Skip to main content
×
×
Home
Wave Theory of Information

Book description

Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical information theory.

Reviews

'This is an excellent textbook that ties together information theory and wave theory in a very insightful and understandable way. It is of great value and highly recommended for students, researchers and practitioners. Professor Franceschetti brings a highly valuable textbook based on many years of teaching and research.'

Charles Elachi - California Institute of Technology and Director Emeritus of the Jet Propulsion Laboratory at NASA

'This book is about the physics of information and communication. It could be considered to be an exposition of Shannon information theory, where information is transmitted via electromagnetic waves. Surely Shannon would approve of it.'

Sanjoy K. Mitter - Massachusetts Institute of Technology

'Communication and information are inherently physical. Most of the literature, however, abstracts out the physics, treating them as mathematical or engineering disciplines. Although abstractions are necessary in the design of systems, much is lost in understanding the fundamental limits and how these disciplines fit together with the underlying physics. Franceschetti breaks the disciplinary boundaries, presenting communication and information as physical phenomena in a coherent, mathematically sophisticated, and lucid manner.'

Abbas El Gamal - Stanford University, California

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
Bibliography
V. R., Algazi, D. J., Sakrison (1969). On the optimality of the Karhunen–Loève expansion. IEEE Transactions on Information Theory, 15(2), pp. 319–21.
B. C., Barber (1993). The non-isotropic two-dimensional random walk. Waves in Random Media, 3, pp. 243–56.
W., Beckner (1975). Inequalities in Fourier analysis. Annals of Mathematics, 102(6), pp. 159–82.
J. D., Bekenstein (1973). Black holes and entropy. Physical Review D, 7(8), pp. 2333–46.
J. D., Bekenstein (1981a). Universal upper bound on the entropy-to-energy ratio for bounded systems. Physical Review D, 23(2), pp. 287–98.
J. D., Bekenstein (1981b). Energy cost of information transfer. Physical Review Letters, 46(10), pp. 623–6.
J. D., Bekenstein (2005). How does the entropy/information bound work? Foundations of Physics, 35, pp. 1805–23.
J. D., Bekenstein, M., Schiffer (1990). Quantum limitations on the storage and transmission of information. International Journal of Modern Physics C, 1(4), pp. 355–422.
P., Bello (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications, 11(4), pp. 360–93.
E., Biglieri (2005). Coding for Wireless Channels. Springer.
L., Boltzmann (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, pp. 275–370. English translation: S. G., Brush (tr.) (2003). The Kinetic Theory of Gases. Imperial College Press.
L., Boltzmann (1896–8). Vorlesungen über Gastheorie. J. A., Barth. English translation: S. G., Brush (tr.) (1964). Lectures on Gas Theory. University of California Press.
E., Borel (1897). Sur l' interpolation. Comptes rendus de l'Académie des sciences de Paris, 124, pp. 673–6.
R., Bousso (2002). The holographic principle. Reviews of Modern Physics, 74(3), pp. 825–74.
J., Bowen (1967). On the capacity of a noiseless photon channel. IEEE Transactions on Information Theory, 13(2), pp. 230–6.
H. J., Bremermann (1967). Quantum noise and information. In L. M., Le Cam and J., Neyman Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press.
H. J., Bremermann (1982). Minimum Energy Requirements of Information Transfer and Computing. International Journal of Theoretical Physics, 21(3–4), pp. 203–217.
J. L., BrownJr (1960). Mean square truncation error in series expansions of random functions. Journal of the Society of Industrial and Applied Mathematics, 8(1), pp. 28–32.
O. M., Bucci, G., Di Massa (1988). The truncation error in the application of sampling series to electromagnetic problems. IEEE Transactions on Antennas and Propagation, 36(7), pp. 941–9.
O. M., Bucci, G., Franceschetti (1987). On the spatial bandwidth of scattered fields. IEEE Transactions on Antennas and Propagation, 35(12), pp. 1445–55.
O. M., Bucci, G., Franceschetti (1989). On the degrees of freedom of scattered fields. IEEE Transactions on Antennas and Propagation, 37(7), pp. 918–26.
O. M., Bucci, C., Gennarelli, C., Savarese (1998). Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples. IEEE Transactions on Antennas and Propagation, 46(3), pp. 351–9.
W., Byers (2007). How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create Mathematics. Princeton University Press.
V. R., Cadambe, S. A., Jafar (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), pp. 3425–41.
E., Candés (2006). Compressive sampling. In M., Sanz-Solé, J., Soria, J. L., Varona, J., Verdera (eds.) Proceedings of the International Congress of Mathematicians, Madrid, Spain.
E., Candés (2008). The restricted isometry property and its implications for compressed sensing. Comptes rendus de l'Académie des sciences. Série I. Mathématique, 346, pp. 589–92.
E., Candés, J., Romberg, T., Tao (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), pp. 489–509.
E., Candés, M., Wakin (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), pp. 21–30.
C. M., Caves, P. D., Drummond (1994). Quantum limits on bosonic communication rates. Reviews of Modern Physics, 66(2), pp. 481–537.
S., Chandrasekhar (1960). Radiative Transfer. Dover.
G. M., Church, Y., Gao, S., Kosuri (2012). Next-generation digital information storage in DNA. Science, 337, p. 1628.
R., Clausius (1850–65). The Mechanical Theory of Heat – with its Applications to the Steam Engine and to Physical Properties of Bodies. John van Voorst.
J. B., Conway (1990). A Course in Functional Analysis, 2nd edn. Springer.
T. M., Cover (1994). Which processes satisfy the second law? In J. J., Halliwell, J., Perez-Mercader, W. H., Zurek (eds.), Physical Origins of Time Asymmetry. Cambridge University Press, pp. 98–107.
T. M., Cover, J., Thomas (2006). Elements of Information Theory, 2nd edn. John Wiley & Sons.
M. A., Davenport, M. B., Wakin (2012). Compressive sensing of analog signals using discrete prolate spheroidal sequences. Applied Computational Harmonic Analysis, 33, pp. 438–72.
A., De Gregorio (2012). On random flights with non-uniformly distributed directions. Journal of Statistical Physics, 147(2), pp. 382–411.
P., Dirac (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London A, 133, pp. 60–72.
D. L., Donoho (2000). Wald Lecture I: Counting Bits with Shannon and Kolmogorov. Technical report, Stanford University.
D. L., Donoho (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), pp. 1289–1306.
D. L., Donoho, A., Javanmard, A., Montanari (2013). Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing. IEEE Transactions on Information Theory, 59(11), pp. 7434–64.
D. L., Donoho, P. B., Stark (1989). Uncertainty principles and signal recovery. SIAM Journal of Applied Mathematics, 49, pp. 906–31.
O., El Ayach, S. W., Peters, R. W., HeathJr (2013). The practical challenges of interference alignment. IEEE Wireless Communications, 20(1), pp. 35–42.
A. E., Gamal, Y., Kim (2011). Network Information Theory. Cambridge University Press.
K., Falconer (1990). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons.
P., Feng, Y., Bresler (1996a). Spectrum-blind minimum-rate sampling and reconstruction of multi-band signals. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3, pp. 1688–91.
P., Feng, Y., Bresler (1996b). Spectrum-blind minimum-rate sampling and reconstruction of 2D multi-band signals. Proceedings of the IEEE International Conference on Image Processing, 1, pp. 701–4.
R., Feynman, R., Leighton, M., Sands (1964). The Feynman Lectures on Physics, vols. 1–3. Reprinted 2005. Addison Wesley.
C., Flammer (1957). Spheroidal Wave Functions. Stanford University Press.
G. B., Folland, A., Sitaram (1997). The uncertainty principle: A mathematical survey. Journal of Fourier Analysis and Applications, 3(3), pp. 207–38.
S., Foucart, H., Rauhut (2013). A Mathematical Introduction to Compressive Sensing. Springer.
G., Franceschetti (1997). Electromagnetics: Theory, Techniques, and Engineering Paradigms. Plenum Press.
M., Franceschetti (2004). Stochastic rays pulse propagation. IEEE Transactions on Antennas and Propagation, 52(10), pp. 2742–52.
M., Franceschetti (2007a). A note on Levéque and Telatar's upper bound on the capac¬ity of wireless ad hoc networks. IEEE Transactions on Information Theory, 53(9), pp. 3207–11.
M., Franceschetti (2007b). When a random walk of fixed length can lead uniformly anywhere inside a hypersphere. Journal of Statistical Physics, 127, pp. 813–23.
M., Franceschetti (2015). On Landau's eigenvalue theorem and information cut-sets. IEEE Transactions on Information Theory, 61(9), pp. 5042–51.
M., Franceschetti (2017). Quantum limits on the entropy of bandlimited radiation. Journal of Statistical Physics, 169(2), pp. 374–94.
M., Franceschetti, J., Bruck, L. J., Schulman (2004). A random walk model of wave propagation. IEEE Transactions on Antennas and Propagation, 52(5), pp. 1304–17.
M., Franceschetti, O., Dousse, D., Tse, P., Thiran (2007). Closing the gap in the capacity of wireless networks via percolation theory. IEEE Transactions on Information Theory, 53(3), pp. 1009–18.
M., Franceschetti, R., Meester (2007). Random Networks for Communication. Cambridge University Press.
M., Franceschetti, M. D., Migliore, P., Minero (2009). The capacity of wireless networks: Information-theoretic and physical limits. IEEE Transactions on Information Theory, 55(8), pp. 3413–24.
M., Franceschetti, M. D., Migliore, P., Minero, F., Schettino (2011). The degrees of freedom of wireless networks via cut-set integrals. IEEE Transactions on Information Theory, 57(11), pp. 3067–79.
M., Franceschetti, M. D., Migliore, P., Minero, F., Schettino (2015). The information carried by scattered waves: Near-field and non-asymptotic regimes. IEEE Transactions on Antennas and Propagation, 63(7), pp. 3144–57.
D., Gabor (1946). Theory of communication. Journal of the Institution of Electrical Engineers, Part III: Radio and Communication Engineering, 93, pp. 429–57.
D., Gabor (1953). Communication theory and physics. IRE Professional Group on Information Theory, 1(1), pp. 48–59.
D., Gabor (1961). Light and information. In E., Wolf (ed.), Progress in Optics. Elsevier, vol. I, pp. 109–53.
R. G., Gallager (1968). Information Theory and Reliable Communication. John Wiley & Sons.
R. G., Gallager (2008). Principles of Digital Communication. Cambridge University Press.
A. G., Garcia (2000). Orthogonal sampling formulas: A unified approach. SIAM Review, 42(3), pp. 499–512.
J., Ghaderi, L.-L., Xie, X., Shen (2009). Hierarchical cooperation in ad hoc networks: Optimal clustering and achievable throughput. IEEE Transactions on Information Theory, 55(8), pp. 3425–36.
W., Gibbs (1902). Elementary Principles of Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics. Reprinted 1960, Dover.
A., Goldsmith (2005). Wireless Communications. Cambridge University Press.
J. P., Gordon (1962). Quantum effects in communication systems. Proceedings of the IRE, 50(9), pp. 1898–908.
C. C., Grosjean (1953). Solution of the non-isotropic random flight problem in the k-dimensional space. Physica, 19, pp. 29–45.
P., Gupta, P. R., Kumar (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 42(2), pp. 388–404.
M., Haenggi (2013). Stochastic Geometry for Wireless Networks. Cambridge University Press.
M., Haenggi, J., Andrews, F., Baccelli, O., Dousse, M., Franceschetti (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), pp. 1029–46.
S., W. Hawking (1975). Particle creation by black holes. Communications in Mathematical Physics, 43, pp. 199–220.
W., Heisenberg (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, pp. 172–98. English translation: In J. A. Wheeler, W.
H., Zurek (eds.) (1983). Quantum Theory and Measurement. Princeton University Press, pp. 62–84.
W., Heitler (1954). The Quantum Theory of Radiation, 3rd edn. Reprinted 2000. Dover.
J. R., Higgins (1985). Five short stories about the cardinal series. Bulletin of the American Mathematical Society, 12(1), pp. 46–89.
D., Hilbert, R., Courant (1953). Methods of Mathematical Physics. Vols. 1, & 2, 2nd edn. Springer.
I. I., Hirschman, Jr (1957). A note on entropy. American Journal of Mathematics, 79, pp. 152–6.
J. A., Hogan, J. D., Lakey (2012). Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Birkhäuser.
A., Holevo (1973). Bounds for the quantity of information transmitted by a quantum communica-tion channel. Problems of Information Transmission, 9, pp. 177–83.
S. N., Hong, G., Caire (2015). Beyond scaling laws: On the rate performance of dense device-to-device wireless networks. IEEE Transactions on Information Theory, 61(9), pp. 4735–50.
B. D., Hughes (1995). Random Walks and Random Environments. Volume I: Random Walks. Oxford University Press.
A., Ishimaru (1978). Wave Propagation and Scattering in Random Media. IEEE Press.
S., Izu, J., Lakey (2009). Time–frequency localization and sampling of multiband signals. Acta Applicandae Mathematicae, 107(1), pp. 399–435.
J. D., Jackson (1962). Classical Electrodynamics. John Wiley & Sons.
S. A., Jafar (2011). Interference alignment: A new look at signal dimensions in a communication network. Foundations and Trends in Communications and Information Theory, 7(1), pp. 1–134.
D., Jagerman (1969) entropy and approximation of bandlimited functions. SIAM Journal on Applied Mathematics, 17(2), pp. 362–77.
D., Jagerman (1970). Information theory and approximation of bandlimited functions. Bell Systems Technical Journal, 49(8), pp. 1911–41.
R., Janaswamy (2011). On the EM degrees of freedom in scattering environments. IEEE Transanctions on Antennas and Propagation, 59(10), pp. 3872–81.
E. T., Jaynes (1965). Gibbs vs. Boltzmann entropies. Americal Journal of Physics, 33(5), pp. 391–8.
E. T., Jaynes (1982). On the rationale of maximum entropy methods. Proceedings of the IEEE, 70, pp. 939–52.
A., Jerri (1977). The Shannon sampling theorem – its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65(11), pp. 1565–96.
M., Kac, W. L., Murdock, G., Szegö. (1953). On the eigenvalues of certain Hermitian forms. Journal of Rational Mechanics and Analysis, 2, pp. 767–800.
T., Kawabata, A., Dembo (1994). The rate–distortion dimension of sets and measures. IEEE Transactions on Information Theory, 40(5), pp. 1564–72.
E. H., Kennard (1927). Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik, 44(4–5), pp. 326–52.
R. A., Kennedy, P., Sadeghi, T. D., Abhayapala, H. M., Jones (2007). Intrinsic limits of dimensionality and richness in random multipath fields. IEEE Transactions on Signal Processing, 55(6), pp. 2542–56.
C., Kittel, H., Kroemer (1980). Thermal Physics, 2nd edn. W. H. Freeman & Co.
J. J., Knab (1979). Interpolation of bandlimited functions using the approximate prolate series. IEEE Transactions on Information Theory, 25(6), pp. 717–19.
J. J., Knab (1983). The sampling window. IEEE Transactions on Information Theory, 29(1), pp. 157–9.
A. N., Kolmogorov (1936). Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Annals of Mathematics, 37(1), no. 1, pp. 107–10 (in German).
A. N., Kolmogorov (1956). On certain asymptotic characteristics of completely bounded metric spaces. Uspekhi Matematicheskikh Nauk, 108(3), pp. 385–8 (in Russian).
A. N., Kolmogorov, S. V., Formin (1954). Elements of the Theory of Functions and Functional Analysis, vols. 1, 2. Graylock.
A. N., Kolmogorov, V. M., Tikhomirov (1959). -entropy and -capacity of sets in functional spaces. Uspekhi Matematicheskikh Nauk, 14(2), pp. 3–86. English translation: (1961). American Mathematical Society Translation Series, 2(17), pp. 277–364.
V. A., Kotelnikov (1933). On the transmission capacity of “ether” and wire in electrocommunica¬tions. Proceedings of the First All-Union Conference on Questions of Communication, January 1933. English translation reprint in J. J., Benedetto, P. J. S. G., Ferreira (eds.) (2000), Modern Sampling Theory: Mathematics and Applications, Birkhauser.
M., Lachmann, M. E., Newman, C., Moore (2004). The physical limits of communication or why any sufficiently advanced technology is indistinguishable from noise. American Journal of Physics, 72(10), pp. 1290–3.
H. J., Landau (1975). On Szegö's eigenvalue distribution theorem and non-Hermitian kernels. Journal d'Analyse Mathematique, 28, pp. 335–57.
H. J., Landau (1985). An overview of time and frequency limiting. In J. F., Prince (ed.), Fourier Techniques and Applications. Plenum Press, pp. 201–20.
M. D., Landau, W., Jones (1983). A Hardy old problem. Mathematics Magazine, 56(4), pp. 230–2.
H. J., Landau, H. O., Pollak (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell Systems Technical Journal, 40, pp. 65–84.
H. J., Landau, H. O., Pollak (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. Bell Systems Technical Journal, 41, pp. 1295–336.
H. J., Landau, H., Widom (1980). Eigenvalue distribution of time and frequency limiting. Journal of Mathematical Analysis and Applications, 77(2), pp. 469–81.
A., Lapidoth (2009). A Foundation in Digital Communication. Cambridge University Press.
P. S., Laplace (1774). Mémoires de Mathématique et de Physique, Tome Sixiéme. English translation: S. M., Stigler (tr.) (1986). Memoir on the probability of causes of events. Statistical Science, 1(19), pp. 364–78.
D. S., Lebedev, L. B., Levitin (1966). Information transmission by electromagnetic field. Information and Control, 9, pp. 1–22.
G., Le Caër (2010). A Pearson–Dirichlet random walk. Journal of Statistical Physics, 140, pp. 728–51.
G., Le Caër (2011). A new family of solvable Pearson–Dirichlet random walks. Journal of Statistical Physics, 144, pp. 23–45.
E. A., Lee (2017). Plato and the Nerd. The Creative Partnership of Humans and Technology. MIT Press.
S. H., Lee and S. Y., Chung (2012). Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Transactions on Information Theory, 58(3), pp. 1702–15.
O., Lévêque, E., Telatar (2005). Information theoretic upper bounds on the capacity of large extended ad hoc wireless networks. IEEE Transactions on Information Theory, 51(3), pp. 858–65.
C. T., Li, A., Özgür (2016) Channel diversity needed for vector space interference alignment. IEEE Transactions on Information Theory, 62(4), pp. 1942–56.
T. J., Lim, M., Franceschetti (2017a). Deterministic coding theorems for blind sensing: Optimal measurement rate and fractal dimension. arXiv: 1708.05769.
T. J., Lim, M., Franceschetti (2017b). Information without rolling dice. IEEE Transactions on Information Theory, 63(3), pp. 1349–63.
G., Lorentz (1986). Approximation of Functions, 2nd edn. AMS Chelsea Publishing.
S., Loth, S., Baumann, C. P., Lutz, D. M., Eigler, A. J., Heinrich (2012). Bistability in atomic-scale antiferromagnets. Science, 335, pp. 196–9.
R., Loudon (2000). The Quantum Theory of Light, 3rd edn. Oxford University Press.
M., Masoliver, J. M., Porrá, G. H., Weiss (1993). Some two-and three-dimensional persistent random walks. Physica A, 193, pp. 469–82.
J. K., Maxwell (1873). A treatise on electricity and magnetism. Reprinted 1998, Oxford University Press.
N., Merhav (2010). Statistical physics and information theory. Foundations and Trends in Communications and Information Theory, 6(1–2), pp. 1–212.
M., Mézard, A., Montanari (2009). Information, Physics, and Computation. Oxford University Press.
D. A. B., Miller (2000). Communicating with waves between volumes: Evaluating orthogonal spatial channels and limits on coupling strengths. Applied Optics, 39(11), pp. 1681–99.
M., Mishali, Y., Eldar (2009). Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Transactions on Signal Processing, 57(3), pp. 993–1009.
C. R., Moon, L. S., Mattos, B. K., Foster, G., Zeltzer, H. C., Manoharan (2009). Quantum holographic encoding in a two-dimensional electron gas. Nature Nanotechnology, 4, pp. 167–72.
B., Nazer, M., Gastpar, S. A., Jafar, S., Vishwanath (2012). Ergodic interference alignment. IEEE Transactions on Information Theory, 58(10), pp. 6355–71.
H., Nyquist (1928). Thermal agitations of electric charges in conductors. Physical Review, 32, pp. 110–13.
B. M., Oliver (1965). Thermal and quantum noise. Proceedings of the IEEE, 53(5), pp. 436–54.
F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clark (eds.) (2010). National Institute of Standards Handbook of Mathematical Functions. Cambridge University Press.
A., Özgür, O., Lévêque, D. N. C., Tse (2007). Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Transactions on Information Theory, 53(10), pp. 3549–72.
A., Özgür, O., Lévêque, D. N. C., Tse (2013). Spatial degrees of freedom of large distributed MIMO systems and wireless ad hoc networks. IEEE Journal on Selected Areas in Communications, 31(2), pp. 202–14.
C. H., Papas (1965). Theory of Electromagnetic Wave Propagation. Dover.
G. C., Papen, R. E., Blahut (2018). Lightwave Communication Systems. Preprint, to be published by Cambridge University Press.
J. B., Pendry (1983). Quantum limits to the flow of information and entropy. Journal of Physics A: Mathematical and General, 16, pp. 2161–71.
R., Piestun, D. A. B., Miller (2000). Electromagnetic degrees of freedom of an optical system. Journal of the Optical Society America, 17(5), pp. 892–902.
A., Pinkus (1985). n-Widths in Approximation Theory. Springer.
A. A., Pogorui, R. M., Rodriguez-Dagnino (2011). Isotropic random motion at finite speed with k-Erlang distributed direction alternations. Journal of Statistical Physics, 145, pp. 102–12.
A. S. Y., Poon, R. W., Brodersen, D. N. C., Tse (2005). Degrees of freedom in multiple-antenna channels: A signal space approach. IEEE Transactions on Information Theory, 51(2), pp. 523–36.
J., Proakis, M., Salehi (2007). Digital Communications. McGraw-Hill.
M., Reed, B., Simon (1980). Functional Analysis. Elsevier.
A., Rényi (1959). On the dimension and entropy of probability distributions. Acta Mathematica Hungarica, 10(1–2), pp. 193–215.
A., Rényi (1985). A Diary on Information Theory. John Wiley & Sons.
F., Riesz, B., Sz.-Nagy (1955). Functional Analysis. Ungar.
M., Schiffer (1991). Quantum limit for information transmission. Physical Review A, 43(10), pp. 5337–43.
E., Schmidt (1907). Zur Theorie der linearen und nichtlinearen Integralgleichungen. Mathematis¬che Annalen, 63, pp. 433–76.
C. E., Shannon (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379–423, 623–56.
C. E., Shannon (1949). Communication in the presence of noise. Proceedings of the IRE, 37, pp. 10–21.
D., Slepian (1964). Prolate spheroidal wave functions, Fourier analysis and uncertainty, IV. Extensions to many dimensions: Generalized prolate spheroidal functions. Bell Systems Technical Journal, 43, pp. 3009–58.
D., Slepian (1965). Some asymptotic expansions for prolate spheroidal wave functions. Journal of Mathematics and Physics, 44, pp. 99–140.
D., Slepian (1976). On bandwidth. Proceedings of the IEEE, 64(3), pp. 292–300.
D., Slepian (1978). Prolate spheroidal wave functions, Fourier analysis and uncertainty, V. The discrete case. Bell Systems Technical Journal, 57, pp. 1371–430.
D., Slepian (1983). Some comments on Fourier analysis, uncertainty and modeling. SIAM Review, 25(3), pp. 379–93.
D., Slepian, H. O., Pollak (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, I. Bell Systems Technical Journal, 40, pp. 43–64.
W., Stadje (1987). The exact probability distribution of a two-dimensional random walk. Journal of Statistical Physics, 46, pp. 207–16.
T. E., Stern (1960). Some quantum effects in information channels. IEEE Transactions on Information Theory, 6, pp. 435–40.
G. W., Stewart (1993). On the early history of the singular value decomposition. SIAM Review, 35(4), pp. 551–66.
J. A., Stratton (1941). Electromagnetic Theory. McGraw-Hill.
A., Strominger, C., Vafa (1996). Microscopic origin of the Bekenterin–Hawking entropy. Physics Letters B, 379(1), pp. 99–104.
L., Susskind (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), pp. 6377–96.
T., Tao (2012). Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. American Mathematical Society.
G., 't Hooft (1993). Dimensional reduction in quantum gravity. In A., Ali, J., Ellis, S., Randjbar-Daemi (eds.), Salamfestschrift: A Collection of Talks from the Conference on Highlights of Particle and Condensed Matter Physics, World Scientific Series in 20th Century Physics, vol. 4. World Scientific.
G., Toraldo di Francia (1955). Resolving power and information. Journal of the Optical Society of America, 45(7), pp. 497–501.
G., Toraldo di Francia (1969). Degrees of freedom of an image. Journal of the Optical Society of America, 59(7), pp. 799–804.
D. N. C., Tse, P., Visvanath (2005). Fundamentals of Wireless Communication. Cambridge University Press.
A., Tulino, S., Verdú (2004). Random matrix theory and wireless communications. Foundations and Trends in Communications and Information Theory, 1(1) pp. 1–182.
V., Twersky (1957). On multiple scattering and reflection of waves by rough surfaces. IRE Transactions on Antennas and Propagation, 5,p. 81.
V., Twersky (1964). On propagation in random media of discrete scatterers. Proceedings of the American Mathematical Society Symposium on Stochastic Processes in Mathematics, Physics, and Engineering, 16, pp. 84–116.
J., Uffink (2008). Boltzmann's work in statistical physics. In E. N., Zalta (ed.), The Stanford Encyclopedia of Philosophy, Winter 2008 edn. Published online.
M., Unser (2000). Sampling – 50 years after Shannon. Proceedings of the IEEE, 88(4), pp. 569–87.
O., Vallée, M., Soares (2010). Airy Functions and Applications to Physics. World Scientific.
J., Van Bladel (1985). Electromagnetic Fields. Hemisphere.
R., Venkataramani, Y., Bresler (1998). Further results on spectrum blind sampling of 2D signals. Proceedings of the IEEE International Conference on Image Processing, 2, pp. 752–6.
M., Vetterli, J, Kovacevi cambridge c, V., Goyal (2014a). Foundations of Signal Processing. University Press.
M., Vetterli, J, Kovac, V., Goyal (2014b). Fourier and Wavelet Signal Processing. Cambridge cevi´University Press.
A. J., Viterbi (1995). CDMA: Principles of Spread Spectrum Communication. Addison Wesley.
H., Weyl (1928). Gruppentheorie und Quantenmechanik. S. Hirzel.
E. T., Whittaker (1915). On the functions which are represented by the expansions of the interpolation theory. Proceedings of the Royal Society of Edinburgh, 35, pp. 181–94.
H., Widom (1964). Asymptotic behavior of the eigenvalues of certain integral equations II. Archive for Rational Mechanics and Analysis, 17(3), pp. 215–29.
Y., Wu, S., Verdú (2010). Rényi information dimension: Fundamental limits of almost lossless analog compression. IEEE Transactions on Information Theory, 56(8), pp. 3721–48.
Y., Wu, S., Verdú (2012). Optimal phase transitions in compressed sensing. IEEE Transactions on Information Theory, 58(10), pp. 6241–63.
A., Wyner (1965). Capacity of the band-limited Gaussian channel. Bell Systems Technical Journal, 45, pp. 359–95.
A., Wyner (1973). A bound on the number of distinguishable functions which are time-limited and approximately band-limited. SIAM Journal of Applied Mathematics, 24(3), pp. 289–97.
L. L., Xie, P. R., Kumar (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), pp. 748–67.
H., Yuen, M., Ozawa (1993). Ultimate information carrying limit of quantum systems. Physical Review Letters, 70(4), pp. 363–6.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed