Skip to main content Accessibility help
×
Home
The Volume of Convex Bodies and Banach Space Geometry
  • Cited by 353
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This book aims to give a self-contained presentation of a number of results, which relate the volume of convex bodies in n-dimensional Euclidean space and the geometry of the corresponding finite-dimensional normed spaces. The methods employ classical ideas from the theory of convex sets, probability theory, approximation theory and the local theory of Banach spaces. The book is in two parts. The first presents self-contained proofs of the quotient of the subspace theorem, the inverse Santalo inequality and the inverse Brunn-Minkowski inequality. The second part gives a detailed exposition of the recently introduced classes of Banach spaces of weak cotype 2 or weak type 2, and the intersection of the classes (weak Hilbert space). The book is based on courses given in Paris and in Texas.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.