Varieties of Integration explores the critical contributions by Riemann, Darboux, Lebesgue, Henstock, Kurzweil, and Stieltjes to the theory of integration and provides a glimpse of more recent variations of the integral such as those involving operator-valued measures. By the first year of graduate school, a young mathematician will have encountered at least three separate definitions of the integral. The associated integrals are typically studied in isolation with little attention paid to the relationships between them or to the historical issues that motivated their definitions. Varieties of Integration redresses this situation by introducing the Riemann, Darboux, Lebesgue, and gauge integrals in a single volume using a common set of examples. This approach allows the reader to see how the definitions influence proof techniques and computational strategies. Then the properties of the integrals are compared in three major areas: the class of integrable functions, the convergence properties of the integral, and the best form of the Fundamental Theorems of Calculus.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.