Skip to main content
×
×
Home
Understanding Space-Time
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 40
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Dolev, Yuval 2018. Physics’ silence on time. European Journal for Philosophy of Science,

    Bland, Steven 2018. Epistemic Relativism and Scepticism. p. 175.

    Neuber, Matthias 2018. Helmholtz, Kaila, and the Representational Theory of Measurement. HOPOS: The Journal of the International Society for the History of Philosophy of Science, p. 000.

    2018. A Simplex Approach to Learning, Cognition, and Spatial Navigation. p. 1.

    Epstein, Peter Fisher 2018. Shape Perception in a Relativistic Universe. Mind, Vol. 127, Issue. 506, p. 339.

    Bland, Steven 2018. Epistemic Relativism and Scepticism. p. 215.

    Dorato, Mauro 2017. Dynamical versus structural explanations in scientific revolutions. Synthese, Vol. 194, Issue. 7, p. 2307.

    Schmaus, Warren 2017. Henri Poincaré and Charles Renouvier on Conventions; or, How Science Is Like Politics. HOPOS: The Journal of the International Society for the History of Philosophy of Science, Vol. 7, Issue. 2, p. 182.

    Dunlop, Katherine 2017. Poincaré on the Foundations of Arithmetic and Geometry. Part 2: Intuition and Unity in Mathematics. HOPOS: The Journal of the International Society for the History of Philosophy of Science, Vol. 7, Issue. 1, p. 88.

    Alican, Necip Fikri 2017. Kant's Neglected Alternative: Neither Neglected nor An Alternative. The Philosophical Forum, Vol. 48, Issue. 1, p. 69.

    Giovanelli, Marco 2017. Traditions in Collision: The Emergence of Logical Empiricism between the Riemannian and Helmholtzian Traditions. HOPOS: The Journal of the International Society for the History of Philosophy of Science, Vol. 7, Issue. 2, p. 328.

    Slowik, Edward 2016. The Deep Metaphysics of Space. p. 3.

    Weatherall, James Owen 2016. Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times. Philosophy of Science, Vol. 83, Issue. 1, p. 82.

    Slowik, Edward 2016. The Deep Metaphysics of Space. p. 303.

    Curiel, Erik 2016. On the Existence of Spacetime Structure. The British Journal for the Philosophy of Science, p. axw014.

    Dunlop, Katherine 2016. Poincaré on the Foundations of Arithmetic and Geometry. Part 1: Against “Dependence-Hierarchy” Interpretations. HOPOS: The Journal of the International Society for the History of Philosophy of Science, Vol. 6, Issue. 2, p. 274.

    Slowik, Edward 2016. The Deep Metaphysics of Space. p. 275.

    Slowik, Edward 2016. The Deep Metaphysics of Space. p. 29.

    Giovanelli, Marco 2013. The Forgotten Tradition: How the Logical Empiricists Missed the Philosophical Significance of the Work of Riemann, Christoffel and Ricci. Erkenntnis, Vol. 78, Issue. 6, p. 1219.

    Smeenk, Chris 2013. A Companion to the Philosophy of Time. p. 201.

    ×

Book description

Presenting the history of space-time physics, from Newton to Einstein, as a philosophical development DiSalle reflects our increasing understanding of the connections between ideas of space and time and our physical knowledge. He suggests that philosophy's greatest impact on physics has come about, less by the influence of philosophical hypotheses, than by the philosophical analysis of concepts of space, time and motion, and the roles they play in our assumptions about physical objects and physical measurements. This way of thinking leads to interpretations of the work of Newton and Einstein and the connections between them. It also offers ways of looking at old questions about a priori knowledge, the physical interpretation of mathematics, and the nature of conceptual change. Understanding Space-Time will interest readers in philosophy, history and philosophy of science, and physics, as well as readers interested in the relations between physics and philosophy.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
References
Barbour, J. and Pfister, H. (eds) (1995). Mach's Principle: From Newton's Bucket to Quantum Gravity. Einstein Studies, vol. 6. Boston: Birkhäuser.
Belot, G. and Earman, J. (2001). Pre-Socratic quantum gravity. In Physics Meets Philosophy at the Planck Scale, eds Callander, C. and Huggett, N.. Cambridge: Cambridge University Press, pp. 213–55.
Ben-Menachem, Y. (2001). Convention: Poincaré and some of his critics. British Journal for the Philosophy of Science, 52, 471–513.
Bishop, R. and Goldberg, S. (1980). Tensor Analysis on Manifolds. New York: Dover Publications.
Bolzano, B. (1817). Rein analytische Beweis des Lehrsatz. In B. Bolzano, Early Mathematical Works, 1781–1848, ed. Novy, L.. Prague: Institute of Slovak and General History, 1981.
Carnap, R. (1956).Empiricism, semantics, and ontology. In Meaning and Necessity.Chicago: University of Chicago Press, Supplement A, pp. 205–21.
Carnap, R. (1995). An Introduction to the Philosophy of Science. New York: Dover Publications (reprint).
Carrier, M. (1994). Geometric facts and geometric theory: Helmholtz and 20th-century philosophy of physical geometry. In Universalgenie Helmholtz: Rückblick nach 100 Jahren, ed. Kruger, L.. Berlin: Akademie-Verlag.
Coffa, J. A. (1983). From geometry to tolerance: sources of conventionalism in the 19th century. In From Quarks to Quasars, ed. Colodny., R. G.Pittsburgh Studies in the Philosophy of Science, vol. X. Pittsburgh: University of Pittsburgh Press.
Coffa, J. A. (1991). The Semantic Tradition from Kant to Carnap. Cambridge: Cambridge University Press.
Demopoulos, W. (2000). On the origin and status of our conception of number. Notre Dame Journal of Formal Logic, 41, 210–26.
Demopoulos, W. (2003). On the rational reconstruction of our theoretical knowledge. British Journal for the Philosophy of Science, 54, 371–403.
Descartes, R. (1983). The Principles of Philosophy, transl. Miller, V. R. and Miller, R. P.. Dordrecht: Reidel.
Dingler, H. (1934). H. Helmholtz und die Grundlagen der Geometrie. Zeitschrift für Physik, 90, 348–54.
DiSalle, R. (1990). The “essential properties” of matter, space, and time. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA: MIT Press.
DiSalle, R. (1991). Conventionalism and the origins of the inertial frame concept. In PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association. East Lansing: The Philosophy of Science Association.
DiSalle, R. (2002a). Newton's philosophical analysis of space and time. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.
DiSalle, R. (2002b). Conventionalism and modern physics: a re-assessment. NoÛs, 36, 169–200.
DiSalle, R. (2002c). Reconsidering Ernst Mach on space, time, and motion. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago: Open Court Press.
DiSalle, R. (2002d). Space and time: inertial frames. In The Stanford Encyclopedia of Philosophy, <http://plato.stanford.edu/archives/win2003/entries/spacetime-iframes/>.
DiSalle, R. (2006). Kant, Helmholtz, and the meaning of empiricism. In Kant's Legacy, eds Friedman, M. and Nordmann, A.. Cambridge, MA: MIT Press.
Earman, J. (1989). World Enough and Spacetime: Absolute and Relational Theories of Motion. Cambridge, MA: MIT Press.
Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation. London: Fleetwood Press.
Eddington, A. S. (1920). Space, Time, and Gravitation. An Outline of General Relativity Theory. Cambridge: Cambridge University Press.
Eddington, A. S. (1923). The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.
Ehlers, J. (1973a). The nature and structure of space-time. In The Physicist's Conception of Nature, ed. Mehra, J.. Dordrecht: Reidel, pp. 71–95.
Ehlers, J. (1973b). A survey of general relativity theory. In Relativity, Astrophysics, and Cosmology, ed. Israel, W.. Dordrecht: Reidel.
Einstein, A. (1905). Zur elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921.
Einstein, A. (1911). On the influence of gravitation on the propagation of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, 1952, pp. 97–108.
Einstein, A. (1916). Die Grundlage der allegemeinen Relativitätstheorie. Leipzig: Johann Ambrosius Barth. (Reprint from Annalen der Physik, (4) 49, 769–822.)
Einstein, A. (1917). Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd edn. Braunschweig: Vieweg und Sohn.
Einstein, A. (1919). Was ist Relativitäts-Theorie? In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ: Princeton University Press, pp. 206–11.
Einstein, A. (1920). Grundgedanken und Methoden der Relativitätstheorie in ihrer Entwickelung dargestellt. In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ: Princeton University Press, pp. 212–49.
Einstein, A. (1922). The Meaning of Relativity. Princeton, NJ: Princeton University Press.
Einstein, A. (1949). Autobiographical notes. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago: Open Court, pp. 2–94.
Eisenstadt, J. (1989). The low-water mark of general relativity, 1925–1950. In Einstein and the History of General Relativity, Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 277–92.
Euler, L. (1748). Réflexions sur l'espace et le temps. Histoire de l'Academie Royale des sciences et belles lettres, 4, 324–33.
Euler, L. (1765). Theoria motus corporum solidorum. Rostock and Greifswald, 1765.
Flores, F. (1999). Einstein's theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13, 123–34.
Fock, V. (1959). The Theory of Space, Time, and Gravitation, transl. Kemmer, N.. London: Pergamon Press.
Friedman, M. (1983). Foundations of Space-time Theories. Princeton, NJ: Princeton University Press.
Friedman, M. (1990). Kant and Newton: why gravity is essential to matter. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA: MIT Press.
Friedman, M. (1992). Kant and the Exact Sciences. Cambridge, MA: Harvard University Press.
Friedman, M. (1999a). Geometry, convention, and the relativized a priori: Reichenbach, Schlick, and Carnap. In Reconsidering Logical Positivism. Cambridge: Cambridge University Press, pp. 59–70.
Friedman, M. (1999b). Poincaré's conventionalism and the logical positivists. In Reconsidering Logical Positivism. Cambridge: Cambridge University Press, pp. 71–86.
Friedman, M. (1999c). Geometry, construction, and intuition in Kant and his successors. In Between Logic and Intuition: Essays in Honor of Charles Parsons, eds Scher, G. and Tieszen, R.. Cambridge: Cambridge University Press.
Friedman, M. (2002a). Geometry as a branch of physics: background and context for Einstein's “Geometry and Experience”. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago: Open Court Press.
Friedman, M. (2002b). The Dynamics of Reason: the 1999 Kant Lectures at Stanford University. Chicago: University of Chicago Press.
Galileo, (1632 [1996]). Dialogo Sopra I Due Massimi Sistemi del Mondo – Ptolemaico e Copernicano. Florence, 1632. Reprint, Milan: Oscar Mondadori.
Geroch, R. (1978). General Relativity from A to B. Chicago: University of Chicago Press.
Hall, A. R. and Hall, M. B. (eds) (1962). Unpublished Scientific Papers of Isaac Newton. Cambridge: Cambridge University Press.
Hawking, S. and Ellis, G. F. R. (1973). The Large-Scale Structure of Space-Time. Cambridge: Cambridge University Press.
Helmholtz, H. (1868). Über die Thatsachen, die der Geometrie zum Grunde liegen. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, 9, 193–221. Reprinted in Wissenschaftliche Abhandlungen, 2, 618–39.
Helmholtz, H. (1870). Ueber den Ursprung und die Bedeutung der geometrischen Axiome. In Vorträge und Reden, 2 vols. Braunschweig: Vieweg und Sohn, pp. 1–31.
Helmholtz, H. (1878). Die Thatsachen in der Wahrnehmung. In Vorträge und Reden, 2 vols. Braunschweig: Vieweg und Sohn, pp. 215–47.
Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretische betrachtet. Wissenschaftliche Abhandlungen, vol. 3. Leipzig: J. A. Barth, pp. 356–91.
Helmholtz, H. (1921). Schriften zur Erkenntnistheorie, eds Hertz, P. and Schlick, M.. Berlin: Springer-Verlag.
Hughes, R. I. G. (1987). The Structure and Interpretation of Quantum Mechanics. Cambridge: Cambridge University Press.
Kant, I. (1764 [1911]). Untersuchung ueber die Deutlichkeit der Grundsaetze der naturlichen Theologie und der Moral (the “Prize Essay”). In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 273–301.
Kant, I. (1768 [1911]). Von dem ersten Grunde des Unterschiedes der Gegenden im Raume. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 375–83.
Kant, I. (1770). De mundi sensibilis atque intelligibilis forma et principiis. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 385-419.
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 4.
Kant, I. (1786 [1911]). Metaphysische Anfangsgründe der Naturwissenschaft. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reiner, vol. 4, pp. 465–565.
Kant, I. (1787 [1956]). Kritik der reinen Vernunft. Reprint, Berlin: Felix Meiner Verlag.
Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: A. Duchert.
Kretschmann, E. (1917). Ueber die physikalischen Sinn der Relativitätspostulaten. Annalen der Physik, (4) 53, 575-614.
Kuhn, T. (1970a). The Structure of Scientific Revolutions, 2nd edn. Chicago: University of Chicago Press.
Kuhn, T. (1970b). Logic of discovery or psychology of research? In Criticism and the Growth of Knowledge, eds Lakatos, I. and Musgrave, A.. Cambridge: Cambridge University Press.
Kuhn, T. (1977). A function for thought-experiments. In The Essential Tension. Chicago: University of Chicago Press.
Lange, L. (1885). Ueber das Beharrungsgesetz. Berichte der Königlichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physische Classe, 37, 333–51.
Leibniz, G. W. (1694). Letter to C. Huygens. In Die mathematische Schriften von Gottfried Wilhelm Leibniz. Berlin, 1849–55. Reprint, Hildeshein: Georg Olms, vol. II, pp. 179–85.
Leibniz, G. W. (1695 [1960]). Systeme nouveau de la nature et de la communication des substances, aussi bien que l'union qu'il y a entre l'ame le corps. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875–90. Reprint, Hildeshein: Georg Olms, vol. IV, pp. 477–87.
Leibniz, G. W. (1699). Letter to B. de Volder. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein: Georg Olms, pp. 168–70.
Leibniz, G. W. (1716). Correspondence with S. Clarke. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein: Georg Olms, vol. VII, pp. 345–440.
Lorentz, H. A. (1895). Michelson's interference experiment. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, pp. 3–7.
Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, pp. 11–34.
Mach, E. (1883). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt. Leipzig: Brockhaus.
Mach, E. (1889). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt, 2nd edn. Leipzig: Brockhaus.
Magnani, L. (2002). Philosophy and Geometry: Theoretical and Historical Issues. Western Ontario Series in Philosophy of Science, vol. 66. Dordrecht: Kluwer.
Malament, D. (1986). Newtonian gravity, limits, and the geometry of space. In From Quarks to Quasars: Philosophical Problems of Modern Physics, ed. Colodny, R.. Pittsburgh: Pittsburgh University Press.
Maxwell, J. (1877). Matter and Motion. New York: Dover Publications (reprint 1952).
Mill, J. S. (1843). A System of Logic. London: Parker and Son.
Minkowski, H. (1908). Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physische Klasse, pp. 53–111.
Minkowski, H. (1909). Raum und Zeit. Physikalische Zeitschrift, 10, 104–11.
Misner, C., Thorne, K. and Wheeler, J. A. (1973). Gravitation. New York: W. H. Freeman.
Nagel, E. (1939). The formation of modern conceptions of formal logic in the development of geometry. Osiris, 7, 142–224.
Neumann, C. (1870). Ueber die Principien der Galilei-Newton'schen Theorie. Leipzig: B. G. Teubner.
Newcombe, S. (1910). Light. In Encyclopaedia Britannica, 11th edn, vol. 16, sect. III, pp. 623–6.
Newton, I. (1704 [1952]). Opticks. London. Reprint, New York: Dover Publications.
Newton, I. (1726 [1999]). The Principia: Mathematical Principles of Natural Philosophy, transl. Cohen, I. B. and Whitman, A.. Berkeley and Los Angeles: University of California Press.
Newton, I. (1729 [1962]). The System of the World. In Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of the World, ed. Cajori, F., transl. Motte, A., 2 vols. Berkeley: University of California Press.
Norton, J. (1989a). What was Einstein's principle of equivalence? In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 5–47.
Norton, J. (1989b). How Einstein found his field equations. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 101–59.
Poincaré, H. (1899a). Des fondements de la géométrie; a propos d'un livre de M. Russell. Revue de Metaphysique et de Morale, VII, 251–79.
Poincaré, H. (1899b). Des fondements de la géométrie; réponse à M. Russell. Revue de Metaphysique et de Morale, VIII, 73–86.
Poincaré, H. (1902). La Science et L'Hypothèse. Paris: Flammarion.
Poincaré, H. (1905). Sur la dynamique de l'électron. Comptes rendues de l'Académie des Sciences, 140, 1504–8.
Poincaré, H. (1913). Dernières Pensées. Paris: Flammarion.
Quine, W. V. O. (1953). Two dogmas of empiricism. In From a Logical Point of View. New York: Harper, pp. 20–46.
Reichenbach, H. (1924). Die Bewegungslehre bei Newton, Leibniz, und Huyghens. Kantstudien, 29, 239–45.
Reichenbach, H. (1949). The philosophical significance of relativity. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago: Open Court, pp. 289–311.
Reichenbach, H. (1957). The Philosophy of Space and Time, transl. Reichenbach, M.. New York: Dover Publications. (Originally published as Philosophie der Raum-Zeit-Lehre, Berlin, 1927.)
Riemann, B. (1867). Ueber die Hypothesen, die der Geometrie zu Grunde liegen. In The Collected Works of Bernhard Riemann, ed. Weber, H.. Leipzig: B. G. Teubner, 1902, pp. 272–87. Reprint, New York: Dover Publications, 1956.
Russell, B. (1897). An Essay on the Foundations of Geometry. Cambridge: Cambridge University Press.
Russell, B. (1899). Sur les axiomes de la géométrie. Revue de Metaphysique et de Morale, VII, 684–707.
Russell, B. (1927). The Analysis of Matter. Cambridge: Cambridge University Press.
Schlick, M. (1917). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der Relativitäts- und Gravitationstheorie.Berlin.
Sklar, L. (1977). Space, Time and Spacetime. Berkeley, CA: University of California Press.
Smith, G. E. (2003a). How Newton's Principia changed physics. Unpublished manuscript.
Smith, G. E. (2003b). Newton's Principia. Unpublished lecture notes, Tufts University.
Spivak, M. (1967). A Comprehensive Introduction to Differential Geometry. Berkeley, CA: Publish or Perish Press.
Stachel, J. (1989a). The rigidly rotating disk as the “missing link” in the history of general relativity. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 48–62.
Stachel, J. (1989b). Einstein's search for general covariance. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 63–100.
Stachel, J. (2002a). “What song the sirens sang”: How did Einstein discover special relativity? In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 157–70.
Stachel, J. (2002b). The genesis of general relativity. In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 233-4.
Stachel, J. (2002c). Einstein and Newton. In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 447-52.
Stachel, J. (2002d). Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser.
Stein, H. (1967). Newtonian space-time. Texas Quarterly, 10, 174–200.
Stein, H. (1977). Some philosophical prehistory of general relativity. In Foundations of Space-Time Theories, Minnesota Studies in Philosophy of Science, vol. 8, eds Earman, J., Glymour, C. and Stachel, J.. Minneapolis: University of Minnesota Press, pp. 3–49.
Stein, H. (2002). Newton's metaphysics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.
Synge, J. L. (1960). Relativity: The General Theory. Amsterdam: North-Holland.
Taylor, E. and Wheeler, J. A. (1978). Spacetime Physics. New York: Wiley.
Thomson, J. (1884). On the law of inertia; the principle of chronometry; and the principle of absolute clinural rest, and of absolute rotation. Proceedings of the Royal Society of Edinburgh, 12, 568–78.
Torretti, R. (1977). Philosophy of Geometry from Riemann to Poincaré. Dordrecht: Riedel.
Torretti, R. (1983). Relativity and Geometry. Oxford: Pergamon Press.
Torretti, R. (1989). Creative Understanding. Chicago: University of Chicago Press.
Trautman, A. (1965). Foundations and current problems of general relativity. In Lectures on General Relativity. Brandeis 1964 Summer Institute on Theoretical Physics, vol. 1, eds Trautman, A., Pirani, F. A. E. and Bondi, H.. Englewood Cliffs, NJ: Prentice-Hall.
Trautman, A. (1966). The general theory of relativity. Soviet Physics Uspekhi, 89, 319–39.
Truesdell, C. (1967). Reactions of late Baroque mechanics to success, conjecture, error, and failure in Newton's Principia. Texas Quarterly, 10, 238–58.
Fraassen, B. (1989). Laws and Symmetries. Oxford: Oxford University Press.
Weyl, H. (1918). Raum-Zeit-Materie. Vorlesung über allgemeine Relativitätstheorie. Berlin: Springer-Verlag.
Weyl, H. (1927). Philosophie der Mathematik und der Naturwissenschaften. In Oldenburg's Handbuch der Philosophie. Munich and Berlin: Verlag R. Oldenburg.
Will, C. (1993). Theory and Experiment in Gravitational Physics, revised edn. Cambridge: Cambridge University Press.
Wilson, C. (2002). Newton and celestial mechanics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed