This 2000 book provides a self-contained introduction to typical properties of homeomorphisms. Examples of properties of homeomorphisms considered include transitivity, chaos and ergodicity. A key idea here is the interrelation between typical properties of volume preserving homeomorphisms and typical properties of volume preserving bijections of the underlying measure space. The authors make the first part of this book very concrete by considering volume preserving homeomorphisms of the unit n-dimensional cube, and they go on to prove fixed point theorems (Conley–Zehnder– Franks). This is done in a number of short self-contained chapters which would be suitable for an undergraduate analysis seminar or a graduate lecture course. Much of this work describes the work of the two authors, over the last twenty years, in extending to different settings and properties, the celebrated result of Oxtoby and Ulam that for volume homeomorphisms of the unit cube, ergodicity is a typical property.
Review of the hardback:'An interesting piece of research for the specialist.'
Source: Mathematika
Review of the hardback:'The authors of this book are undoubtedly the experts of generic properties of measure preserving homeomorphisms of compact and locally compact manifolds, continuing and extending ground-breaking early work by J. C. Oxtoby and S. M. Ulam. The book is very well and carefully written and is an invaluable reference for anybody working on the interface between topological dymanics and ergodic theory.'
Source: Monatshefte für Mathematik
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.