This book deals with vector algebra and analysis and with their application to three-dimensional geometry and the analysis of fields in three dimensions. While many treatments of the application of vectors have approached the fundamentals of the subject intuitively, assuming some prior knowledge of Euclidean and Cartesian geometry, Professor Chrisholm here bases the subject on the axioms of linear space algebra, which are fundamental to many branches of mathematics. While developing the properties of vectors from axioms, however, he continually emphasizes the geometrical interpretation of vector algebra in order to build up intuitive relations between the algebraic equations and geometrical concepts. Throughout, examples are used to illustrate the theory being developed; several sets of problems are incorporate in each chapter, and outline answers to many of these are given. Written primarily for undergraduate mathematicians in the early part of their courses, this lucidly written book will also appeal to mathematical physicists and to mathematically inclined engineers.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.