in quasi-geostrophic dynamical models. Q. J. Roy. Meteorol. Soc., 107(453), 503–520.
Simoncini, E., Russell, M. J., and Kleidon, A. 2011. Modeling free energy availability from Hadean hydrothermal systems to first metabolism. Orig. Life Evol. Biosph., 41, 529–532.
Simoncini, E., Virgo, N., and Kleidon, A. 2013. Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth's atmosphere. Earth Syst. Dynam., 4, 317–331.
Smil, V. 1999. Energies: An Illustrated Guide to the Biosphere and Civilization. Cambridge, MA, USA: MIT Press.
Smil, V. 2000. Energy in the twentieth century: resources, conversions, costs, uses, and consequences. Annu. Rev. Energy Environ., 25, 21–51.
Smith, W. K., Cleveland, C. C., Reed, S. C., and Running, S. W. 2014. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophys. Res. Lett., 41, 449–455.
Sperry, J. S. 2000. Hydraulic constraints on plant gas exchange. Agric. Forest Meteorol., 104, 13–23.
Spohn, T. 2012. Planets and life. Spatium, 30, 3–15.
Stacey, F. D. 1967. Convecting mantle as a thermodynamic engine. Nature, 214, 476–477.
Stephens, G. L., and O'Brien, D. M. 1993. Entropy and climate. 1. ERBE observations of the entropy production of the Earth. Q. J. Roy. Meteorol. Soc., 119(509), 121–152.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T. 2012. An update on Earth's energy balance in light of the latest global observations. Nature Geosci., 691–696.
Stevens, B. 2005. Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605–643.
Stevens, B., and Bony, S. 2013. What are climate models missing?Science, 340, 1053–1054.
Stevenson, D. J. 1983. Planetary magnetic fields. Rep. Prog. Phys., 46, 555–620.
Stevenson, D. J., Spohn, T., and Schubert, G. 1983. Magnetism and thermal evolution of the terrestrial planets. Icarus, 54, 466–489.
Stone, P. H. 1978. Constraints on dynamical transports of energy on a spherical planet. Dynamics of Atmospheres and Oceans, 2, 123–139.
Stull, R B. 1989. An Introduction to Boundary Layer Meteorology. Boston: Kluwer Academic Press.
Tailleux, R. 2010. Entropy versus APE production: on the buoyancy input in the oceans energy cycle. Geophys. Res. Lett., 37, L22603.
Tailleux, R. 2013. Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech., 45, 35–58.
Tamura, S. T. 1905. Doctor Margules on the energy of storms. Mon.Wea. Rev., 33, 519–521.
Taylor, S. R., and McLennan, S. M. 1996. The evolution of continental crust. Sci. Am., 274, 76–81.
Tennekes, H. 1973. A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558–566.
Thompson, A. M. 1992. The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science, 256, 1157–1165.
Thomson, W. 1881. On the sources of energy in nature available to man for the production of mechanical effect. Science, 2, 475–478.
Trenberth, K. E., and Caron, J. M. 2001. Estimates of meridional atmosphere and ocean heat transports. J. Clim., 14, 3433–3443.
Ulanowicz, R. E., and Hannon, B. M. 1987. Life and the production of entropy. Proc. R. Soc. Lond. B, 232, 181–192.
Unrean, P., and Srienc, F. 2011. Metabolic networks evolve towards states of maximum entropy production. Metabolic Engineering, 13, 666–673.
Vallino, J. J. 2010. Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Phil. Trans. R. Soc. B, 365, 1417–1427.
Vance, E. 2009. High hopes. Nature, 460, 564–566.
Vanyo, J. P., and Paltridge, G. W. 1981. A model for energy dissipation at the mantle-core boundary. Geophys. J., 66(3), 677–690.
Verhoogen, J. 1980. Energetics of the Earth. Washington DC: National Academy of Sciences.
Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., and Matson, P. A. 1986. Human appropriation of the products of photosynthesis. Bioscience, 36, 368–373.
Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J.M. 1997. Human domination of Earth's ecosystems. Science, 277, 494–499.
Volk, T. 1998. Gaia's Body: Toward a Physiology of Earth. New York: Springer.
Volk, T, and Pauluis, O. 2010. It is not the entropy you produce, rather, how you produce it. Phil. Trans. R. Soc. B, 365, 1317–1322.
von Storch, J.-S., Eden, C., Fast, I., Haak, H., Hernandez-Deckers, D., Maier-Reimer, E., Marotzke, J., and Stammer, D. 2012. An estimate of the Lorenz energy cycle for the world ocean based on the 1/10” STORM/NCEP simulation. J. Phys. Oceanogr., 42, 2185–2205.
Walker, D. 1992. Energy, Plants and Man. Sausalito, CA, USA: University Science Books.
Walker, J. C., Hays, P. B., and Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res., 86, 9776–9782.
Wallace, J. M., and Hobbs, P. V. 1977. Atmospheric Science: An Introductory Survey. New York: Academic Press.
Wang, J., Salvucci, G. D., and Bras, R. L. 2004. An extremum principle of evaporation. Water Resour. Res., 40, W09303.
Wang, J., Bras, R. L., Lerdau, M., and Salvucci, G. D. 2007. A maximum hypothesis of transpiration. J. Geophys. Res., 112, G03010.
Werner, B. T. 1999. Complexity in natural landform patterns. Science, 284, 102–104.
West, G. B., Brown, J. H., and Enquist, B. J. 1997. A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.
West, G. B., Brown, J. H., and Enquist, B. J. 1999. A general model for the structure and allometry of plant vascular systems. Nature, 400, 664–667.
Wheeler, P. E. 1991a. The influence of bipedalism on the energy and water budgets of early hominids. J. Human Evol., 21, 117–136.
Wheeler, P. E. 1991b. The thermoregulatory advantages of hominid bipedalism in open equatorial environments: the contribution of increased convective heat loss and cutaneous evaporative cooling. J. Human Evol., 21, 107–115.
Wheeler, R. M., Mackowiak, C. L., Stutte, G. W., Yorio, N. C., Ruffe, L. M., Sager, J. C., Prince, R. P., and Knott, W. M. 2008. Crop productivities and radiation use efficiencies for bioregenerative life support. Adv. Space Res., 41, 706–713.
Wildt, R. 1956. Radiative transfer and thermodynamics. Astrophys. J., 123, 107–116.
Wildt, R. 1972. Thermodynamics of the gray atmosphere. IV. Entropy transfer and production. Astrophys. J., 174, 69–77.
Williamson, S. C., Detling, J. K., Dodd, J. L., and Dyer, M. I. 1989. Experimental evaluation of the grazing optimization hypothesis. J. Range Manage., 42, 149–152.
Wofsy, S. C., Harriss, R. C., and Kaplan, W. A. 1988. Carbon dioxide in the atmosphere over the Amazon basin. J. Geophys. Res., 93, 1377–1387.
Wong, S. C., Cowan, I. R., and Farquhar, G. D. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature, 282, 424–426.
Woodward, F. I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617–618.
World Commission on Environment and Development. 1987. Our Common Future. Oxford: Oxford University Press.
Wu, W, and Liu, Y. 2010. Radiation entropy flux and entropy production of the Earth system. Rev. Geophys., 48, RG2003.
Xu, C.-Y., and Singh, V. P. 2000. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol. Process., 14, 339–349.
Xu, K.-M., Arakawa, A., and Krueger, S. K. 1992. The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49, 2402–2420.
Yen, J. D. L., Paganin, D. M., Thomson, J. R., and Macnally, R. 2014. Thermodynamic extremization principles and their relevance to ecology. Austral Ecology, 39, 619–632.
Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and Westhoff, M. 2013. A thermodynamic approach to link self-organization preferential flow and rainfall– runoff behaviour. Hydrol. Earth Syst. Sci., 17, 4297–4322.
Zener, C. 1973. Solar sea power. Phys. Today, 26, 48–53.
Zhou, X., Wang, F., and Ochieng, R. M. 2010. A review of solar chimney power technology. Renew. Sust. Energ. Rev., 14, 2315–2338.
Zhu, X.-G., Long, S. P., and Ort, D. R. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?Curr. Opin. Biotechnol., 19, 153–159.
Zotin, A. I. 1984. Bioenergetic trends of evolutionary progress of organisms. Pages 451–458 of: Lamprecht, I., and Zotin, A. I. (eds), Thermodynamics and Regulation of Biological Processes. Berlin New York: de Gruyter.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.